光纤差动保护

合集下载

光纤差动保护原理讲解

光纤差动保护原理讲解

光纤差动保护原理讲解光纤差动保护,这个听起来很高大上的东西,实际上跟我们日常生活的很多事儿都有关系。

咱们先从最基本的说起,光纤就像是一根根细细的管子,里面可以传输光信号,简直是现代通信的“神器”啊。

想象一下,光纤就像是高速公路,车辆(也就是信号)在里面飞驰,速度快得让人目瞪口呆。

可在这条高速公路上,难免会遇到一些突发情况,比如车祸、堵车,这时候就需要一些保护措施,才能确保通畅。

这时候,差动保护的角色就来了,简直就是我们的“守护神”。

它的工作原理可简单理解为监测光纤里信号的变化。

比如说,正常情况下,信号在光纤里来来回回,基本上是平稳的。

但如果有某种故障发生,信号可能就会出现异常,这就像是高速公路上突然刹车的车,让后面的车都措手不及。

这时候,差动保护会迅速反应,像一位机灵的交警,立马就把情况上报,甚至可以切断故障段,保证整个系统的安全。

很多人可能会想,为什么要用光纤呢?咳咳,这个问题问得好。

光纤不仅传输速度快,而且抗干扰能力强,不容易受外界环境影响,像是在大雨中开车,光纤依然稳稳地跑。

而且啊,光纤的带宽很宽,简直是传输信息的“超能战士”。

一旦有了这种强大的工具,咱们就能把信息安全、快速地传递到每一个角落。

说到这里,大家可能觉得差动保护好像挺复杂的,但其实它的工作方式跟我们日常生活中的一些习惯很像。

比如说,咱们家里的火警报警器,平时安安静静地挂在那儿,一旦有烟雾了,它立马就发出警报,提醒我们注意。

差动保护也是这个道理,它在静静监测着,等到发现异常立马就来个“紧急制动”,保护我们的信息不被损坏。

还有一个重要的点就是,差动保护不仅仅是在通信领域发挥作用,它在电力、铁路等领域也同样重要。

在电力系统中,它可以监测变压器、发电机的运行状态,发现问题后迅速处理,避免更大损失。

这就像是给每个电器装上了“安全带”,确保它们在“行驶”过程中的安全。

不过,光纤差动保护的技术也在不断进步,升级换代就像是手机更新系统一样。

以前的保护方式可能比较简单,现代的保护系统越来越智能化,甚至可以通过数据分析来预测故障的发生。

光纤差动保护原理

光纤差动保护原理

光纤差动保护原理光纤差动保护是一种对光纤通信系统进行差动保护的技术,通过监测发送光信号和接收光信号之间的差动光功率来判断线路的可用性和故障情况,从而实现对信号的快速切换和保护。

其原理主要包括光功率检测、差动计算和切换决策三个方面。

首先,光功率检测是光纤差动保护的基本步骤。

光功率检测通过光功率监测器获取发送光信号和接收光信号的功率值。

这些功率值用来判断线路的传输质量和故障情况。

当两个功率值相等时,说明光信号的传输正常;而当两个功率值差异较大时,说明光信号的传输可能发生了故障。

接下来,差动计算是通过计算发送光信号和接收光信号之间的差动光功率来判断光信号传输是否正常。

差动光功率可以用以下公式来表示:ΔP = Psend - Precv,其中ΔP表示差动光功率,Psend表示发送光功率,Precv表示接收光功率。

通过比较差动光功率的大小可以判断光信号的传输是否正常。

当差动光功率小于一个预设值时,说明光信号传输正常;而当差动光功率大于预设值时,说明光信号传输可能发生了故障。

最后,切换决策是根据差动光功率的大小来决定是否进行切换。

切换可以分为两种情况:一是正常切换,即当差动光功率大于预设值时,由主光路切换到备用光路,以保证信号的连续性和可靠性;二是故障切换,即当差动光功率大于故障切换阈值时,由故障光路切换到备用光路,以修复故障导致的信号中断。

切换决策一般由差动保护装置自动完成,根据预设的切换逻辑和切换阈值,实现对信号的快速切换和保护。

总结起来,光纤差动保护的原理是通过光功率检测、差动计算和切换决策三个步骤来实现对光纤通信系统的差动保护。

其中,光功率检测用于获取发送光信号和接收光信号的功率值;差动计算用于计算发送光信号和接收光信号之间的差动光功率;切换决策用于根据差动光功率的大小来决定是否进行切换。

通过这些步骤的组合,可以实现对光信号传输的快速切换和保护,提高光纤通信系统的可用性和可靠性。

光纤差动保护及其通道接口

光纤差动保护及其通道接口
行。
重要输电节点
对于重要的输电节点,如枢纽变 电站等,采用光纤差动保护能够
提高电网的稳定性和可靠性。
长距离输电线路
长距离输电线路由于分布电容大、 电流互感器误差等因素影响,容 易发生保护误动作。采用光纤差 动保护能够有效避免误动作,提
高保护的可靠性。
02 光纤差动保护的通道接口
光纤通道接口的种类与特点
05 光纤差动保护的发展趋势 与展望
新型光纤材料与器件的应用
光纤材料
随着科技的进步,新型光纤材料如塑 料光纤、玻璃光纤等逐渐应用于差动 保护领域,这些材料具有更高的传输 速率和更低的损耗。
光纤器件
新型光纤器件如光放大器、光调制器 等在差动保护系统中的应用也日益广 泛,提高了系统的性能和稳定性。
智能诊断与自适应控制技术
光纤通道接口的故障诊断与维护
故障诊断
通过观察光纤通道接口的工作状态、检查连接是否良好、测 量光功率等手段,判断故障原因。
维护
定期对光纤通道接口进行检查、清洁和保养,确保其正常工 作。
03 光纤差动保护系统的构成
硬件构成
光纤通道接口
用于实现光纤信号的传输和转换,包括光发 送器、光接收器和光纤耦合器等组件。
光纤差动保护及其通道接口
contents
目录
• 光纤差动保护概述 • 光纤差动保护的通道接口 • 光纤差动保护系统的构成 • 光纤差动保护的性能测试与评估 • 光纤差动保护的发展趋势与展望
01 光纤差动保护概述
光纤差动保护的基本原理
光纤差动保 护区内,从而决定是否需要切断被保护
智能诊断
利用人工智能和大数据技术,实现差动保护系统的智能诊断,及时发现和解决潜在故障,提高系统的 可靠性和稳定性。

光纤差动保护原理

光纤差动保护原理

光纤差动保护原理光纤差动保护是一种用于电力系统的保护装置,其原理是利用光纤通信技术实现电力系统的差动保护。

光纤差动保护的主要作用是在电力系统发生故障时,及时准确地检测故障并切除故障部分,保护电力系统的安全稳定运行。

本文将介绍光纤差动保护的原理及其在电力系统中的应用。

光纤差动保护的原理是利用光纤通信技术实现电力系统的差动保护。

在电力系统中,差动保护是一种重要的保护方式,其原理是通过比较电力系统中不同位置的电流或电压,来判断系统中是否存在故障。

光纤差动保护利用光纤作为信号传输的介质,将差动保护的信号通过光纤传输到各个保护装置,实现对电力系统的差动保护。

光纤差动保护的应用可以提高电力系统的保护性能和可靠性。

由于光纤传输具有抗干扰能力强、传输距离远、信号传输速度快等优点,使得光纤差动保护在电力系统中得到了广泛的应用。

在电力系统中,光纤差动保护可以实现对各种故障的快速检测和定位,提高了电力系统的故障处理速度和准确性,保障了电力系统的安全稳定运行。

光纤差动保护的原理简单清晰,易于实现和维护。

光纤差动保护的原理基于光纤通信技术,其实现过程相对简单,只需在电力系统中布设光纤传感器和光纤通信设备,即可实现光纤差动保护。

而且光纤传输技术具有抗干扰能力强、传输距离远、信号传输速度快等优点,保证了光纤差动保护的可靠性和稳定性。

总的来说,光纤差动保护是一种利用光纤通信技术实现电力系统差动保护的新型保护装置。

其原理简单清晰,应用广泛,能够提高电力系统的保护性能和可靠性,保障电力系统的安全稳定运行。

在未来的电力系统中,光纤差动保护有着广阔的发展前景,将会在电力系统的保护领域发挥重要作用。

光纤差动保护原理分析

光纤差动保护原理分析

光纤差动保护原理分析光纤差动保护(Optical Fiber Differential Protection)是一种应用于电力系统中的差动保护技术,主要用于高压输电线路和变电站的保护,其原理是通过光纤通信技术实现对电力系统中两端差动保护装置之间的电信号传输,以实现设备间的保护、通信和协调。

1.光纤通信原理:光纤作为传输介质,能够将信号通过光的折射和反射实现传输。

光纤具有高带宽,低损耗和抗电磁干扰等特点,能够实现远距离的传输。

2.典型接线方式:光纤差动保护通过将一根光纤分别连接在同一段高压线路或变电站的两个差动保护装置上,形成一条闭环的光纤接线。

3.光纤传感器:在光纤接线路上,布置有一定数量的光纤传感器,用于感测电流和电压信号。

光纤传感器可以通过不同的方式(例如布拉格光纤光栅)实现测量信号的变化。

4.差动保护算法:差动保护算法是光纤差动保护的核心部分,主要用于判断电流或电压的差异,当差异超过设定阈值时,触发保护动作。

差动保护算法可以根据实际需求选择,常见的有电流差动保护和电压差动保护。

5.通信和协调:在光纤差动保护中,各差动保护装置之间通过光纤传输电信号,实现保护装置之间的通信和协调。

一般采用光纤通信协议(如G.652光纤)或使用冗余备份的通信系统,以确保通信的可靠性和稳定性。

1.灵敏性高:光纤差动保护通过传感器对电流和电压进行实时监测,能够检测到小到毫安级别的故障电流,具有很高的灵敏性。

2.速度快:光纤差动保护的通信速度非常快,通常在毫秒级别内即可完成差动保护算法的计算和保护动作的触发,能够迅速切断故障电路,防止故障扩大。

3.抗干扰性好:光纤差动保护采用光纤通信技术,能够有效地抵御电磁干扰和地电流影响,提高保护的可靠性和稳定性。

4.可扩展性强:光纤差动保护支持多通道传输,可以连接多个差动保护装置,实现不同部分的保护和协调,具有较强的工程可扩展性。

总之,光纤差动保护是一种先进的电力系统保护技术,通过光纤通信技术实现差动保护装置之间的通信和协调,具有灵敏性高、速度快、抗干扰性好和可扩展性强等优点,能够提高电力系统的可靠性和稳定性。

光纤差动保护原理

光纤差动保护原理

光纤差动保护原理光纤差动保护是一种用于光纤通信系统中的重要保护方式,它能够在光纤通信系统中快速、准确地检测出故障,并迅速切换到备用路径,以确保系统的稳定运行。

光纤差动保护原理主要基于光纤差动保护装置的工作机制,下面将详细介绍光纤差动保护的原理及其工作过程。

光纤差动保护的原理是利用两条光纤的差动传输特性来实现的。

在光纤传输系统中,通常会设置一条主用光纤和一条备用光纤,它们之间通过光纤差动保护装置相连。

当主用光纤发生故障时,光纤差动保护装置会及时检测到故障信号,并迅速切换到备用光纤,以确保通信系统的正常运行。

光纤差动保护装置主要由光纤差动保护单元和控制单元两部分组成。

光纤差动保护单元负责监测光纤通信系统的工作状态,当检测到主用光纤发生故障时,会立即发出切换指令,控制单元则负责接收并执行切换指令,将通信信号切换到备用光纤上,从而实现故障切换。

在光纤差动保护装置中,光纤的差动传输特性起着至关重要的作用。

光纤的差动传输特性是指当光纤中发生故障时,主用光纤和备用光纤之间会产生一定的光功率差,光纤差动保护装置可以通过检测这种光功率差来判断光纤是否发生故障,并进行相应的切换操作。

光纤差动保护的工作过程可以简单描述为,首先,光纤差动保护单元不断监测光纤通信系统的工作状态,当检测到主用光纤发生故障时,会立即向控制单元发送切换指令;接着,控制单元接收到切换指令后,会立即执行切换操作,将通信信号切换到备用光纤上;最后,光纤差动保护单元会持续监测光纤通信系统的工作状态,直到主用光纤恢复正常,再切换回主用光纤。

总的来说,光纤差动保护原理是基于光纤的差动传输特性,通过光纤差动保护装置对光纤通信系统进行实时监测,及时发现故障并进行切换操作,以确保通信系统的稳定运行。

光纤差动保护技术的应用,大大提高了光纤通信系统的可靠性和稳定性,对于保障通信网络的正常运行具有重要意义。

光纤差动保护原理构成和动作结果基础知识讲解

光纤差动保护原理构成和动作结果基础知识讲解
19
七、案例共享
1、某电站35kV 高压开关柜PT间隔保险卡子爬电处理
保险卡子对绝 缘支座爬电
原理:光纤分相电流差动保护的基本原理是借助光纤通道,
实时地向对侧传递每相电流的采样数据,同时接收对侧的 电流采样数据,两侧保护利用本地和对侧电流数据经过 同步处理后分相进行差电流计算。
3
一、光纤差动保护原理
2、光纤差动保护优点
1)光纤纵联保护的优异性能皆源于其光纤通道,充分发挥光纤通道的高带宽、 高可靠性优点,最终使超高压成套线路保护装置发生很大的变化,而性能得以更 加完善。 2)光纤作为继电保护的通道介质具有不怕超高压与雷电电磁干扰、对电场绝缘 、频带宽和衰耗低等优点。 3)能够准确地区分内部与外部故障,不需要相邻线路在保护上配合,可以实现 全线速动。 4)简单可靠,继电保护四性“速动性、选择性、可靠性、灵敏性” 同时满足要 求。 5)能适应非全相、电力系统震荡等。 6)装置简单,易于集成化板件式运维,某一原件故障,可插拔式更换,便于检 修和维护。 7)稳定性高,TA、TV断线误动可能性低。
18
六、光纤差动保护动作处理
• 完整、准确记录报警信号及保护装置屏显示的信息。 • 检查后台机(或打印机)的保护动作事件记录。 • 打印故障录波的故障波形,及时从保护装置及故障录波器中导出并保
存故障录波数据文件。 • 及时上报现场主管领导或调度部门。 • 详细记录保护动作情况。 • 分析保护动作原因,判断保护动作正确性。 • 积极查找故障点,如有明显设备故障点,应及时保存图片资料。 • 整理保护动作分析报告,以速报形式上报上级管理部门。
15
三、光纤差动保护应用
3)设备运行操作 35KV线路光钎差动保护装置投入步骤 • 查线路保护装置全部出口压板在退出。 • 查线路保护装置全部保护功能压板在退出。 • 退出装置检修压板。 • 合上直流馈线盘至35KV保护盘电源开关。 • 合上UPS交流馈线盘至35KV保护盘电源开关。 • 合上保护盘后直流操作电源开关 • 合上保护盘后交流220V电源开关 • 合上保护盘后35KV线路TV电压引入开关。 • 查保护装置上电正常。 • 按规定投入功能保护压板。 • 按规定投入跳闸出口压板。 • 再次确认保护压板投入正确。 35KV 线路光纤纵差保护装置退出步骤 • 查保护装置无报警信息。 • 退出保护装置出口跳闸压板。 • 退出保护装置功能压板。 • 投入装置检修压板。 • 分开保护盘后35KV线路TV电压引入开关。 • 分开保护盘后交流220V电源开关。 • 分开保护盘后直流操作电源开关。 • 分开直流馈线盘至35KV保护盘电源开关。 • 分开UPS交流馈线盘至35KV保护盘电源开关。

光纤差动保护原理

光纤差动保护原理

光纤差动保护原理光纤差动保护是一种常用的光纤传感器技术,用于检测和保护高电流系统或高压系统中的线圈和电缆。

它基于光纤传感器的原理,利用两个相邻的光纤传感器,在电流或电压发生差异时触发保护装置。

光纤差动保护的应用范围十分广泛,包括发电厂、变电站、电力系统等。

光纤差动保护主要由光纤传感器、信号处理器和保护装置组成。

光纤传感器是核心部件,它由两根光纤组成,分别作为感测和参考。

两根光纤通常由玻璃或塑料制成,具有较高的抗干扰性能和精确度。

感测光纤安装在需要保护的设备附近,用于感测电流或电压变化;参考光纤则固定在一个不受保护的设备上,用于参考基准。

当电流或电压在两根光纤之间发生差异时,光纤差动保护会触发保护装置,以及时断开电流或电压源,避免设备受损。

触发过程主要包括光纤传感器输出信号的检测、信号处理和保护动作的执行。

光纤差动保护的原理是基于光纤的全内反射特性。

在正常工作状态下,感测光纤和参考光纤之间的光信号保持完全相等,光纤传感器的输出为零。

然而,当电流或电压发生变化时,例如线圈内部出现故障或电缆断裂,电流或电压会通过感测光纤和参考光纤之间的磁场或电场产生差异。

这种差异会影响光纤的折射率,导致感测光纤和参考光纤之间的光信号不再相等,进而触发光纤差动保护。

光纤差动保护的核心是信号处理器。

当差动信号被感测到后,传感器会将这一信息传递给信号处理器。

信号处理器会对信号进行滤波、放大和调整,以使信号在满足保护装置需求的同时,尽量减少误报。

经过信号处理后,差动信号会被传送到保护装置,触发相应的保护动作,例如断开故障区域或切断电源。

光纤差动保护具有很多优点。

首先,它具有抗干扰能力强、误报率低的特点。

光纤传感器可以抵抗电磁场干扰和放电现象,可靠性高。

其次,光纤差动保护的安装、调试和维护相对简单,可适应不同系统和设备的需求。

最后,光纤差动保护对环境要求较低,适用于各种恶劣条件下的应用。

总之,光纤差动保护是一种利用光纤传感器技术实现的设备保护装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号 1 定 值 名 称 投主保护压板 投距离保护压板 投零序保护压板 投闭重三跳压板 定 值 范 围 0,1 与外部压板与关系 与外部压板或关系
2 3 4
0,1
0,1
RCS-931压板定值V3.0
• • • • • • 投A通道差动 投B通道差动 投距离保护 投零序保护 投闭重 (勾三压板) 出口压板有:跳A、跳B、跳C、重合闸、一般 还有启动失灵、至重合闸等(给本线路其它保 护用.一般不接.原因是各套保护尽量保持相对 独立).
I R0
I QD0
零序差动继电器本身无选相 功能,所以再另外用稳态分 相差动继电器选相。两者构 成‘与’门。
选相零差继电器
动作方程:
选相元件:
I CD 0 0.75 I R 0 I CD 0 I QD 0 I CDBC 0.15 I R I CDBC I L
输电线路电流纵差保护原理
线路内部短路 • 动作电流:
M IM
*
I N N
*
I CD I M I N I K
I R I M I N
• 制动电流:
• 因为I CD I R 继电器动 作。 • 凡是在线路内部有流出 的电流,都成为动作电 流。
I K
IM
经40ms延时动作:
为防止空充线路暂态电容电流 等引起误动,延时40ms动作,用时 间换取灵敏度。
取为定值单中‘差动电 流低定值’、1.5倍实测电 5 容电流和 1.XU N 中的最大值。
C1
依靠定值躲电容电流。 经40ms延时动作
稳态相差动继电器
Ⅰ段动作方程:
I CD 0.75 I R I CD I H A, B, C I CD 0.75 I R I CD I M A, B, C
RCS-931
工频变化量相差动继电器
动作方程
I CD 0.75 I R I CD I H
931保护中差动继电器的种类和特点
工频变化量差动继电器的特点 • 不受负荷电流的影响。因此负荷电流不会产生制动电 流。 • 受过渡电阻的影响也较小。 • 在单侧电源线路上发生短路,只要短路前有负荷电流, 短路后无电源侧的工频变化量电流也会形成动作电流。 由于上述原因该继电器很灵敏。提高了重负荷长 线路上发生经高电阻短路时的灵敏度。
工频 变 化量 光纤分相电 距离
单重 三重 综重 停用
装臵面板布臵图
3×3键盘
运 行 电 A B C
区号 取消
TV 断线
RCS-931A
超高压线路成套快速保护装置
充 跳 跳 跳
通道异常
确认
重合闸
汉字显示器
信号复归
液晶对比度调整
调试通讯口
模拟量输入
指示灯说明
• “运行”灯为绿色,装置正常运行时点亮; • “TV断线”灯为黄色,当发生电压回路断线时 点亮; • “充电”灯为黄色,当重合充电完成时点亮; • “通道异常”灯为黄色,当通道故障时点亮; • “跳A”、“跳B”、“跳C”、“重合闸”灯为 红色,当保护动作出口点亮,在“信号复归” 后熄灭;
装臵硬件总体方案
Ia、Ib Ic、I0 Ua、Ub Uc、UL
低通 滤波
A/D
DSP 光端机
CPLD
光隔
外部 开入
电源 液晶显示
出口 继电器 QDJ
TEST HELP
低通 滤波
A/D
CPU
打印 通信接口
+E
总起动(CPU)、保护动作(DSP)、 装臵故障告警(BSJ)的关系
+24V QD(CPU) BSJ +24V
931保护中差动继电器的种类和特点
I CD
• 工频变化量分相差动继电 器的构成: 动作电流:
I CD I M I N
0.75
IH
I R
制动电流: I R I M+I N I H 取为定值单中‘差动电 流高定值’、4倍实测电容 电流和 4U N 中的最大值。I H 由于 X C1 大于电容电流,依靠定值躲 电容电流影响.
输电线路电流纵差保护原理
M IM
*
IN N
*
线路外部短路 • 动作电流:
I CD I M I N I K I K 0
IK
• 制动电流:
I R I M I N I K I K 2 I K
M
IM
*
IN
*
N
Ifh
j2 X C
I MC
j2 X C
I NC
故而
I C I MC I NC U M U M 0 U M 0 U N U N 0 U N 0 2 X C1 2 X C 0 2 X C1 2 X C0
TJ
各种继电器(DSP)
SIG中
RCS-931压板
• • • • • 投主保护(差动保护) 投距离保护 投零序保护 投闭重 (勾三压板) 出口压板有:跳A、跳B、跳C、重合闸、 一般还有启动失灵、至重合闸等(给本线 路其它保护用.一般不接.原因是各套保 护尽量保持相对独立).
RCS-931压板定值
RCS-931系列光纤差动保护
RCS-931保护配臵

型 号 纵 联 保 护
欠范 围快 速保 护



重合闸
后 备 保 护
RCS-931A RCS-931AM RCS-931AMM
二段式相间和接 地距离 二段零序方向过 RCS-931B 流差动 流(A型) RCS-931BM 距离 三段零序方向过 RCS-931BMM 光纤零序电 流差动保护 I段 流(B型) RCS-931D 零序反时限过流 零序 RCS-931DM (D型) I段 RCS-931DMM
电容电流的补偿
• 当‘计算电容电流与实测电容电流相差较大’ 时、判断TV断线时、‘判断电容电流很小’时, 选相用的动作电流不再进行电容电流的补偿。 为防止电容电流的影响,将初始动作电流由IL 抬高到IM 。因为电容电流的补偿要用到TV的 电压和线路容抗的定值,而这些值现有可能是 不正确的。 0.75 I I
I H 取为定值单中‘差动电
IH
I R
流高定值’、4倍实测电容 4U N 电流和 中的最大值。
X C1
依靠 定值躲电容电流。
931保护中差动继电器的种类和特点
ICD
• 稳态Ⅱ段分相差动继电器 的构成: 动作电流:
0.75
I CD I M I N
制动电流:
IM
I R
I R I M I N
设计精细、可靠的硬件方案
• 实时并行计算 在较高的采样率(每周24点)的前提 下,装臵保证在每个采样间隔内完成所有 保护运算和逻辑判别,实现了对所有保护 继电器(主保护与后备保护)实时并行计 算,主要继电器采用全周傅氏算法,具有 很高的可靠性及安全性。 由于先进DSP的选用,在实现实时并行 计算的条件下,时间仍有较大的冗余。
M IM
*
I N N
*
IC
输电线路电流纵差保护的主要问题
M IM
*
I N N
*
I K
ICD
0.75
IH
I R
⑵ 重负荷情况下线路内部经高 电阻接地短路,稳态差动保 护灵敏度可能不够。 负荷电流是穿越性的电流, 它只产生制动电流而不产生 动作电流。 经高电阻短路,短路电流 很小,因此动作电流很小 因而灵敏度可能不够。 解决方法: 采用工频变化量比率差动 继电器和零序差动继电器
RCS-931压板定值V3.0
定值名称
投A通道差动 投B通道差动 投距离保护 投零序保护 投闭重三跳压板
定值范围
0, 0, 0, 0, 0, 1 1 1 1 1

与外部压板与关系 与外部压板与关系 与外部压板与关系 与外部压板与关系 与外部压板或关系
RCS-931总起动元件
I MAX 1.25I T I ZD • 电流变化量起动: 电流变化量起动元件动作并展宽7秒 • 零序过流元件起动 :当外接和自产零序电流均大于整定值 时,零序起动元件动作并展宽7秒,去开放出口继电器正电 源。 • 位臵不对应起动 :这一部分的起动由用户选择投入,条件 满足总起动元件动作并展宽15秒,去开放出口继电器正电源。 • 纵联差动或远跳起动: 发生区内故障,弱电源侧电流元件可能不动作,此时若收 到对侧的差动保护允许信号,依弱电侧差电流选相元件选动 作相关相、相间电压,若小于60%额定电压,则此辅助电压 起动元件动作,开放出口正电源7秒并发远方允许信号。 当本侧收到对侧的远跳信号且定值中‚不经本侧起动控 制‛臵‚1”时,去开放出口继电器正电源500MS。
0.15
I CD I M I N
IL
I R
为 、0.6倍实测电 I QD IL 容电流和0 中的最 大值。 0.6U N
X C1
制动系数仅取为0.15。
931保护中差动继电器的种类和特点
选相用稳态分相差动继电器特点 • 由于 I L 值和制动系数值都取得很小,所以该继 电器很灵敏。不会影响零序差动继电器的灵敏 度。 • 由于 I L 比电容电流小,故动作电流要经电容电 流补偿。
电容电流的补偿
I C I MC I NC
M
1 C 2
其中
N
1 C 2
I MC
UM0 UM0 UM0 U M1 U M 2 2 X C1 2 X C 2 2 X C 0 2 X C1 2 X C1 U M UM0 UM0 2 X C1 2 X C 0 2 X C1 U M U M 0 U M 0 2 X C1 2 X C0
相关文档
最新文档