高二数学相互独立事件同时发生的概率教案
相互独立事件同时发生的概率(说课教案)

相互独⽴事件同时发⽣的概率(说课教案)相互独⽴事件同时发⽣的概率(第⼀课时)武夷⼭市第⼀中学张俊玲⼀、教学⽬标1.1 教材分析《相互独⽴事件同时发⽣的概率(⼀)》是⾼中数学第⼆册(下)第⼗章第七节的第⼀课时。
这节课是在学⽣学习了排列、组合、等可能性事件概率、互斥事件概率的基础上进⾏的。
通过本节学习不仅要让学⽣掌握相互独⽴事件的定义及其同时发⽣的概率乘法公式和公式的应⽤,为后⾯学习独⽴重复试验等概率知识以及今后升⼊⾼⼀级院校学习相关知识奠定良好基础,更重要的是培养学⽣关爱⼈⽂、虚⼼求教的精神与从正反两个⽅⾯考虑问题的辩证思想。
1.2 学情分析由于在我执教的⾼⼆班级中,农村学⽣较多,他们的特点是勤学好问,基础知识相对扎实,但是知识⾯较窄。
为了拓展学⽣知识⾯,锻炼学⽣的探究能⼒,我在课堂上⼀般采取以探究为主导策略的教学模式。
经过⼀个多学期的锻炼,学⽣基本上能适应这种教学模式,并对探究性课题的学习有较⼤的兴趣。
1.3教学⽬标根据本节所处的地位与作⽤,结合学⽣的具体学情,确定本节课的教学⽬标如下:认知⽬标:理解相互独⽴事件的意义,掌握相互独⽴事件同时发⽣的概率乘法公式,并能应⽤该公式计算⼀些独⽴事件同时发⽣的概率,进⼀步理解偶然性与必然性之间的辩证关系。
能⼒⽬标:培养学⽣的动⼿能⼒、探究性学习能⼒、创新意识和实践能⼒,发展学⽣“⽤数学”的意识和能⼒,提⾼熟练使⽤科学计算器的能⼒。
情感⽬标:培养学⽣关注⼈⽂、虚⼼求教的情感,帮助学⽣体验数学学习活动中的发现与快乐,激发他们的学习兴趣。
⼆、重点、难点2.1教学重点:概念教学、探究公式、应⽤公式。
2.2教学难点:理解概念、探究公式、应⽤公式解决实际问题。
三、教学⽅法与教学⼿段3.1教学⽅法:探究法、讲授法、启发式教学。
3.2教学⼿段:采⽤多媒体辅助教学。
四、教学过程4.1创设情境,让学⽣的思维“动”起来[问题]“三⼈⾏,必有吾师”出⾃哪⾥?如何解释?你从中得到什么启发?从数学的⾓度,你能做出解释吗?[设计说明]:通过多媒体声、形、⾊将问题引⼊,让学⽣体验学科整合的魅⼒,制造悬念,让他们以极⼤的兴趣投⼊新⼀课的学习。
《相互独立事件同时发生的概率》教案及说明

【教学目标】 知识目标 1. 相互独立事件的概念。 2. 会用积事件的概率公式求相互独立事件同时发生的概率。 情感目标 通过课堂学习让学生从感性上体验到概率问题的多样性和趣味性, 从理性上 理解并掌握相互独立事件同时发生的概率的计算方法,建立面对概率问题,只要 概念清晰和方法得当,就会战无不胜的信心。 能力目标 指导学生逐渐提高将复杂事件用简单事件的和事件与积事件表示的数学思 维能力。 【教学重点】 1. 理解相互独立事件的概念 2. 掌握相互独立事件同时发生的概率公式的应用。 【教学难点】 通过对应用题的文字分析, 提炼出事件的两要素和事件的概型, 从而准确进 行概率计算。 【教学方法】 通过教师铺桥设路,自然地引出学习内容;通过引导学生思考,找到解决问题的 办法。通过整理学习过程,形成清晰的知识体系。 【授课类型】新授课 ,以上定位均根据我校高二理科学生的具体情况而定。 【课时安排】1 课时 【教 具】多媒体 ppt 课件一套 【教学过程】 一、复习引入: 1、复习提问: (1)袋中有大小相同的 1 白,1 红,2 黑球,从中摸出一个球,记“从中摸出一 个球,是白球”为事件 A ,记“从中摸出一个球,是黑球”为事件 B,问:事件 A 和 B 是否互斥?是否对立? (2)事件 A 的对立事件是 A , 则 P( A) P( A) 1 2、引例 ppt:根据下面的问题,填空: 甲坛子里有 3 个白球,2 个黑球;乙坛子里有 2 个白球,2 个黑球。 (球等大) (1)记“从甲坛子里摸出一个球,得到白球”为事件 A,则 P(A)= 。 (2)记“从乙坛子里摸出一个球,得到白球”为事件 B,则 P(B)= 。 (3)记“从两个坛子里分别摸出一个球,都是白球”为事件 D,则事件 D 是 ? 事件.P(D)= ? 。 知识导入过程一:分析出事件 A 是否发生对事件 B 发生的概率没有影响,事件 B 是否发生对事件 A 发生的概率没有影响,即事件 A(或 B)是否发生对事件 B(或
高二数学最新教案-2018.相互独立事件同时发生的概率(3) 精品

§11.2 相互独立事件同时发生的概率(3)【课 题】相互独立事件同时发生的概率(3)【教学目标】1.理解独立重复试验的概念,明确它的实际意义;2.引出n 次独立重复试验中某事件恰好发生k 次的概率计算公式;3.了解概率计算公式与二项式定理的内在联系.【教学重点】n 次独立重复试验中某事件恰好发生k 次的概率计算公式.【教学难点】独立重复试验的判定.【教学过程】一、复习引入:1.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的.2.互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.3.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-4.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++ =12()()()n P A P A P A +++ .5.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立6.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅二、讲授新课:1 .独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验.2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 三、讲解范例:例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率.解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯- 450.80.80.4100.3280.74=+≈+≈.答:5次预报中至少有4次准确的概率约为0.74.例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验.1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈ 答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法.例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次.记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75n n P P =-=-.由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次.四、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p -2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=10.(1) 23P = (2) 112()33n P -=⋅ 五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系.六、课后作业: .七、板书设计(略).八、教学后记:。
高中数学第二章概率2.2.2相互独立事件同时发生的概率教案新人教B3新人教B数学教案

二、简单应用
例1 甲、乙两战士向同一目标各射击一次。设事件A:甲战士射中目标,事件B:乙战士射中目标。试表示下列事件:
⑴甲乙两战士同时射中;
⑵甲战士未射中,而乙战士射中;
⑶甲乙两战士恰有一人射中;
⑷甲乙两战士至少有一人射中;
例2 设A、B、C是三个随机事件,试用A、B、C分别表示下列事件:
⑴ A、B、C中恰好有一个发生
⑵ A、B、C中恰有两个发生
⑶A、B、C中不多于过程设计
教材处理
师生活动
例3 甲、乙两射手独立地射击同一目标,若他们各射击一次,击中目标的概率分别为0.9、0.7;
⑴目标恰好被甲击中的概率;
⑵目标不被击中的概率;
⑶目标被击中的概率。
例4 在某次1500米体能测试中,甲、乙、丙三人各自通过测试的概率分别为2/5、3/4、1/3,求:
5、两台雷达独立地工作,在一段时间内,甲雷达发现飞行目标的概率为0.9,乙雷达发现飞行目标的概率为0.85.计算在这段时间内,下列各事件的概率.
(1)甲、乙两雷达均未发现目标;
(2)至少有一台雷达发现目标
(3)至多有一台雷达发现目标
板书设计:
教学日记:
教学过程设计
教材处理
师生活动
练习:
1、有一道数学题,在半小时内,甲能解决它的概率是1/2,乙能解决它的概率是1/3,2人试图独立地在半小时内解决它,则
⑴2人都未解决的概率
⑵问题得到解决的概率
2、 有一道谜语,甲猜出的概率为1/5,乙猜出的概率为1/3,丙猜出的概率为1/4,甲乙丙三人独立猜此谜语只有一人能猜出的概率为多少?
3、在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作。假定在某段时间内每个开关能闭合的概率都是0.7,计算在这段时间内线路正常工作的概率。
相互独立事件同时发生的概率教案

相互独立事件同时发生的概率教案----相互独立事件及其同时发生的概率山西省平遥中学 常毓喜【教学目的】1.了解相互独立事件的意义,会用相互独立事件的概率乘法公式运算一些事件的概率;2.通过对概率知识的学习,了解偶然性寓于必定性之中的辨证唯物主义思想;【教学重点】用相互独立事件的概率乘法公式运算一些事件的概率;【教学难点】互斥事件与相互独立事件的区不;【教学用具】投影仪、多媒体电脑等。
【教学过程】一、提出咨询题有两门高射炮,每一门击中侵犯我领空的美军侦察机的概率均为0.7,假设这两门高射炮射击时相互之间没有阻碍。
假如这两门高射炮同时各发射一发炮弹,那么它们都击中美军侦察机的概率是多少?〔板书课题〕二、探究研究明显,依照课题,本节课要紧研究两个咨询题:一是相互独立事件的概念,二是相互独立事件同时发生的概率。
〔一〕相互独立事件1.中国福利彩票,是由01、02、03、…、30、31这31个数字组成的,买彩票时能够在这31个数字中任意选择其中的7个,假如与运算机随机摇出的7个数字都一样〔不考虑顺序〕,那么获一等奖。
假设有甲、乙两名同学前去抽奖,那么他们均获一等奖的概率是多少?〔1〕假如在甲中一等奖后乙去买彩票,那么也中一等奖的概率为多少?〔P=1311C 〕 〔2〕假如在甲没有中一等奖后乙去买彩票,那么乙中一等奖的概率为多少?〔P=1311C 〕 2.一个袋子中有5个白球和3个黑球,从袋中分两次取出2个球。
设第1次取出的球是白球叫做事件A ,第2次取出的球是白球叫做事件B 。
〔1〕假设第1次取出的球不放回去,求事件B 发生的概率;〔假如事件A 发生,那么P 〔B 〕=74;假如事件B 不发生,那么P 〔B 〕=75〕 〔2〕假设第1次取出的球仍放回去,求事件B 发生的概率。
〔假如事件A 发生,那么P 〔B 〕=85;假如事件B 不发生,那么P 〔B 〕=85〕 相互独立事件:假如事件A 〔或B 〕是否发生对事件B 〔或A 〕发生的概率没有阻碍,如此的两个事件叫做相互独立事件。
高二数学教案:相互独立事件同时发生的概率(1)

相互独立事件同时发生的概率(1)一、课题:相互独立事件同时发生的概率(1)二、教学目标:1.了解相互独立事件的意义;2.注意弄清事件“互斥”与“相互独立”是不同的两个概念;3.理解相互独立事件同时发生的概率乘法公式。
三、教学重、难点:相互独立事件的意义;相互独立事件同时发生的概率乘法公式;事件的相互独立性的判定。
四、教学过程:(一)复习引入:1.复习互斥事件的意义及其概率加法公式:互斥事件:不可能同时发生的两个事件称为互斥事件.()()()P A B P A P B +=+对立事件:必然有一个发生的互斥事件叫做对立事件.()1()1()P A A P A P A +=⇒=-2.问题1:甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上。
问题2:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球。
提问1:问题1、2中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)提问2:问题1、2中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)(二)新课讲解:1.相互独立事件的定义:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互 独立事件。
说明:若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立。
2.相互独立事件同时发生的概率:问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就 是事件A ,B 同时发生,记作A B ⋅.从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的 结果。
于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果。
同时摸出白球的 结果有32⨯种。
高二数学最新教案-16相互独立事件同时发生的概率一 精品

第周年月日星期姓名相互独立事件同时发生的概率㈠1、判断下列事件A与B是否是独立事件。
⑴运动员甲射击一次,A:射中9环;B:射中8环”。
⑵甲乙两名射手分别同时向一个目标射击,A:甲击中目标;B:乙没有击中目标”。
⑶A:学生甲期中考试数学成绩是100分B:学生乙期中考试数学成绩是100分⑷A:学生甲期中考试数学成绩是100分B:学生甲期末考试数学成绩是100分⑸袋子中装有3个黑球,2个白球,从中摸出2只,A:第一次摸出的是黑球;B:第二次摸出是白球⑹袋子中装有3个黑球,2个白球,从中先摸出一个球,放回后再摸出一个球,A:第一次摸出的是黑球;B:第二次摸出是白球2、如果事件A与B相互独立,则下列事件相互独立的是____________。
⑴A与A⑵A与B⑶A与B⑷A与B3、若相互独立事件A、B发生的概率分别为0.3、0.6,则P(A B)⋅=____。
4、在甲盒中装有200个螺钉,其中160个为A型的,在乙盒子中装有240个螺母,其中180个是A型的,若从甲盒子中取1个螺钉,从乙盒子中取1个螺母,则能配成A型螺栓的概率是()A、120B、1516C、35D、19205、有一道竞赛题,A生解出的概率为12,B生解出的概率为13,C生解出的概率为14,则A、B、C三人独立解答此题,只有1人解出的概率是()A、124B、1124C、1724D、16、甲袋中装有8个白球,4个红球;乙袋中装有6个白球,6个红球,从每个袋中任意摸取一个球,则取得的两球是同色球的概率是____________。
5、甲乙二人各进行一次射击,如果2人击中目标的概率都是0.6,计算:⑴2人都击中目标的概率;⑵其中恰有1人击中目标的概率;⑶至少有1人击中目标的概率。
8、在某段时间内,甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定在这段时间内两地是否下雨相互之间没有影响,计算在这段时间内:⑴甲、乙两地都下雨的概率;⑵甲、乙两地都不下雨的概率;⑶其中至少一个地方下雨的概率。
高二数学最新教案-17相互独立事件同时发生的概率二 精

第周年月日星期姓名相互独立事件同时发生的概率㈡1、甲乙二人同时报考某一大学,甲被录取的概率是0.6,乙被录取的概率是0.7,二人是否被录取互不影响。
⑴甲乙二人都被录取的概率;⑵甲乙二人都不被录取的概率;⑶甲乙二人至少一人被录取的概率。
2、一名工人看管3台机床,在1小时内,甲、乙、丙3台机床不需要工人照看的概率分别为0.9、0.8和0.85,求在1小时内:⑴没有1台机床需要照看的概率;⑵至少有一台机床不需要照看的概率。
3、某段时间内,甲地下雨的概率是0.3,乙地下雨的概率是0.4,假定甲、乙两地是否下雨彼此无关,那么甲、乙两地都下雨的概率为______________;甲、乙两地都不下雨的概率为______________。
4、第一台车床制造出一级零件的概率为0.7低二台车床制造出一级零件的概率0.8。
在第一台车床上生产1个零件,在第二台车床上生产2个零件,则所有零件均为一级零件的概率是______________。
5、在同一时间内,对同一城市,市、县两个气象台预报天气准确的概率分别为0.9、0.8,两个气象台预报天气准确的概率互不影响,则在同一时间内,至少有一个气象台预报准确的概率是______________。
6、甲、乙两位同学独立的解同一道数学题,若甲能解对的概率为m ,乙能解对的概率为n ,那么这道数学题能被解对的概率为( )A 、m n +B 、mnC 、1mn -D 、1(1m)(1n)---7、设某种产品分2道独立工序生产,第1道工序的次品率为0.1,第2道工序的次品率为0.03,生产这种产品只要有1道工序出次品就将产生次品,则该产品的次品率为( )A 、0.873B 、0.13C 、0.127D 、0.038、已知某人射击一次,击中目标的概率为0.9,他连续射击4次,且每次射击是否击中相互之间没有影响,求:⑴ 在第2次没有击中,其他3次都击中的概率;⑵ 4次射击中只有1次没有击中的概率;⑶ 4次射击中只有2次击中的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学相互独立事件同时发生的概率教案一、教学目标:1.了解相互独立事件的意义;2.注意弄清事件“互斥”与“相互独立”是不同的两个概念;3.会用相互独立事件同时发生的概率乘法公式计算一些事件的概率。
二、教学重、难点:相互独立事件的意义;相互独立事件同时发生的概率乘法公式;事件的相互独立性的判定。
三、教学过程:(一)复习引入:1.复习互斥事件的意义及其概率加法公式:互斥事件:不可能同时发生的两个事件称为互斥事件.()()()P A B P A P B +=+对立事件:必然有一个发生的互斥事件叫做对立事件.()1()1()P A A P A P A +=⇒=-2.问题:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球。
提问1:问题1、2中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)提问2:问题1、2中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)(二)新课讲解:1.相互独立事件的定义:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
例1.(步步高P127例1)说明:若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立。
2.相互独立事件同时发生的概率:问题1中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果。
于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果。
同时摸出白球的结果有32⨯种。
所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
一般地,如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅L L .例2.(书P152例1)甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;变式:(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)。
根据题意,事件A B⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况, 其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为: ()()()()()()()()()P P A B P A B P A B P A P B P A P B P A P B =⋅+⋅+⋅=⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=.例3.(步步高P127例2)四、课堂练习:课本154页第1,2,3题。
五、课堂小结:两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响。
一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的。
相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.六、作业:书P157习题11。
3 3、4、5、6、7相互独立事件同时发生的概率(2)一、教学目标:1.能正确分析复杂事件的构成;2.能综合运用互斥事件的概率加法公式和相互独立事件的概率的乘法公式解决一些实际问题。
二、教学重、难点:掌握求解较复杂事件概率的一般思路:正向思考和反向思考。
正向思考的一般步骤是:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的和事件或相互独立事件的积事件;反向思考就是转化为求它的对立事件的概率。
三、教学过程:(一)复习:互斥事件、对立事件和相互对立事件的概念。
(二)新课讲解:例1(书P153例2)在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作。
假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率。
解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响。
根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是[][][]()()()()1()1()1()(10.7)(10.7)(10.7)0.027P A B C P A P B P C P A P B P C ⋅⋅=⋅⋅=---=---= ∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=. 答:在这段时间内线路正常工作的概率是0.973.变式1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率。
(1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率。
方法一:()()()()()()()()()()()()()()()()()()()()0.847P A B C P A B C P A B C P A B C P A B C P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅++⋅⋅+⋅⋅=方法二:分析要使这段时间内线路正常工作只要排除C J 开且 A J 与B J 至少有1个开的情况。
[]21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例2 已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率。
解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),A JB JC JD J A J B J C J那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54(。
∴敌机未被击中的概率为5)54(. (2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-n )54( ∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机。
例3某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求(1)甲、乙两人都没有中奖的概率;(2)甲、乙两人中至少有一人获二等奖的概率.(1)P 1=29972910101000⨯()= (2)法一:P 2=222219119181181311010101010101010500⨯⨯⨯⨯()+()++= 法二:P 2=11911913122101010101010500⨯⨯⨯⨯⨯+-= 法三:P 2=1-911991311010101010500⨯⨯⨯(+)= 注:上面例1和例2的解法,都是解应用题的逆向思考方法。
采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便。
四、小结:掌握求解较复杂事件概率的一般思路:正向思考和逆向思考。
正向思考的一般步骤是:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的和事件或相互独立事件的积事件;逆向思考就是转化为求它的对立事件的概率。
五、作业:1.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为15、13、14,则此密码能译出的概率为 (A ) ()A 35 ()B 25 ()C 5960 ()D 160 2.甲、乙两歼击机飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为 (D )()A 0.9()B 0.2 ()C 0.7 ()D 0.5 3.甲、乙两人独立地解决一道数学题,已知甲能解对的概率为m ,乙能解对的概率为n ,那么这道数学题被得到正确解答的概率为 (C )()A m n + ()B m n ⋅()C 1(1)(1)m n --- ()D 1m n -⋅4.有n 个相同的电子元件并联,每个电子元件能正常工作的概率为0.5,要使整个线路正常工 作的概率不小于0.95,n 至少为 (C )()A 3 ()B 4 ()C 5 ()D 65.有甲、乙、丙3批罐头,每批100个,其中各有1个是不合格的,从三批罐头中各抽出1个,则抽出的3个中至少有1个不合格的概率是0.0297.6.如图,用A ,B ,C 三类不同的元件连接成两个系统1N ,2N ,当A ,B ,C 都正常时,系统1N 正常,当A 正常工作,元件B ,C 至少有一个正常工作时,系统2N 正常工作.已知元件A ,B ,C 正常工作的概率依次为0.80,0.90,0.90,分别求系统1N ,2N 正常工作的概率1P ,2P .()0.648C = 2)0.792ABC = 7方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:(Ⅰ)该应聘者用方案一考试通过的概率;(Ⅱ)该应聘者用方案二考试通过的概率.解:记该应聘者对三门指定课程考试及格的事件分别为A ,B,C ,则P (A )=0.5,P (B )=0.6,P (C )=0.9.(Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9=0.03+0.27+0.18+0.27=0.75.(Ⅱ) 应聘者用方案二考试通过的概率p 2=31P (A ·B )+31P (B ·C )+ 31P (A ·C ) =31×(0.5×0.6+0.6×0.9+0.5×0.9)=31×1.292()N (1N独立重复试验一、教学目标:1.理解独立重复试验的概念,明确它的实际意义;2.引出n 次独立重复试验中某事件恰好发生k 次的概率计算公式;3.了解概率计算公式与二项式定理的内在联系。