常用传感器工作原理电涡流式PPT课件
第五章--电涡流式传感器

(2)调幅式电路 调幅式是以输出高频信号的幅度来反映电涡流探头 与被测导体之间的关系。图3-42是高频调幅式电路。
Ui R
U0
晶振
Ii L x
高频放大
幅值检波
U0
低频放大
U0
C0
图3-42 高频调幅式测量转换电路
石英晶体振荡器通过耦合电阻R,向由探头线 圈和一个微调电容C0组成的并联谐振回路提 供一个稳幅的高频激励信号,相当于一个恒 流源。测量时,先调节C0,使LC0的谐振频率 等于石英晶体振荡器的频率f0,此时谐振回路 的Q值和阻抗Z也最大,恒定电流Ii在LC0并联 谐振回路上的压降U0也最大。
TTL电平
L0 L LC x0 x 振 C0 荡 L
器
f 0 f
高 频 放 大 器
U 0 U
限 幅 器 鉴 频 器
功 率 放 大 器
计算机计数 定时器 显示器 记录仪
图3-43调频式测量转换电路原理图
TTL电平
L0 L LC x0 x 振 C0 荡 L
器
f 0 f
由于存在集肤效应,电涡流方法只能检测导 体表面的各种物理参量。改变频率f,可控制 检测深度。激励源频率一般为100kHz~1MHz. 为了使电涡流深入金属导体深处,或对距离 较远的金属体进行检测,可采用十几千赫甚 至几百赫兹的低频激励频率。
电涡流传感器基本原理以及转速测量的完整实例演示含原理图

电涡流传感器原理图1、什么是电涡流效应电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸;注意:电涡流传感器要求被测体必须是导体;传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场;这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离;2、电涡流传感器的工作原理与结构主要由一个安置在框架上的扁平圆形线圈构成;此线圈可以粘贴于框架上,或在框架上开一条槽沟,将导线绕在槽内;下图为涡流传感器的结构原理,它采取将导线绕在聚四氟乙烯框架窄槽内,形成线圈的结构方式;;传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化;从能量角度来看,在被测导体内存在着电涡流损耗当频率较高时,忽略磁损耗;能量损耗使传感器的Q值和等效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L 均发生变化,于是把位移量转换成电量;这便是电涡流传感器的基本原理3、电涡流传感器的实际应用电涡流传感器测量齿轮转速的应用4、使用电涡流传感器时的注意事项对被测体的要求为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积;对工作的温度的要求一般进口涡流传感器最高温度不大于180℃,而国产的只能达到120℃,并且这些数据来源于生产厂家,其中有很大的不可靠性,据相关的各种资料分析,实际上,工作温度超过70℃时,电涡流传感器的灵敏度会显著降低,甚至会造成传感器的损坏;对初始间隙的要求各种型号电涡流传感器,都在一定的间隙电压值下,它的读数才有较好的线性度,所以在安装传感器时必须调整好合适的初始间隙;。
电涡流传感器工作原理

电涡流传感器工作原理
一块金属放置在一个扁平线圈附近,相互并不接触,当线圈中通过以高频正弦交变电流时,线圈周围的空间就产生交变磁场,此交变磁场在邻近的金属导体中产生电涡流:而此电涡流也产生交变磁场阻碍外磁场的变化,由于磁场的反作用,使线圈中电流和相位都发生变化,也引起线圈中的等效在阻抗发生变化,线圈的电感量也发生变化,因此可用线圈阻抗的变化来反映金属导体的电涡流效应,
电涡流位移传感器是以高频电涡流效应为原理的非接触式位移传感器。
前置器内产生的高频振荡电流通过同轴电缆流入探头线圈中,线圈将产生一个高频电磁场。
当被测金属体靠近该线圈时,由于高频电磁场的作用,在金属表面上就产生感应电流,既电涡流。
该电流产生一个交变磁场,方向与线圈磁场方向相反,这两个磁场相互叠加就改变了原线圈的阻抗。
所以探头与被测金属体表面距离的变化可通过探头线圈阻抗的变化来测量。
前置器根据探头线圈阻抗的变化输出一个与距离成正比的直流电压。
4电涡流传感器详解

频率变化,此频率可直接用计算机测量。如果要用模
拟仪表进行显示或记录时,必须使用鉴频器,将 ? f转
换为电压? Uo 。
2018/10/11
15
并联谐振回路的谐振频率
f? 1
2? LC0
?4-3?
设电涡流线圈的电感量L=0.8mH , 微调电容C0=200pF ,求振荡器的频率f 。
2018/10/11
2018/10/11
18
本章作业: P75:2、6、7
2018/10/11
19
休息一下
2018/10/11
20
第四章:第四节 电涡流传感器的应用
一、位移测量
电涡流位移传感器是一种输出为模拟电压的电子 器件。接通电源后,在电涡流探头的有效面(感应工 作面)将产生一个交变磁场。 当金属物体接近此感 应面时,金属表面将吸取电涡流探头中的高频振荡能 量,使振荡器的输出幅度线性地衰减,根据衰减量的 变化,可地计算出与被检物体的距离、振动等参数。 这种位移传感器属于非接触测量,工作时不受灰尘等 非金属因素的影响,寿命较长,可在各种恶劣条件下 使用。
间距x的测量: 如果控制上式中的 i1、f、?、? 、r不
变,电涡流线圈的阻抗 Z 就成为间距 x 的单值函数,这 样就成为非接触地测量位移的传感器。
多种用途: 如果控制 x、i1、f不变,就可以用来检
测与表面电导率 ? 有关的表面温度、表面裂纹等参数 , 或者用来检测与材料磁导率 ? 有关的材料型号、表面硬
7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
2018/10/11
10
CZF-1系列传感器的性能
分析上表请得出结论:
探头的直径与测量范围及分辨力之间 有何关系?
常用传感器工作原理(电涡流式)

传感器系统设计和集成方法
将电涡流传感器与其他类型传感器进行集成应用,依托数据分析与处理可快 速获得精确的位置、温度、速度等信息。
电涡流传感器在飞行器中的应 用
可以用于飞机表面涂层疲劳、空气动力学性能检测和导弹发动机检测等领域 中,为航空航天行业提供支撑。
车辆检测
电涡流传感器可用于检测汽车制动器片、轴承、 传动装置和凸轮轴等的磨损和裂纹程度。
采集电路和信号处理电路
运放放大电路
用于对涡流信号进行放大和录制,一般采用低噪声 运放。
信号发生器
提供激励信号,调节激励磁场的频率和幅度。
示波器
可用于检测电涡流传感器的输出信号。
滤波器
对电涡流传感器发出的信号进行滤波处理,以减少 干扰和噪声。
用来产生激励磁场,检测被测物体表面涡流。
被测物体
在其表面出现的涡流产生反向电动势,与感应线圈 中的电流进行比较。
信号放大器
对感应线圈中产生的电压信号进行放大和处理。
输出显示装置
显示并输出电涡流传感器检测到的被测物体的信息。
电涡流传感器的优缺点
1 优点
非接触检测、高精度、宽频带、可检测多种参数。
2 缺点
按照测量方法分类
有空心电涡流传感器和常规电 涡流传感器两种。
按照检测对象分类
有测量表面缺陷和测量导体尺 寸两种。
Байду номын сангаас
按照尺寸分类
可以分为微型电涡流传感器和 大型电涡流传感器。
电涡流传感器的原理模型建立
通过MATLAB等数学建模软件,根据相关参数构建电涡流传感器的仿真模型, 便于对电涡流传感器的理解和优化设计。
《传感器与检测技术》 3.3电感式传感器(电涡流式)

V系列电涡流位移传感器外 形(参考浙江洞头开关厂资料)
4~20mA电涡流位移传感器外形
(参考德国图尔克公司资料)
齐平式电涡流位移传感器外形(参考德国图尔克公司资料)
齐平式传感器安装时可以不高出安装面, 不易被损害。
2. 振幅测量
(a)汽轮机和空气压缩机常用的监控主轴的径向振动的示意图 (b)测量发动机涡轮叶片的振幅的示意图 (c) 通常使用数个传感器探头并排地安置在轴附近
电涡流的贯穿深度h :
h 5000 f
式中, f:线圈激磁电流的频率,μ :金属的
磁导率。
可见, f 越高,电涡流的渗透深度越浅。
高频反射式和低频透射式
高频反射式
f : 0.1~1MHz
低频透射式
f <1 kHz
等效电路如图 , 其 中 R2 为 电 涡 流短路环等效 电阻.
I 1
R1
M
I 2
L2 R 2
U 1
L1
根据基尔霍夫定律,有:
& j L I& j MI& U& R I 1 1 1 1 2 1 & & & j MI R I j L I 0 1 2 2 2 2
• 等效电阻、等效电感:
2M 2 Req R1 2 R2 2 2 R2 L2
电磁炉内部 的励磁线圈
电磁炉的工作原理 铁质锅底产 生无数的 电涡流, 使锅底自 行发热。
高频电流通过励磁线圈,产生交变磁场
2 基本特性
等效阻抗分析 金属导体等效成一个短路环。 I I
1
M
2
等效电阻:
2 R2 ra h 1n ri
传感器6(2)电涡流式

6.3电涡流式传感器
电涡流式传感器是利用电涡流效应进行工作的。由于结 构简单、灵敏度高、频响范围宽、不受油污等介质的影 响,并能进行非接触测量,适用范围广。目前,这种传 感器已广泛用来测量位移、振动、厚度、转速、温度、 硬度等参数,以及用于无损探伤领域。 电涡流式传感器的组成框图
2M 2 L L1 L2 2 R2 (L2 ) 2 L Q R
等效电感为: 等效Q值为:
电涡流式传感器
由于涡流的影响,线圈阻抗的实数部分增大,虚数部分减 小,因此线圈的品质因数Q下降。阻抗变为Z,常称其 变化部分为“反射阻抗”。
式中 Q0 L1 / R1 ——无涡流影响时线圈的Q值; 2 Z 2 R2 2 L2 ——短路环的阻抗。 2 Q值的下降是由于涡流损耗所引起,并与金属材料的导电性和 距离直接有关。当金属导体是磁性材料时,影响Q值的还有 磁滞损耗与磁性材料对等效电感的作用。在这种情况下,线 圈与磁性材料所构成磁路的等效磁导率的变化将影响L。
Z1 L1 // C1, Z 2 L2 // C2
电涡流式传感器
2.谐振式测量电路 谐振电路是将传感线圈的电感L与固定电容 C组成一个并联 谐振电路。
谐振电路有二种类型:调幅式与调频式。 输出电压的频率f始终恒定, 称为定频调幅式。 由振荡器产生的频率为f的电压加到 L、C回路和串联电阻R的电路两端, 当被测体靠近并联谐振电路时,电 涡流的能量损失发生变化,从而使 L、C回路的等效阻抗发生变化,因此引起输出电压 变化。
4-1电涡流传感器原理结构电路

高频电流通过励磁 线圈,产生 交变磁场, 在铁质锅底 会产生无数 的电涡流, 使锅底自行 发热,烧开 锅内的食 物。
8
第二节 电涡流传感器结构及特性
交变磁场
电涡流探头外形
电涡流探头内部结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路板 5—夹持螺母 6—电源指示灯
7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
19.06.2020
18
休息一下
19.06.2020
19
涡流线圈的阻抗Z就成为哪个非电量的单值函数? 属于接触式测量还是非接触式测量?
19.06.2020
5
等效阻抗与非电量的测量
检测深度的控制:由于存在集肤效应,电 涡流只能检测导体表面的各种物理参数。改变f, 可控制检测深度。激励源频率一般设定在 100kHz~1MHz。频率越低,检测深度越深。
间距x的测量:如果控制上式中的i1、f、、、r不
19.06.2020
10
CZF-1系列传感器的性能
分析上表请得出结论:
探头的直径与测量范围及分辨力之间 有何关系?
19.06.2020
11
大直径电涡流探雷器
19.06.2020
12
第三节 测量转换电路
一、调幅式(AM)电路
石英振荡器产生稳频、稳幅高频振荡电压(100kHz~1MHz) 用于激励电涡流线圈。金属材料在高频磁场中产生电涡流,引
当电涡流线圈与被测体的距离x 改变时,电涡流 线圈的电感量L 也随之改变,引起LC 振荡器的输出 频率变化,此频率可直接用计算机测量。如果要用模
拟仪表进行显示或记录时,必须使用鉴频器,将f转 换为电压Uo 。
19.06.2020
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N f 60 n
可以检查金属表面裂纹、热处理裂纹、焊接处的质量探伤等。统称探伤。
第3章 常用传感器的工作原理
3.5 电涡流式传感器
何谓涡流?
在许多电工设备中都存在大块导体(如发电机和变压器的铁心和端盖等)。 当这些大块导体处在变化的磁场中或在磁场中切割磁力线时,其内部都 会感应出电流。这些电流的特点是:在大块导体内部自成闭合回路,呈 旋涡状流动。因此,称之为涡旋电流,简称涡流。例如,含有圆柱导体 芯的螺管线圈中通有交变电流时,圆柱导体芯中出现的感应电流或涡流, 如图所示。
可见,涡流穿透深度与激励电流频率有关,所以根据激励频率高低,涡流 传感器可分为:高频反射式和低频透射式两大类。前者用于非接触式位移 变量的检测,后者仅用于金属板厚度的测量。
由于结构简单、灵敏度高、频响范围宽、不受油污等介质的影响,并能 进行非接触测量,适用范围广。用来测量位移、厚度、转速、温度、硬 度等参数,以及用于无损探伤领域。
输出电动势e2越小。因此,e2的大小与金属板的厚度及材料的性质有关。
试验表明e2随材料厚度h的增加按负指数规律减少,因此,若金属板材料的
性质一定,则利用e2的变化即可测厚. 度。
11
测量厚度时,激励频率应选得较低。频率太高,贯穿深度 小于被测厚度,不利于进行厚度测量,通常选激励频率为1kHz 左右。
1 234
1 线圈 2 框架 3 衬套 4 支架 5 电缆 6 插头
6
5
.
7
型号
线性范围 线圈外径 分辨力
/m
/mm
/m
线性误差 (%)
使用温度 /C
CZF1-1000 1000
7
1
<3
-15+80
CZF1-3000 3000
15
3
<3
-15+80
CZF1-5000 5000
28
5
<3
-15+80
当交变电流通过导线时,感应电流(涡流) 将集中在导体表面流通,尤其当频率较高 时,此电流几乎是在导体表面附近的一薄 层中流动,这就是所谓的集肤效的集肤效应越显著,即涡流穿透深度越小,其穿 透深度 h:
h5030
(cm)
r
f
导体的电阻率 r 导体相对磁导率
f 交变磁场频率
分析上表请得出结论: 线圈外径与测量范围及分辨力之间有何关系?
线圈外径越大,测量范围就越大,但分辨力就越差,灵敏度也降低。
.
8
非接触电涡流式位移、振动传感器,具有非接触测量、线性范围较宽,灵敏度
高、抗扰动能力强、无介质影响、稳定可靠、易于处理等优点。广泛应用于冶
金、化工。航天等行业中,进行位移、振动、转速、厚度、表面不平度等机械
如:气轮机主轴的窜动,金属材料的热膨胀系数,钢水液位,流体压力等。日本 用电涡流传感器成功完成了北海道高速铁路的铁轨位移检测。
2. 转速测量
在旋转体上加装一个槽状或齿状(槽数或齿数为n)金属体,旁边安装一个电涡流
传感器,当旋转体转动时,电涡流传感器将周期地改变输出信号,由频率计数,
求出转速:
3. 电涡流探伤
.
13
调频电路
调频法是以LC振荡回路的频率作为输出量。
当金属板至传感器之间的距离δ发生变化时,将引起线圈电感的变 化,从而使振荡器的频率发生变化,再通过鉴频器进行频率-电压 转换,即可得到与δ 成比例的输出电压。
.
14
应用
1. 位移测量
主要用途之一,凡是可以变成位移量的参数,都可用电涡流式传感器来测量。
称之为“涡电流”或“涡流”。这种涡电流也将产生交变磁场Φ2, 与线圈的磁场变化方向相反, Φ2总是抵抗Φ1的变化,由于涡流磁 场Φ2的作用使原线圈的等效阻抗发生变化。
涡电流式传感器是利用涡流效应,将非电量转换为阻抗的变化而进
行测量的。
.
4
一般讲,线圈的阻抗变化 与金属导体的电阻率 、 磁导率 、线圈与金属导 体的距离 以及线圈激励 电流的频率 f 等参数有关 。
即,线圈阻抗 Z 是这些参数 的函数,可写成
Zf(,,,f)
Φ1
i1
Φ2 i2
.
5
Zf(,,,f)
若能控制其中大部分参数恒定不变,只改变其中一个参数,这样阻抗就 能成为这个参数的单值函数。 其应用大致有下列四个方面:
①利用位移 作为变化量,可以测被测量位移、厚度、振动、转速等传 感器,也可做成接近开关、计数器等;
②利用材料电阻率 作为变换量,可以做成温度测量、材质判别等传感器
③利用磁导率 作为变换量,可以做成测量应力、硬度等传感器; ④利用变换量 、 、 等的综合影响,可以做成探伤装置等。
涡流式传感器的特点是结构简单,易于进行非接触的连续测量,灵敏度较 高,适用性强,因此得到了广泛的应用。
.
6
基本结构:
量的检测。
.
9
大直径电涡流探雷器
.
10
低 频 透 射 式
发射线圈L1和接收线圈L2分置于被测金属板的上下方。由于低频磁场集肤
效应小,渗透深,当低频(音频范围)电压e1加到线圈L1的两端后,所产生磁
力线的一部分透过金属板,使线圈L2产生感应电动势e2。但由于涡流消耗
部分磁场能量,使感应电动势e2减少,当金属板越厚时,损耗的能量越大,
.
12
测量电路: 阻抗分压式调幅电路和调频电路
Z f ( )
阻抗分压式调幅电路
并联谐振回路 f
1
2 LC
是以传感线圈与调谐电容组成并联LC谐振回路,由石英震荡器提供高频 激磁电流,测量电路的输出电压正比于LC谐振电路的阻抗Z
因而传感线圈与被测体之间距离δ的变化,引起Z的变化,使输出电压 跟随变化,从而实现位移量的测量,故称调幅法
高频反射电涡流传感器主要由线圈和框架组成。 由于电涡流式传感器的主体是激磁线圈,所以线圈的性能和几何尺寸、形状对 整个测量系统的性能将产生重要的影响。一般情况下,线圈的导线采用高强度 漆包线;要求较高的场合,可以用银或银合金线;在较高温度条件下,需要用 高温漆包线。 下图为CZF1型涡流传感器的结构原理,它采取将导线绕在聚四氟乙烯框架窄 槽内,形成线圈的结构方式。
由于目前高频反射式电涡流传感器应用广泛,因此本节主要介绍高频反射 式电涡流传感器。
.
3
高 >1MHz 频 反 射 式
Φ1
i1
Φ2 i2
如图所示,金属板置于一只线圈的附近,它们之间相互的间距为δ, 当线圈输入一交变电流i1 时,便产生交变磁通量Φ1 ,金属板在此交
变磁场中会产生感应电流i2 ,这种电流在金属体内是闭合的,所以