SPSS聚类分析

合集下载

第九章SPSS的聚类分析

第九章SPSS的聚类分析

第九章SPSS的聚类分析1.引言聚类分析是一种数据分析方法,用于将相似的对象划分到同一组中,同时将不相似的对象划分到不同的组中。

SPSS是一种常用的统计软件,提供了聚类分析的功能。

本章将介绍SPSS中的聚类分析方法及其应用。

2.数据准备在进行聚类分析之前,需要准备好待分析的数据。

数据应该是定量变量或者定性变量,可以包含多个变量。

如果存在缺失值,需要处理之后才能进行聚类分析。

3.SPSS中的聚类分析方法在SPSS中,聚类分析方法有两种:基于距离的聚类和基于密度的聚类。

基于距离的聚类方法将对象划分到不同的组中,使得组内的对象之间的距离最小,组间的对象之间的距离最大。

常见的基于距离的聚类方法包括单链接聚类、完全链接聚类和平均链接聚类。

基于密度的聚类方法则通过考虑对象周围的密度来划分对象所属的组。

在SPSS中,可以使用层次聚类和K均值聚类这两种方法进行聚类分析。

3.1层次聚类层次聚类又称为分级聚类,它将对象分为一个个的层级,直到每个对象都成为一个单独的组为止。

层次聚类分为两种方法:凝聚层次聚类和分化层次聚类。

凝聚层次聚类是从每个对象作为一个单独的组开始,然后根据对象之间的距离逐渐合并组,直到所有的对象都合并到一个组为止。

凝聚层次聚类的最终结果是一个层级的分组结构,可以根据需要确定分组的层数。

分化层次聚类是从所有的对象开始,然后根据对象之间的距离逐渐分离成不同的组,直到每个对象都成为一个单独的组为止。

在SPSS中,可以使用层次聚类方法进行聚类分析。

通过选择合适的距离度量和链接方法,可以得到不同的聚类结果。

3.2K均值聚类K均值聚类是一种基于距离的聚类方法,通过计算对象之间的距离,将对象分为K个组。

K均值聚类的基本思想是:首先随机选择K个对象作为初始的聚类中心,然后将每个对象分配到离它最近的聚类中心,重新计算聚类中心的位置,直到对象不再发生变化为止。

K均值聚类的结果是每个对象所属的聚类,以及聚类的中心。

在SPSS中,可以使用K均值聚类方法进行聚类分析。

SPSS聚类分析具体操作步骤spss如何聚类

SPSS聚类分析具体操作步骤spss如何聚类

算法步骤:初始 化聚类中心、分 配数据点到最近 的聚类中心、重 新计算聚类中心、 迭代直到聚类中 心不再变化
适用场景:探索 性数据分析、市 场细分、异常值 检测等
注意事项:选择 合适的聚类数目、 处理空值和异常 值、考虑数据的 尺度问题
定义:根据数据点间的距离或相似性,将数据点分为多个类别的过程 常用方法:层次聚类、K-均值聚类、DBSCAN聚类等 适用场景:适用于探索性数据分析,发现数据中的模式和结构 注意事项:选择合适的距离度量方法、确定合适的类别数目等
常见的聚类分析方法包括层次聚类、Kmeans聚类、DBSCAN聚类等。
聚类分析基于数据的相似性或距离度量, 将相似的数据点归为一类,使得同一类 中的数据点尽可能相似,不同类之间的 数据点尽可能不同。
聚类分析广泛应用于数据挖掘、市场细分、 模式识别等领域。
K-means聚类:将数据划分为K个簇,使得每个数据点到所在簇中心的距离之和最小
聚类结果的可视化:通过图表展示聚类结果 聚类质量的评估:使用适当的指标评估聚类效果的好坏 聚类结果的解释:根据实际需求和背景知识,对聚类结果进行合理的解释和解读 聚类结果的应用:探讨聚类结果在各个领域的应用场景和价值
SPSS聚类分析常 用方法
定义:将数据集 划分为K个聚类, 使得每个数据点 属于最近的聚类 中心
聚类结果展示:通过图表或表格展示聚类结果,包括各类别的样本数和占比
聚类质量评估:采用适当的指标评估聚类效果,如轮廓系数、Davies-Bouldin指数等
聚类结果解读:根据业务背景和数据特征,解释各类别的含义和特征 聚类结果应用:说明聚类分析在具体场景中的应用,如市场细分、客户分类等
SPSS聚类分析注 意事项
确定聚类变量:选 择与聚类目标相关 的变量,确保变量 间无高度相关性。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。

二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。

2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。

3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。

4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。

三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。

下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。

2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。

-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。

-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。

3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。

这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。

五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。

SPSS软件之聚类分析

SPSS软件之聚类分析

1.4 结果分析
从右边的红色直线截取这个图形 的话,我们可以把北京18区分成 了三类,第一类是:西城、宣武、 朝阳、房山;第二类:丰台、通县、 海淀、石景山、东城、崇文、昌 平、大兴、怀柔、密云、门头沟、 延庆;第三类:顺义、平谷。
过渡页
3 1
快速聚类的方法
简介 案例操作 结果分析
2.1 简介
1.3 案例与操作步骤
ห้องสมุดไป่ตู้
对北京地区18区县中等职业教育发展水平进 行聚类。聚类的依据是,x1:每万人中职在 校生数; x2:每万人中职招生数; x3:每万人 中职毕业生数; x4:每万人中职专任教师数; x5:本科以上学校教师占专任教师的比例; x6:高级教师占专任教师的比例数; x7:学校 平均在校生; x8:国家财政预算中职经费占 国内生产总值的比例; x9:生均教育经费;
2.4 结果分析
表明对于x1(每万人中职在校 生数)变量,4个类区县之间存 在着显著的差异
THE END
THANK YOU!
聚类分析
—SPSS数据分析软件
内容
1
聚类分析简介
2 3
层次聚类分析
快速聚类分析
过渡页
1
聚类分析的简介
聚类分析的概念 聚类分析的类型
1.1 聚类分析的概念
所谓聚类分析(Cluster Analysis)是 根据事物本身的特性研究个体分类的方法。 首先将每个样本当作一类,然后根据样 本之间的相似程度并类,并计算新类与 其他类之间的距离,再选择相近者并类, 每合并一次减少一类,继续这一过程, 直到所有样本都并成一类为止。 在聚类分析中,同一类中的个体有较大 的相似性,不同类的个体差异较大。
在大样本的情况下,可以采用快速 聚类分析的方法。快速聚类分析是 由用户指定类别数的大样本资料的 逐步聚类分析。它先对数据进行初 始分类,然后逐步调整,得到最终 分类。 与层次聚类不同:层次聚类可以对 不同的聚类类数产生一系列的聚类 解,而快速聚类只能产生固定类数 的聚类解,类数需要用户事先指定。

SPSS数据的聚类分析

SPSS数据的聚类分析

如何实现聚类?
---聚类分析的基本思想和方法
➢ 1、什么是聚类分析?
• 聚类分析: 是根据“物以类聚”的道理,对样品或指 标进行分类,使得同一类中的对象之间的相似性比与其 他类的对象的相似性更强的一种多元统计分析方法。
• 聚类分析的目的:把相似的研究对象归成类;即:使类 内对象的相似性最大化和类间对象的差异性最大化。
2023/5/3
4
zf
以系统聚类法为例
凝聚式
分解式
2023/5/3
5
zf
二、相似性度量
➢ 1、相似性的度量指标:
• 相似系数:性质越接近的变量或样品,它们的相似系数 越接近于1或-1,而彼此无关的变量或样品它们的相似系 数则越接近于0,相似的为一类,不相似的为不同类;
• 距离:变量或样本间的距离越近,说明其相似性越高, 应归为一类;距离越远则说明相似性越弱,应归为不同 的类。
为什么这样 分类?
20有23何/5/好3 处?
因为每一个类别里面的人消费方式都不一样,需要针对不同的 人群,制定不同的关系管理方式,以提高客户对公司商业活动的 参与率。 挖掘有价值的客户,并制定相应的促销策略:对经常购买酸奶 的客户;对累计消费达到12个月的老客户。
针对2潜在客户派发广告,比在大街上乱发传单命中率更高 ,成本z更f 低!
Dpq min d (xi , x j )
2023其/5/中3 ,d(xi,xj)表示点xi∈
Gp和xj
1∈4
zf
Gq之间的距离
以当前某个样本与 已经形成的小类中 的各样本距离中的 最小值作为当前样 本与该小类之间的
距离。
例1:为了研究辽宁省5省区某年城镇居民生活消费的 分布规律,根据调查资料做类型划分

《SPSS数据分析与应用》第6章 聚类分析

《SPSS数据分析与应用》第6章 聚类分析
• 在这一步中样本4(客户编号为: K100390 ) 和 样 本 5 ( 客 户 编 号 为 : K100450 ) 相 似 度 达 到 阈 值 , 聚 为 一 类 。
• 当纵坐标为13时,15个样本被12个白色 间隙分隔为13类。
系统聚类的结果解读
冰柱图聚类进程(最后一步)
依次类推,直到将15个样本全部 聚为一类,在15个样本之间没有 白色间隙,表示系统聚类结束。
• 测度观测点之间“亲疏”程度的方法与K-means聚类相同。 • 观测点与小类、小类与小类之间“亲疏”程度的测度,常用的方法有以下几种:
(1)重心法 (2)最近邻元素法 (3)组间平均联接法 (4)组间平均联接法 (5)离差平方和法
系统聚类的基本操作
第一步:用SPSS打开数据文件“移动通信客户_样本15.sav”。 第二步:在菜单栏中选择【分析(A)】→【描述统计(E)】→【描述(D)】,在弹出的 “描述”对话框的左下 角勾选【将标准化值另存为变量(Z)】,将已有的 6 个连续性变量都选到【变量(V)】列表框中,单击【确定】 按钮。
第四步:在“K均值聚类分析”对话框中单击右上角的【迭代(I)】按钮,在弹出的“K-均值聚类分析:迭代” 对话框中将【最大迭代次数(M)】修改为“50”,【收敛准则(C)】暂时不做修改。单击【继续(C)】按钮, 回到“K 均值聚类分析” 对话框。
K-Means聚类的基本操作
第五步:在“K均值聚类分析”对话框中单击右上角的【保存 (S)】按钮,在弹出的“K-均值聚类:保存新 变量”对话框中勾选【聚类成员(C)】和【与聚类中心的距离(D)】。单击【继续(C)】按钮,回到“K均 值聚类分析”对话框。
第一,如何测度样本的“亲疏程度”; 第二,如何进行聚类
K-means聚类对“亲疏程度”的测度

使用SPSS软件进行因子分析和聚类分析的方法

使用SPSS软件进行因子分析和聚类分析的方法使用SPSS软件进行因子分析和聚类分析的方法随着统计分析软件的发展,SPSS(Statistical Package for the Social Sciences)软件作为一款功能强大、易于使用的统计分析工具受到广泛欢迎。

它能帮助研究人员进行各种统计分析,其中包括因子分析和聚类分析。

本文将介绍如何使用SPSS软件进行因子分析和聚类分析,并针对每个分析方法提供详细步骤和操作示例。

一、因子分析因子分析是一种常用的统计方法,在数据维度缩减和相关变量结构分析方面具有广泛的应用。

以下是使用SPSS软件进行因子分析的步骤:1. 数据准备首先,需要将原始数据导入SPSS软件中。

可以通过选择“文件”>“打开”>“数据”,然后选择合适的数据文件进行导入。

确保数据是以矩阵的形式存储,每个变量占据一列,每个观察单位占据一行。

2. 因子分析设置在SPSS软件中,选择“分析”>“数据准备”>“特殊分析”>“因子”。

在弹出的对话框中,选择需要进行因子分析的变量,将它们移动到“因子”框中。

然后,选择所需的因子提取方法(如主成分分析或因子分析),并指定所需的因子个数。

可以选择默认值,也可以根据实际需求进行调整。

3. 统计输出完成因子分析设置后,点击“确定”按钮开始分析。

SPSS软件将生成一个因子分析结果报告。

报告中将包含因子载荷矩阵、特征值、解释的方差比例等统计指标。

通过这些指标,可以对变量和因子之间的关系、每个因子的解释能力进行分析。

4. 结果解读对于因子载荷矩阵,可以根据因子载荷的大小来判断变量与因子之间的关系。

一般来说,载荷绝对值大于0.3的变量与因子之间具有显著关联。

解释的方差比例表示每个因子能够解释变量总方差的比例,一般来说,越大越好。

在解读结果时,需要综合考虑因子载荷和解释的方差比例。

二、聚类分析聚类分析是一种用于数据分类的统计方法。

它根据观测值之间的相似性将数据对象分组到不同的类别中。

第九章SPSS的聚类分析PPT课件

–达到指定迭代次数(maximum iteration),默认10次。 –收敛标准(convergence),默认0.02,即:本次迭代产生的任意新类,各
中心位置变化较小.其中最大的变化率小于2%.
29
K-means快速聚类
(三)基本操作步骤
A.菜单选项:analyze->classify->k means cluster B.选定参加快速聚类分析的变量到variables框 C.确定快速聚类的类数(number of clusters).类数应小
第九章 SPSS的聚类分析
1
聚类分析概述
• 概念:
– 聚类分析是统计学中研究“物以类聚”的一种方法,属多元统计分析方法. – 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量)按照在性质上的“亲疏” 程度,在没有先验知识的情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
•(张三,李四) 2: a=0 b=0 c=1 d=2 J(x,y)=1/1=1 (不相同)
11
聚类分析概述
• 品质型个体间的距离
– Jaccard系数举例:根据临床表现研究病人是否有类似的病
•姓名 性别 发烧 咳嗽 检查1 检查2 检查3 检查4
•张三 男 1 0 1 0 0
0
•李四 女 1 0 1 0 1
•姓名 授课方式 上机时间 选某门课程
•张三
1
1
1
•李四
1
1
0
•王五
0
0
1
•(张三,李四):a=2 b=1 c=0 d=0 d(x,y)=1/(1+2)=1/3
•(张三,王五):a=1 b=2 c=0 d=0 d(x,y)=2/(1+2)=2/3

SPSS第11章聚类分析

•e.“Number of Cluster”选项区提供了两种确定分类组数的方法,一种是由 SPSS自动提供,这里需要给出最大的分类组数;另一种是人为确定分类组 数,这里需要给出最终的分类组数。
• ③在图11.2中单击“Plots”按钮,进入对话框,如图11.2示。
• 选择“Variable Importance Plot”中“Rank Variable”的“by variable”,以便显示在两步聚类中各个变量重要性的图形, 再选择“Continue”按钮,回到原来菜单。
学习目标
解释聚类分析的基本概念
熟悉系统聚类分析方法 分析“Classify”菜单,阐述聚类分析与判别分析的基本原理和基本操作。用 实例说明5种方法的具体实现过程,解释其主要功能、背景知识及其主要选择 项。
第11章 聚类分析和判别分析
• 11.1 聚类分析和判别分析过程综述 • 11.2 两步聚类
11.4 分层聚类分析 11.6 判别分析
• ⑤单击“OK”按钮,在Output窗口和“Data View”中显示计算 结果。
2)基本输出结果与解释
•①首先,给出了最终的聚类结果(3类),并且给出了各类的 每个变量的均值与标准差(图略)。
•②其次,给出了3个分类中男女性、经济收入、教育水平变量 的分布状况图11.4。 •③给出了变量均值的95%置信区间在3类中的对比图图11.5。 •④图11.6所示,给出了一系列图形(本例中有6张图)表示给 个变量在聚类中的重要性。
预先并不知道类的特征,甚至不知道类的数目,因此要选择聚类的基 础变量、距离测量标准以及聚类标准。
11.1.3 Classify的功能
•SPSS的“Classify”菜单中提供了5种分类分析。 •① 两步聚类(TwoStep Cluster)提供了可以同时 根据连续变量和分类变量进行聚类的功能。

SPSS聚类的分析详解


二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之 间的相似程度(这些统计指标称为聚类统计量) 在市场研究中,样品 —— 用作分类的事物 指标 —— 用来作为分类依据的变量。 (如:年龄、收入、销售量) (一)相似系数(夹角余弦) 一般式:假定每个样品包含有P项指标,若有几个样品 的调查数据
3、步骤:1)首先给出度量“相似”或“关系密切”的 统计指标
指标:(1)统计指标是相似系数。 根据相似性归为一类,否则为另一类。 (2)统计指标是样品(空间的点)之间的距离 将距离近的点归成一类,否则为另一类。 (3)相关系数
(4)关联系数 2)形成一个由小到大的分析系统。
3)把整个分类系统画成一张分类图
CLUSTER过程 开始每个观测值自成一类,然后求两两之间的距离, 将距离最近的两个观测值合成一类。这个过程一直 进行下去,每次减少一类,直到合成一类为止。 聚类方法有11种,可根据问题的性质选用,它们的 区别在于怎样计算两类之间的距离。
METHOD=指定方法
AVERAGE(平均法)、CENTROID(重心法)、 COMPLETE(最大距离法)、DENSITY(密度 法)、MEDIAM(中位数法)等
1
按就近原则将每个观测量选入一个类中,然后计算各个类的中 心位置,即均值,作为新的聚心。 3、使用计算出来的新聚心重新进行分类,分类完毕后继续计 算各类的中心位置,作为新的聚心,如此反复操作,直到两次 迭代计算的聚心之间距离的最大改变量小于初始聚类心间最小 距离的倍数时,或者到达迭代次数的上限时,停止迭代。
观测量概述表
聚类步骤,与图结合看!
4、5
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-------------------------------------------------------------------------------------------------------------------------
Hierarchical Cluster (R型)
Hierarchical Cluster (R型)
选择变量聚类
Hierarchical Cluster (R型)
Hierarchical Cluster (R型)
Hierarchical Cluster (R型)
聚类方法选择组间联接
度量方法选择 Pearson相关性
Hierarchical Cluster (R型)
Hierarchical Cluster (R型)
Part 1
K-Means Cluster
-------------------------------------------------------------------------------------------------------------------------
K-Means Cluster
系统聚类法(分层聚类法)
样本聚类(Q型)、变量聚类(R型)
开始时,有多少点就是多少类,第一步先把最近的两个点合并
成一类,然后再把剩下的最近的两类合并成一类,这样每次都少一
类,直到最后只有一大类为止,越是后来合并的类距离越远。 优点:既可以对观测量(样本),也可以对变量进行聚类,既可 以是连续变量也可以是分类变量。
(3)其他聚类方法
分解聚类法、动态聚类法、降维法及图法、
有序样品聚类等
K-Means Cluster
K-Means Cluster过程可完成由用户指定类别数的大样本资料的 逐步聚类分析。所谓逐步聚类分析就是先把被聚对象进行初始分类, 然后逐步调整,直到得到最终分类。 原理: (1)选择n个数值型观测量,确定最后的聚类数k (2)由系统选择(也可由用户指定)k个观测量作为初始聚心 (3)计算欧氏距离(距离最小的原则)把所有观测量选入k个类中 (4)重新计算每个类中的均值,作为第二次迭代的聚心 (5)然后根据这个聚心重复第三、第四步骤,直到两次迭代计算 的聚心之间距离的最大改变量小于初始聚心之间最小距离的倍数时, 或者是达到迭代次数的上限时,停止迭代。
Hierarchical Cluster (Q型)
激活数据管理窗口 定义变量名
Hierarchical Cluster (Q型)
数据输入
Hierarchical Cluster (Q型)
数据标准化处理
Hierarchical Cluster (Q型)
查看描述统计量
Hierarchical Cluster (Q型)
初始聚类中心表
K-Means Cluster
K-Means Cluster
方差分析表
K-Means Cluster
K-Means Cluster聚类结果:
K-Means Cluster
具体城市聚类结果
QCL-1说明聚类结果,QCL-2说明聚类的长度情况
Hierarchical Cluster
包括点间距离和类间距离。
类间距离是根据点间距离来确定的,如两类的最近点之间、最
远点之间、中心点之间的距离均可以定义为类间距离。
聚类分析中距离算法
(1)欧氏距离 欧氏距离基于勾股定理,可以很容易推广到三个以上变量。对 于n个变量,
dij
(2)闵(明)氏距离
2 ( x x ) ki kj k 1
n
dij (q) ( xki xkj )
k 1
n
1 q q
q=0,闵氏距离
ቤተ መጻሕፍቲ ባይዱ同欧氏距离
缺点:距离大小和各指标观测单位有关 没有考虑指标间的相关性
SPSS中聚类功能
(1)非系统聚类法 快速聚类法—k值聚类法(K-Means Cluster) (2)系统聚类法 分层聚类法(Hierarchical Cluster过程) 样本聚类(Q型)、变量聚类(R型)
SPSS
---------------------------------------------------
cluster analysis
-------------
聚类分析
聚类分析基本概念
聚类分析是用多元统计技术进行分类的一种方法,
其中类是指相似元素的集合。
如何衡量 相似程度?
距离:相似程度越大,相当于距离越短
数据储存
Hierarchical Cluster (Q型)
打开“分析”菜单 选“分类”中的 “系统聚类”项
Hierarchical Cluster (Q型)
所有输入量 观测量
选择个案聚类
输出统计量和图像
Hierarchical Cluster (Q型)
选择“合并进程表”和 “相似性矩阵”选项
Hierarchical Cluster (Q型)
选择图像输出“树 状图”选项
Hierarchical Cluster (Q型)
SPSS提供了7种类间 距离的测量方法 1、组间链接法 2、组内链接法 3、最近距离法 4、最远距离法 5、重心法 6、中间距离法 7、Ward最小偏差平 方和法
SPSS提供了8种距离度 量标准 1、Euclidean 距离 2、Euclidean 距离平方 3、Cosine 距离 4、Pearson 相关距离 5、Chebychev 距离 6、City-Block 距离 7、Minkowski 距离 8、自定义距离
Hierarchical Cluster (R型)
-----------------------------------------------
END
Thank You
--------------------------------------------
所有输入量
观测量
选择“迭代与分类” 聚类数k=5
K-Means Cluster
确定“最大迭代次数”
确定“收敛标准值”
K-Means Cluster
存储最终结果输出情况, 在数据文件中(QCL-1/QCL-2)
K-Means Cluster
初始聚心选项
输出方差分析表
K-Means Cluster
激活数据管理窗口 定义变量名
K-Means Cluster
数据输入
K-Means Cluster
数据标准化处理
K-Means Cluster
查看描述统计量
K-Means Cluster
数据储存
K-Means Cluster
打开“分析”菜单 选“分类”中的 “k-均值聚类”项
K-Means Cluster
Part 2
Hierarchical Cluster (Q型)
-------------------------------------------------------------------------------------------------------------------------
Hierarchical Cluster (Q型)
Hierarchical Cluster (Q型)
观测量描述表
Hierarchical Cluster (Q型)
Hierarchical Cluster (Q型)
Hierarchical Cluster
Part 3
Hierarchical Cluster (R型)
相关文档
最新文档