初一数学重点难点总结 初一重点题型全在这里

合集下载

初一数学题重点题型

初一数学题重点题型

初一数学题重点题型
初一数学题的重点题型主要包括:
1. 绝对值问题:理解绝对值的定义,并能够解决与绝对值相关的数学问题。

2. 代数式化简求值:能够正确化简代数式,并求出给定条件下的代数式的值。

3. 方程和不等式:掌握一元一次方程和一元一次不等式的解法,并能解决与方程和不等式相关的数学问题。

4. 几何图形:了解基本几何图形的性质,并能够解决与几何图形相关的数学问题,如线段的长度、角度的大小等。

5. 函数:理解函数的概念,掌握一次函数的表达式、图象和性质,并能够解决与函数相关的数学问题。

6. 统计和概率:了解统计和概率的基本概念,并能解决与统计和概率相关的数学问题。

这些题型是初一数学的重要内容,需要熟练掌握其解题方法,以备不时之需。

初一数学重点难点知识总结

初一数学重点难点知识总结

初一数学重点难点知识总结有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

代数式数字与字母的积,这样的式子叫做单项式.(1)单独的一个数或一个字母也是单项式.(2)单项式中的数字因数叫做这个单项式的系数.(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数.10.几个单项式的和叫做多项式.(1)在多项式中,每个单项式叫做多项式的项,其中,不含字母的项叫做常数项.(2)一般地,多项式里次数最高的项的次数,就是这个多项式的次数. 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。

解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a 的形式转化,这个过程主要依据等式的性质和运算律等。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识
点及重难点
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
初一数学上册必考知识点及重难点第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。

七年级数学重点题型及解题技巧

七年级数学重点题型及解题技巧

七年级数学重点题型及解题技巧
七年级数学是一门重要的学科,涵盖了有理数、数轴、相反数、绝对值、倒数等基础知识。

以下是一些重点题型和解题技巧,可以帮助学生在考试中取得更好的成绩:
1. 有理数计算题:重点掌握加减乘除、乘方、开方等基本运算,以及有理数的混合运算。

解题技巧包括准确理解题意、用对符号、注意精度和溢出等。

2. 数轴题:理解数轴的概念和基本性质,掌握数轴上的点和数值之间的关系。

解题技巧包括准确读出数轴上的数值、注意数轴上的点与数值的关系、会用数轴分析题意等。

3. 相反数题:掌握相反数的概念和运算法则,理解相反数之间的关系。

解题技巧包括准确理解题意、找出对应的相反数、会用相反数运算等。

4. 绝对值题:重点掌握绝对值的概念和运算法则,理解绝对值的性质和大小比较方法。

解题技巧包括准确理解题意、用对符号、会求绝对值的大小等。

5. 倒数题:理解倒数的概念和运算法则,掌握倒数的大小关系和性质。

解题技巧包括准确理解题意、找出对应的倒数、会用倒数运算等。

6. 几何题:掌握基本的几何概念和图形的性质,熟悉常见的几何图形。

解题技巧包括会用几何图形分析问题、准确理解题意、掌握几何图形的性质等。

7. 代数题:重点掌握代数式的概念和运算法则,熟悉常见的代数式。

解题技巧包括会用代数式分析问题、准确理解题意、掌握代数式的性质等。

以上是七年级数学的一些重点题型和解题技巧,学生可以通过多做练习题和反复练习,提高数学思维能力和考试成绩。

初一上册数学学习总结6篇

初一上册数学学习总结6篇

初一上册数学学习总结6篇篇1经过一个学期的学习,我对初一上册的数学学习有了更深刻的理解和掌握。

以下是我对这个学期数学学习的总结,旨在回顾过去、展望未来,以便更好地提升自己的数学能力。

一、知识点掌握情况在初一上册的数学学习中,我掌握了大量的基础知识和技能,包括数的认识、加减法运算、乘除法运算、分数和小数的基本概念及运算、常见的几何图形及其性质等。

这些知识为我后续的学习打下了坚实的基础。

二、学习过程中的难点与突破在学习过程中,我遇到了一些难点和挑战。

例如,在解决分数和小数运算时,我曾一度混淆不清,但在通过反复练习和巩固后,我逐渐掌握了其中的规律和技巧。

此外,在解决一些复杂的几何问题时,我也曾感到困惑,但通过查阅资料和与同学讨论,我逐渐找到了解决问题的方法。

这些难点和挑战的突破,使我更加深入地理解和掌握了数学知识。

三、学习方法的运用与改进在学习过程中,我尝试了多种学习方法,如预习、复习、做笔记、做题等。

通过不断尝试和改进,我逐渐找到了适合自己的学习方法。

例如,我发现在预习时,将不懂的地方标注出来,在听课过程中就能更有针对性地解决问题;而在复习时,我则注重对知识点的梳理和归纳,以便更好地巩固所学知识。

这些学习方法的运用和改进,使我的学习效率得到了显著提升。

四、学习过程中的感悟与思考通过一个学期的数学学习,我深刻体会到数学的重要性。

数学不仅是一门学科,更是一种思维方式和解决问题的能力。

在学习过程中,我逐渐培养了自己的逻辑思维能力和抽象思维能力,这些能力将对我未来的学习和工作产生深远的影响。

同时,我也意识到自己的不足之处,如在解题过程中有时过于注重结果而忽视了过程的重要性;在面对难题时有时缺乏耐心和毅力等。

因此,在未来的学习中,我将继续努力改进自己的学习方法和态度,以更好地提升自己的数学能力。

五、对未来学习的展望与规划对于未来的数学学习,我充满了期待和信心。

首先,我将继续巩固和扩展所学的数学知识,为后续的学习打下更坚实的基础;其次,我将注重培养自己的逻辑思维能力和抽象思维能力,以提高自己的解题能力和解决问题的能力;最后,我还将积极参与课堂讨论和课后活动,与老师和同学多交流心得体会,以更好地促进自己的学习进步。

初一数学重点难点总结归纳

初一数学重点难点总结归纳

初一数学重点难点总结归纳代数式1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

相交线1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

整式1整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

初一数学重难点梳理与学习套路

初一数学重难点梳理与学习套路

初一数学重难点梳理与学习套路初一作为小升初的过渡,主要还是为学校三年数学的学习打好基础。

基础是很重要的,只有基础好了才能把以后的数学学好,我整理了相关资料,盼望能关心到您。

初一数学重难点梳理一、代数初步学问1.代数式:用运算符号“+-”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个留意事项:(1)数与字母相乘,或字母与字母相乘通常使用“.”乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“.”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a;(5)在代数式中消失除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要留意字母挨次;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.二、有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;不是有理数;(2)有理数的分类:①②(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数,0和正整数;a0,a是正数;a0,a是负数;a0,a是正数或0,a是非负数;a0,a是负数或0?a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0,a+b=0,a、b互为相反数.4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2)肯定值可表示为:或;肯定值的问题常常分类争论;(3)|a|是重要的非负数,即|a|0;留意:|a|x|b|=|axb|,.5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a0,那么的倒数是;倒数是本身的数是1;若ab=1,a、b互为倒数;若ab=-1,a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数打算.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的安排律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数,13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a2+|b|=0?a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最终加减;留意:怎样算简洁,怎样算精确,是数学计算的最重要的原则.19.特别值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.三、整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

初一数学重难点总结复习

初一数学重难点总结复习

初一数学重难点总结复习初一数学重难点总结复习【4篇】复习总结还可以跨学科地进行,将不同学科的知识点联系起来,形成知识网络。

复习总结应该注重对自己的要求,不断提高自己的学术标准和道德水平。

下面就让小编给大家带来初一数学重难点总结复习,希望大家喜欢!初一数学重难点总结复习1(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.初一数学重难点总结复习2一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。

它们都是比0小的数。

0既不是正数也不是负数。

我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。

有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学重点难点总结初一重点题型全在这里
初一数学基础知识整理
有理数加减法
1.同号两数相加,取相同的符号,并把绝对值相加。

绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

2.互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.减去一个数,等于加上这个数的相反数。

乘方
乘方定义:求n个相同因数的积的运算,叫做乘方。

底数是a,指数是n,幂是乘方的结果;读作:的n次方或的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

2初一数学重点知识点
方程的有关概念
1.方程:含有未知数的等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。

⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
3初一数学学习技巧
①着重预习,学会自学
预习是自学的开始,进入初中以后,你会逐步尝到自觉寻求知识来解决问题的甜头,自觉预习初一数学,为学习新知识打下基础。

②专心听讲,乐于思考
初一数学课堂45分钟最为关键,要养成一边听讲、一边思考的习惯,使自己的心、眼、耳、口、手都参与课堂活动。

无论是课前、课内还是课后,还要多问几个为什么,绝不放过一个疑问。

③规范作业,强化训练
小学生解题往往重结果而轻过程,进入初中后,部分学生不能独立思考,解题格式不规范,步骤混乱。

为此,要从思想上认识到规范作业的重要性,养成自觉订正的好习惯。

相关文档
最新文档