第14章 光的衍射习题谜底

合集下载

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。

14光的衍射习题解答

14光的衍射习题解答


(1)条纹相重合就是位置相同,或衍射角相同。 根据暗条纹条件:a sin 1 22 1 2 2 即1是2的两倍。
k1 2 1 (2)同样, a sin k11 k22 k2 1 2
即衍射级别成两倍关系的条纹重合。
第 11 页
三、计算题 2. 波长=600nm的单色光垂直入射到一光栅上,测得第二级明条 纹衍射角为30°,且第三级是缺级。(1) 光栅常数(a+b)等于 多少?(2) 透光缝可能的最小宽度a等于多少? (3) 在选定了上述 (a+b)和a之后,求在屏幕上可能呈现的全部明条纹的级次。
d 3μm k k k 3k ,即k 3, 6.的明条纹谱 线有5条。
第 14 页
光的衍射
习题解答
第 15 页
可能出现的全部主极大的级次为0, 1, 2,共5条
第 12 页
三、计算题 3. 一 衍 射 光 栅 , 每 厘 米 有 200 条 透 光 缝 , 每 条 透 光 缝 宽 为 a=2103mm,在光栅后放一焦距f =1m的凸透镜,现以的单 色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明纹 宽度为多少?(2) 在该宽度内,有几个光栅衍射明条纹?
解 (1)
(a b)sin 30 2 (a b) ... 2.4μm
ab ab (2) k k a k , 已知第三级缺级 a k ab a ... 0.8μm 3 (a b) sin 90 (3) (a b) sin k kmax 4 第三级缺级,

本题中要求考虑缺级问题。 由题意可知:
ab k k 2k a 即k 2, 4...缺级
因此,两侧的两级分别为第1级和第3级。

光的衍射习题答案

光的衍射习题答案

第六章 光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。

解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I6-2 由氩离子激光器发出波长488=λnm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75mm ×0.25mm 。

在位于矩形孔附近正透镜(5.2=f m )焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。

解:中央亮斑边缘的坐标为:63.175.010********±=⨯⨯±=±=-a f x λmm 26.32=x mm 88.425.010********±=⨯⨯±=±=-b f y λmm 76.92=y mm ∴中央亮斑是尺寸为3.26mm ×9.76mm 的竖直矩形6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。

为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---⨯=⨯⨯⨯==D λθrad 人眼的最小分辨角为: 4361005.3102105.022.122.1---⨯=⨯⨯⨯==d e λθrad ∴望远镜的放大率应为:50===dDM e θθ 6-4 一个使用汞绿光(546=λnm )的微缩制版照相物镜的相对孔径(f D /)为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适? 解:照相物镜的最大分辨本领为: 375411054622.1122.116=⨯⨯⨯==-f D N λ/mm∵380>375∴可以选用每毫米380条线的底片。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

光的衍射选择题解答与分析

光的衍射选择题解答与分析

7光的衍射7.1惠更斯—菲涅耳原理1. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A) 振动振幅之和. (B) 光强之和. (C) 振动振幅之和的平方. (D) 振动的相干叠加. 答案:(D) 参考解答:惠更斯原理可以定性说明波遇到障碍物时为什么会拐弯,但是它不能解释拐弯之后波的强度的重新分布(对光而言,表现为出现明暗相间的衍射条纹)现象。

在杨氏双缝干涉实验的启发下,注意到干涉可导致波的能量出现重新分布,法国物理学家菲涅耳认为:同一波阵面上发出的子波是彼此相干的,它们在空间相遇以后发生相干迭加,使得波的强度出现重新分布,由此而形成屏上观察到的衍射图样。

这一经 “子波相干叠加”思想补充发展后的惠更斯原理,称为惠更斯-菲涅耳原理。

对所有选择,均给出参考解答,进入下一步的讨论。

2. 衍射的本质是什么?干涉和衍射有什么区别和联系?参考解答:根据惠更斯-菲涅耳原理,衍射就是衍射物所发光的波阵面上各子波在空间场点的相干叠加,所以衍射的本质就是干涉,其结果是引起光场强度的重新分布,形成稳定的图样。

干涉和衍射的区别主要体现在参与叠加的光束不同,干涉是有限光束的相干叠加,衍射是无穷多子波的相干叠加。

7.2单缝衍射1. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. 答案:(B) 参考解答:根据半波带法讨论的结果,单缝衍射明纹的角位置由下式确定,,2)12(sin λθ+±=k a 即...)3,2,1(2)12(sin =+±=k ak λθ.显然对于给定的入射单色光,当缝宽度a 变小时,各级衍射条纹对应的衍射角变大。

对所有选择,均给出参考解答,进入下一步的讨论。

《大学物理学》光的衍射练习题(马解答)

《大学物理学》光的衍射练习题(马解答)

《大学物理学》光的衍射自主学习材料(解答)一、选择题:11-4.在单缝夫琅和费衍射中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角30°方向,单缝处波阵面可分成的半波带数目为( B )(A ) 2个; (B ) 3个; (C ) 4个; (D ) 6个。

【提示:根据公式sin /2b k θλ=,可判断k =3】2.在单缝衍射实验中,缝宽b =0.2mm ,透镜焦距f =0.4m ,入射光波长λ=500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带?( D )(A) 亮纹,3个半波带; (B) 亮纹,4个半波带;(C) 暗纹,3个半波带; (D) 暗纹,4个半波带。

【提示:根据公式sin /2b k θλ=⇒2x b k f λ=,可判断k =4,偶数,暗纹】 3.在夫琅和费单缝衍射实验中,对于给定的入射单色光,当缝宽度变宽,同时使单缝沿垂直于透镜光轴稍微向上平移时,则屏上中央亮纹将: ( C )(A)变窄,同时向上移动; (B) 变宽,不移动;(C)变窄,不移动; (D) 变宽,同时向上移动。

【缝宽度变宽,衍射效果减弱;单缝位置上下偏移,衍射图样不变化】4.在夫琅和费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹 ( B )(A) 对应的衍射角变小; (B) 对应的衍射角变大;(C) 对应的衍射角也不变; (D) 光强也不变。

【见上题提示】5.在如图所示的夫琅和费单缝衍射实验装置中,S 为单缝,L 为凸透镜,C 为放在的焦平面处的屏。

当把单缝垂直于凸透镜光轴稍微向上平移时,屏幕上的衍射图样 ( C )(A) 向上平移; (B) 向下平移;(C) 不动;(D) 条纹间距变大。

【单缝位置上下偏移,衍射图样不变化】 6.波长为500nm 的单色光垂直入射到宽为0.25 mm 的单缝上,单缝后面放置一凸透镜,凸透镜的焦平面上放置一光屏,用以观测衍射条纹,今测得中央明条纹一侧第三个暗条纹与另一侧第三个暗条纹之间的距离为12mm ,则凸透镜的焦距f 为: ( B )(A) 2m ; (B) 1m ; (C) 0.5m ; (D) 0.2m 。

高考物理光的衍射专项练习附解析

高考物理光的衍射专项练习附解析

高考物理光的衍射专项练习(附解析)高考物理光的衍射专项练习(附解析)1、在用单色平行光照射单缝观察衍射现象的实验中,下列说法正确的是()A.缝越窄,衍射现象越显著B.缝越宽,衍射现象越显著C.照射光的波长越长,衍射现象越显著D.照射光的频率越高,衍射现象越显著答案解析:缝的宽度越接近光波的波长,衍射越显著,因缝越窄,越接近光的波长,故选项B错误,选项A正确;光波的波长越长,越接近缝的宽度,衍射越显著,选项C正确;光的频率越高,波长越小,衍射越不显著,选项D错误.答案:AC2、将一个大的不透明障碍物上的正三角形孔从边长10cm逐渐减小到零,让阳光从孔中通过,在障碍物后暗箱中的屏上可看到什么现象?答案解析:开始阶段,孔比较大,在屏上得到一个正三角形亮斑,如图甲所示。

随着孔的减小,亮斑也变小;孔再小,在亮斑周围出现一个亮度比较弱的圆,这是小孔成像,如图乙所示。

继续减小小孔的尺寸,在光屏上出现彩色的衍射图样,这时是明显的衍射现象;孔再小,光线再弱,直到什么也看不见。

3、如图所示是通过游标卡尺两测量脚间的狭缝观察白炽灯线光源时所拍下的四张照片。

(1)试通过图样分析四张照片对应的两测量脚间的宽度大小关系。

(2)试说明照片(4)中中央条纹的颜色及成因。

答案解析:(1)从四张照片的单缝衍射图样可以看出,由图(1)到图(4),衍射现象越来越明显,说明两测量脚间的狭缝越来越小,因此由图(1)到图(4)四张照片对应的两测量脚间的宽度越来越小。

(2)图(4)中中央条纹的颜色为白色,因为各种色光在屏中央均为亮条纹,七色光叠加后,中央条纹即为白色。

4、沙尘暴是由于土地的沙化引起的一种恶劣的天气现象,发生沙尘暴时能见度只有十几米,天气变黄变暗,这是由于这种情况下()A.只有波长较短的一部分光才能到达地面B.只有波长较长的一部分光才能到达地面C.只有频率较大的一部分光才能到达地面D.只有频率较小的一部分光才能到达地面答案BD解析:据光明显衍射的条件,发生沙尘暴时,只有波长较长的一部分光线能到达地面,据λ=c/f知,到达地面的光是频率较小的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以观察到的是平行光的衍射。由此可知,这时人眼看到的是夫琅和费衍射图样。 3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。 答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。离中央明纹越远处,
衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央
(A)2 个。 (B)4 个。 (C)6 个。
(D)8 个。
答:[B]
9 在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波面可划分为( )
(A)2 个半波带。 (C)6 个半波带。
(B)4 个半波带。 (D)8 个半波带。
答:[C]
10 在如图所示的单缝夫琅和费衍射装置中,将单缝
宽度 a 稍稍变宽,同时使单缝沿 y 轴正方向作微小位移,
图样还是夫琅和费衍射图样?为什么? 答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线0生高不产中仅工资22艺料22高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料22荷试,下卷而高总且中体可资配保料置障试时23卷,23调需各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看2工且55作尽22下可2都能护1可地关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编5试求写、卷技重电保术要气护交设设装底备备4置。高调、动管中试电作线资高气,敷料中课并3设试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
5 波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 30º,则缝宽的大小( )
(A) a=0.5。 (B) a=。 (C)a=2。 (D)a=3。
答:[ C ]
6 波长为的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为 30,则缝宽 a 等于( )
(A) a= 。 (B) a=2。
明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为 S,则 S 的前方某点 P 的光
强度决定于波阵面 S 上所有面积元发出的子波各自传到 P 点的(
)
振动振幅之和的平方。 (D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。选(D)。
则屏幕 E 上中央明条纹将(
(A)变窄,同时向上移。
(B)变窄,同时向下移。
(C)变窄,不移动。 (D)变宽,同时向上移。 (E)变宽,不移动。
)
答:由中央明条纹宽度公式 x 2 f 可知,将单缝宽度 a 稍稍变宽,中央明条纹将变 a
窄。由于透镜未动,焦点位置不动,故位于焦点附近的中央明条纹位置也将不移动。故选
思考题
1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住?
答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。对一座山来说,电视
广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。 2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射
(C)。
11 波长为000Å 的单色光垂直入射到光栅常数为 1.010-4cm 的平面衍射光栅上,第一 级衍射主极大所对应的衍射角为( )
(A) 60。 (C) 45。
答: [B]
(B) 30。 (D) 75。
12 波长为500Å 的单色光垂直入射到光栅常数为 2.010-4cm 的平面衍射光栅上,可能 观察到的光谱线的最大级次为( )
(A)2。 (C)4。
答:[B]
(B)3。 (D)5。
13 一束白光垂直照射在一平面衍射光栅上,在形成的同一级光栅光谱中,从中央向外 方向颜色的排列顺序是( )
(A) 由红到紫。 (C) 由紫到紫。
答:[D]
(B) 由红到红。 (D) 由紫到红。
14 用波长为的单色平行光垂直入射到一光栅上,其光栅常数 d=3m,缝宽 a=1m, 则在单缝衍射的中央明纹宽度内主极大的个数是( )
(C) a= 3 。 2
(D) a=3。
答:[ D ]
7 在单缝夫琅和费衍射实验中波长为的单色光垂直入射到单缝上,对应于衍射角为
30的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于( )
(A) 。
(B) 1.5。
(C) 2。
(D) 3。
答:[ D ]
8 在单缝夫琅和费衍射实验中,波长为的单色光垂直入射到宽度 a=4的单缝上,对 应于衍射角为 30的方向,单缝处波面可分成的半波带数目为( )
相关文档
最新文档