求一个小数的近似数

合集下载

求小数的近似数教案

求小数的近似数教案

求小数的近似数教案求小数的近似数教案1【教学目标】1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

2、通过学生自主探索、合作交流,培养学生的探索能力。

【教学重点】使学生掌握求一个小数的近似数的方法。

【教学难点】使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

【教具】多媒体课件【教学过程】:一、课前预习1、怎样用“四舍五入”法求出一位小数的近似数?2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?二、展示交流(一)创设情境,引入新知课件出示豆豆,看看小豆豆的身高是多少呢?今天下午我们就来研究求一个小数的近似数。

(二)求小数的近似数的方法1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?2、探究新知(1)同桌讨论回忆什么是“四舍五入”法?(2)讨论尝试①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

②出示例1,讨论求0。

984的近似数③保留一位小数时,末尾的“0”为什么应该写呢?(3)总结归纳。

求一个数的近似数,保留不同的位数,求得的近似数不同。

保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数1、出示教材第74页例2①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?②结论:改写成用“亿”或“万”作单位的数。

2、从算理入手,理解改写方法。

①讨论:怎样改写呢?②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。

改写成以“亿”作单位同上。

三、检测反馈1、教材第74页上、下的“做一做”。

2、教材第75页练习十二第一、2题。

第3、4题四、板书设计教求一个数的近似数四舍五入法保留两位小数0.984≈0.98 142800千米=14.28万千米保留一位小数0.984≈1.0 778330000千米=7.7833亿千米≈7.8亿千米保留整数0.984≈1注意:在表示近似数时,小数末尾的0不能去掉教学反思:现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。

求一个小数的近似数(例1)

求一个小数的近似数(例1)

1、选择:
❖ 保留(①)位小数,表示精确到十分位。
①一位 ②两位 ③三位
❖ 如果要求保留三位小数,表示精确到(③)位。
①十分 ②百分 ③千分
❖ 把3.995保留两位小数约等于( ③ )。
①3.99 ②4.0 ③4.00
2、判断:
1、2.0和2大小相等,精确度也相同。 ×
2、准确数大于近似数。×
想注一意想::
1、要求根小据数题的目近的似要求数取的近方似法值是,什如么果?保应留整 数该,注就意看什十么分?位是几;要保留一位小数,就
看百分位是几 ;……然后按“四舍五入法”来 决定是舍还是入。
2、取近似值时,在保留的小数位里,小数末 尾的0 不能去掉 。
如: 6.0要比6精确.因为6.0表示精确到 了(十分 )位,6表示精确到了( 个 )位, 所以6.0后面的“0”不能丢掉。
3、近似数是3的小数只有2.5、2.6、2.7、 2.8、2.9。 ×
3、下面各小数在哪两个相邻的整数之 间?它们各近似于哪个整数? ( 6 )< 6.49 < ( 7 )
( 15 )< 15.83 < ( 16 )
求下面各小Hale Waihona Puke 的近似数。(1)精确到十分位
3.47
0.239
4.08
(2)省略百分位后面的尾数
5.344
6.268
0.402
❖ 一个两位小数“四舍五入”后得到的近似数 是4.6,这个两位小数最大是多少?最小是多 少?
全课小结
你有哪些收获? 在哪方面还需努力?
❖ 1.我们学校大约有2400名同学。 ❖ 2.我们班有68名同学。 ❖ 3.我们定的校服每套大约需要100元。
复习:

小学数学四年级《求一个小数的近似数》优质教学设计教案

小学数学四年级《求一个小数的近似数》优质教学设计教案

求一个小数的近似数(一)一、教学目标1.知识与技能:掌握用四舍五入的方法求小数的近似数的方法。

并能利用所学知识解决一些实际问题。

2.过程与方法:学生利用已有知识和迁移类推的方法,探索用”四舍五入:法求小数近似数的方法。

培养学生的探索能力、迁移能力和抽象概括能力。

3.情感态度价值观:感受近似数在生活中的应用。

培养学生细致、认真的学习习惯。

二、教学重点求小数近似数的方法。

三、教学难点对精确度的理解及对四舍五入后小数末尾“0”的处理。

四、教学具准备课件五、教学过程(一)创设情境引入课件出示:小明妈妈昨天去菜市场买水果,鸭梨1.25元1斤,挑了几个鸭梨,称得的重量是3.7斤,商贩用计算器算得的结果是4.625,妈妈应付给商贩多少元?生:4.63元师:为什么要付4.63元?看来在生活中解决一些问题时,需要求一个小数的近似值,今天我们就来学习求小数的近似值。

(二)教学求近似值的方法1.学习保留两位小数的方法(1)刚才你们是怎样求出4.625的近似值的?谁再来讲一讲你的方法。

用四舍五入的方法,4.625保留两位小数,看千分位的5,比4大,就向百分位进1。

4.625 4.63(2)师小结:求一个小数的近似数一般都要用“四舍五入法”(3)巩固:将下面小数四舍五入保留两位小数:2.582 12.807 0.849(4)怎样将一个小数四舍五入保留两位小数?看千分位上的数,千分位上的数大于4,就向百分位进1;千分位上的数小于或等于4,就将百分位后面的数舍去。

2.自主探究保留一位小数的方法(1)但是最后小商贩说零分钱不要了,妈妈又该付他多少元呢?学生回答:将4.625保留一位小数,看百分位的2,比4小就舍去。

4.625≈4.6(2)巩固。

将下面小数四舍五入保留一位小数:2.582 12.807 0.849(3)说一说怎样将一个小数四舍五入保留一位小数?看百分位上的数,百分位上的数大于4,就向十分位进1;百分位上的数小于或等于4,就将十分位后面的数舍去。

《求一个小数的近似数》教学设计

《求一个小数的近似数》教学设计

苏教版教材五年级(上)第三单元小数的意义和性质《求一个小数的近似数》教学设计【教材分析】用“万”或“亿”作单位的小数表示大数目是在学生已经掌握了求近似数的基础上进行教学的,一般情况下,用“四舍五入”的方法求一个小数的近似数。

教材以地球和太阳之间的平均距离为素材,设计了三个问题组织学生进行探索,并引导学生总结和归纳求小数近似数的方法。

【教学内容】苏教版小学数学五年级上册第43页。

【教学目标】1.理解和掌握用”四舍五入法”求一个小数的近似数,理解精确度的意义。

2.经历求小数的近似数的过程,体验利用旧知迁移的方法。

3.感受数学知识与日常生活的密切联系,激发学生学习数学的兴趣,培养学生的数感和数学意识。

【教学重点】会用“四舍五入法”求一个小数的近似数。

【教学难点】理解精确度的意义。

【教学方法】发现法、启发式教学法。

【教学准备】多媒体课件。

【课时安排】1课时。

【教学过程】一、复习引入省略万后面的尾数,求下面各数的近似数。

34000 16798 400009 4216301【设计意图:数学知识间有着紧密的联系,通过复习用“四舍五入法”取较大数的近似数,帮助学生实现已有知识的正迁移,为本节课的学习奠定基础。

】二、探究新知【教学切入】我们学过求一个整数的近似数。

在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。

那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

【出示例题】(1)地球和太阳之间的平均距离大约是1.496亿千米。

精确到十分位大约是多少亿千米?【教师指导】引导学生独立思考后小组交流:要保留到哪个数位,观察哪个数位?【学生汇报】1.496亿千米≈1.5亿千米百分位上的数大于5,向十分位进1。

【教师设问】刚才是用什么方法求1.496精确到十分位的小数的?【教师总结】也就是说小数的近似数也可以用“四舍五人”法来求。

【教师设问】如果精确到百分位大约是多少亿千米?学生独立完成后说方法。

求近似数的方法

求近似数的方法

求近似数的方法在数学中,我们经常会遇到需要求近似数的情况,比如在测量、计算和估算中。

那么,如何快速准确地求得近似数呢?接下来,我们将介绍一些常用的方法,希望能够帮助大家更好地掌握近似数的求解技巧。

一、四舍五入法。

四舍五入法是我们在日常生活中经常使用的一种近似数的方法。

当我们需要将一个较长的小数按照一定的精度进行近似时,可以按照小数点后第一位的数值进行判断。

如果小数点后第一位数值小于5,则舍去后面的数字;如果小数点后第一位数值大于等于5,则进位。

这样就可以得到一个近似数。

例如,将3.56789近似到小数点后两位,我们可以按照四舍五入法得到3.57。

二、截断法。

截断法是指将一个较长的小数直接截取到所需的位数,忽略掉后面的数字。

这种方法在实际应用中也比较方便,但需要注意的是,截断后的近似数可能会产生误差。

比如,将2.34567截断到小数点后两位,我们可以得到2.34。

三、相似三角形法。

在几何学中,相似三角形法也是一种常用的近似数方法。

当我们需要测量无法直接获得的长度时,可以利用相似三角形的性质来求得近似值。

通过观察两个相似三角形的对应边长比例,我们可以得到所需长度的近似值。

例如,测量高楼的高度时,我们可以利用相似三角形法,通过测量影子的长度和角度来求得高楼的高度的近似值。

四、线性插值法。

线性插值法是一种通过已知数据点来估计中间数值的方法。

在实际应用中,我们经常会遇到需要估算某一点的数值,但是该点并不在已知数据点上。

这时,我们可以利用线性插值法来求得该点的近似值。

比如,已知一条直线上两个点的坐标和函数关系,我们可以通过线性插值法来求得直线上任意一点的近似值。

五、泰勒展开法。

泰勒展开法是一种数学分析中常用的近似数方法。

通过泰勒展开,我们可以将一个复杂的函数在某一点附近用一个多项式来近似表示。

这种方法在求解一些复杂函数的近似值时非常有效。

六、统计法。

在实际数据分析中,统计法也是一种常用的近似数方法。

通过对一组数据进行统计分析,我们可以得到这组数据的平均值、中位数、众数等近似值。

求一个小数的近似数

求一个小数的近似数

求一个小数的近似数在日常生活和数学运算中,我们经常会遇到需要对小数进行近似的情况。

无论是为了简化计算,还是为了更好地进行表示和理解,寻找一个小数的近似数都是很有必要的。

本文将介绍几种寻找小数近似数的方法和技巧。

1. 四舍五入法四舍五入法是最常见且简单的一种近似小数的方法。

在四舍五入法中,我们根据小数位的后一位数字来进行判断。

如果后一位数字小于5,则舍去;如果后一位数字大于等于5,则进位。

下面是一个用四舍五入法近似小数的示例:例:将小数3.14159近似为两位小数步骤:1. 定位到小数第三位(百分位),即4。

2. 根据后一位数字(百分位后一位)的大小,判断是否进位。

因为后一位数字5大于等于5,所以进位。

3. 进位后,将小数第三位及之后的数字都置为0,得到近似的小数3.14。

四舍五入法是一种比较常用且简便的近似方法,但它并不一定能够给出最精确的近似结果。

2. 小数点移动法小数点移动法是另一种常见的求小数近似数的方法。

通过移动小数点的位置,可以得到较大或较小的近似数。

具体的步骤如下:2.1 向右移动小数点如果需要得到小数的一个较大近似数,可以将小数点向右移动。

移动的位数由需要的近似精度决定。

例如,将小数3.14159近似为一个整数,可以将小数点向右移动到个位所在的位置。

移动的位数为四位,则得到近似数31。

2.2 向左移动小数点如果需要得到小数的一个较小近似数,可以将小数点向左移动。

同样,移动的位数由需要的近似精度决定。

例如,将小数3.14159近似为一位小数,可以将小数点向左移动到十分位所在的位置。

移动的位数为一位,则得到近似数3.1。

小数点移动法可以根据需要进行小数的近似,但要注意移动的位数和所产生的近似数是否符合实际情况。

3. 连分数法连分数法是一种特殊的近似数表示方法。

它将一个小数表示为一个连分数的形式,其中整数部分为首项,其余部分为连续的倒数项。

连分数法可以给出较为精确的近似数,但也需要一定的计算和理解。

求小数近似数的方法。

求小数近似数的方法。

求小数近似数的方法
第一种:简单数位的近似计算:
例如:将小数1.3456保留2位小数则为:1.35。

其主要过程是,看保留数位的下一位,按照“四舍五入”斤牢速的方法进行近似计算。

第二种:根式小数开方的近似计算
例如求√4.11的近似值计算,本例采取线性穿插法计算,如:设√4.11=x,列三组数如下:
√4=2
√4.11=x
√9=3,
(4.11-4)/(9-4.11)=(x-2)/(3-x)
(4.11-4)(3-x)=(x-2)(9-4.11)
0.11(3-x)=4.89(x-2)
4.89x+0.11x=0.11*3+2*4.89
5x=10.11
x≈2.022。

第三种:小数的小数次方的近似计算
例如,计算0.91^2.91次方的近似值,本例主要采取微积分计算近似值,具体步骤如下。

第四种:正弦小数的近似计算:蕉茄
例如,计算sin38.88°的近似值,主要使用微分法计算,∵(sinx)´=cosx
∴dsinx=cosxdx.
则有△y≈cosx△x,此时有:
sinx=sinx0+△y≈sinx0+cosx0△x。

需要注意的是,计算中的△x若是角度要转化为弧度。

求小数近似数的方法

求小数近似数的方法

求小数近似数的方法
一、利用最简分数
所谓最简分数,指的是分子和分母互质的最简分数,比如
8/24,3/9等,这类最简分数可以用来近似小数。

方法如下:
1.将小数部分取整,比如将0.716取整为71。

2.把取整后得到的小数乘以欲近似的小数的分母,比如0.716 ×1000 = 716。

3.将得到的积除以小数原来的分母,比如716/100=7.16。

4.把积的分子分母拆分成最简分数,比如716,最简分数为71/10,则最后的近似小数结果为7.17。

二、利用百分数
百分数也可以用来近似小数,方法也很简单:
1.把小数换算成百分数,比如将0.716换算成百分数则为71.6%。

2.将取得的百分数乘以欲近似的小数的分母,比如将71.6%×1000=716。

3.将乘积的分子分母拆分成最简分数,比如716,最简分数为
71/10,故最后的近似小数结果为7.17。

三、根据经验和假设
熟悉小数的人一般都有自己的经验,也可以利用自己的经验和假设来近似小数。

比如有人可能认为0.716近似与7.2,所以可以把这个小数近似为7.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求一个小数的近似数
班级______姓名______
一、判断题。

(对的打“√”,错的打“×”)
1. 1.96保留一位小数约是
2.0。

()
2. 2和2.0相等,计数单位相同。

()
3. 8.45扩大10倍等于845缩小100倍。

()
4. 57860000000≈578.6亿()
5. 去掉小数末尾的零,小数大小不变。

()
6. 10.1小于10.0999。

()
7. 2.049精确到十分位约是2.1。

()
8. 精确到千分位,就是保留三位小数。

()
9. 3.090=3.09=3.0900 ()
10. 9.993保留两位小数是10.00。

()
二、填空题。

1. 5.82保留整数位约是()。

2. 6.995保留两位小数约是()。

3. 8.479精确到百分位约是()。

4. 578600人改成用“万人”作单位的数是()。

5. 9830000000册改成用“亿册”作单位的数是()。

6. 把50780000000 吨省略亿后面的尾数约是()亿吨。

7. 5.433精确到百分位是()。

8. 7.998精确到十分位是()。

精确到百分位是()。

三、按四舍五入法写出表中各小数的近似数。

四、把下面各数改成用“万”或“亿”作单位的数。

1. 260800=()万
2. 750000000=()亿
3. 452000=()万
4. 109000000=()亿
5. 8038000=()万
6. 35678000000=()亿
7. 78400人=()万人
8. 57000000吨=()亿吨
9. 289700元=()万元
10. 3954000000元=()亿元
拓展创新
一、在□里填上适当的数字或数。

①9.□≈10.0 ②9.□□≈9.8
③9.□□≈9.3 ④9.□6≈10.0
二、解答下列各题。

①在一个一位数前面写上1,所得的两位数是原数的3倍,原数是多少?
②一个数先扩大10000倍,再缩小100000,又扩大1000倍,这时的数正好是1。

求这个数。

③汪华带14元钱到文具店买学习用品,文具店中“英雄牌”钢笔每枝4元,数学本每本0.4元。

如果要刚好把钱用完,而且不能只买一种,该怎么办?。

相关文档
最新文档