用幂级数展开式求极限Word版
函数的幂级数展开

函数的幂级数展开幂级数具有良好性质。
如果一个函数在某一区间上能够表示成一个幂级数,将给理论研究和实际应用带来极大方便。
Taylor 级数由Taylor 公式,若函数f 在0x 的某个邻域上具有1+n 阶导数,那么在该邻域上成立)()(!)()(!2)())(()()(00)(200000x r x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= , 其中1000)1()()!1())(()(++-+-+=n n n x x n x x x f x r θ(10<<θ)为Lagrange 余项。
因此可以用多项式n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000-++-''+-'+ 来近似)(x f 。
自然会想到,增加这种多项式的次数,就可能会增加近似的精确度。
基于这种思想,若函数f 在0x 的某个邻域),(0r x O 上任意阶可导,就可以构造幂级数∑∞=-000)()(!)(n n n x x n x f , 这一幂级数称为f 在0x 点的Taylor 级数,记为~)(x f ∑∞=-000)()(!)(n n n x x n x f 。
称!)(0)(k x f a k k = ( ,2,1,0=k ) 为f 在0x 点的Taylor 系数。
特别地,当00=x 时,常称∑∞=0)(!)0(n n n x n f 为f 的Maclaurin 级数。
假设函数f 在0x 的某个邻域),(0r x O 上可表示成幂级数∑∞=-=00)()(n n n x x a x f , ),(0r x O x ∈,即∑∞=-00)(n n n x x a 在该邻域上的和函数为f (x )。
根据幂级数的逐项可导性,f 必定在),(0r x O 上任意阶可导,且对一切∈k N +,成立∑∞=--+--=k n k n n k x x a k n n n x f )()1()1()(0)( 。
函数的幂级数的展开与技巧.docx

1引言函数的幕级数展开在高等数学中有着重耍的地位,在研究泵级数的展开之 前我们务必先研究一下泰勒级数,因为泰勒级数在幕级数的展开屮有着重要的地 位。
一般情况,我们用拉格朗日余项和柯西余项来讨论幕级数的展开,几乎不用 积分型余项来讨论,今天我们的研究中就有着充分的体现。
2泰勒级数泰勒定理指出:若函数/在点兀。
的某个邻域内存在直至斤阶的连续导数,则/(x) = /(x 0) + /(x 0)(x-x 0) + /(x Q )^X这里心(兀)=。
((兀-兀)〃)称为皮亚诺型余项。
如果增加条件“/(X )有H + 1阶连续 导数”,那么心(0还可以写成三种形式(柯西余项) (积分型余项) 如果在(1)中抹去余项心(X ),那么在兀。
附近/可用(1)式中右边的多项式来近似代 替。
如果函数/在兀=兀0处有任意阶的导数,这吋称形式为:的级数为函数/在x 0的泰勒级数,对于级数(2)是否能够在X 。
附近确切地表达/, 或说/在心泰勒级数在心附近的和函数是否就是/,这是我们现在耍讨论的问 题。
下面我们先看一个例子:例1山由于函数/(%)= \ 八,心 °,(拉格朗日余项)心。
)+广(%)(-切+%(—订+・・・+匚糾 (兀一兀0)+…(2)= 广“+1)[兀+0(兀_观卄(]_0)〃 (兀_观)〔0, x = 0,在x = x0处的任何阶导数都为0,即/叫0) = 0/= 1,2,…,所以/在x = 0处的泰勒级数为:C C 0 2 . 0 “0 + 0 • X H X + -------- ------- X+…,2! nl显然,它在(- oo,+oo)上收敛,且其和函数S(X)= 0,由此看到对一切* 0都有/(X)H S(X),这说明具有任意阶导数的函数,其泰勒级数并不是都收敛于函数本身,只有lim R n (x) = 0HT8时才能够。
在实际应用上主要讨论在勺=0的展开式。
这时(2)也可以写成刑)+以乩+皿宀…+创乩"+…,1! 2! /1!称为麦克劳林级数。
第三章 幂级数展开精品文档

a0 a1(z z0 ) a2 (z z0 )2
称为双边级数。
正幂部分的收敛范围:
在 z z0
R1 圆域内收敛,收敛半径为 R1
lim k
ak ak 1
。
负幂部分的收敛范围:在 R2 Fra bibliotekz z0
圆外域内收敛,R2
lim
k
a(k 1) ak
(z 1)( z 2) z 1 z 2
1 1 z 1 1 (z 1)
当 0 z 1 1时,
f (z)
1
z 1k z 1k
z 1 k0
k 1
1
例 3. 在 z0 0 的邻域上把函数 e z 展开为级数。
1
2 i
CR1
w( ) z
d
ak
k 0
1
2 i
( z0 )k d CR1 z
ak (z z0 )k w(z) k 0
w(z) 为解析函数。
例 1. 求幂级数
1 z k 的收敛半径。
k0 k!
R lim
1 k!
lim (k 1)! lim (k 1)
2
……
f (n) (z) sin(z n )
2
f (n) (0) sin n
2
0 (1)k
n 2k n 2k 1
f (z) sin z
(1)k z 2k1 z 1 z 3 1 z 5 1 z 7
k0 (2k 1)!
【说明】
由幂级数可得一个正项级数,
幂级数展开式步骤

幂级数展开式步骤1.了解幂级数的定义:幂级数是形如∑(anxn)的无穷级数,其中an是一系列常数,称为系数,而x是变量,可以是实数或复数。
2.确定展开点:幂级数在每个展开点的收敛性可能不同。
展开点通常是函数的解析性质较好的点。
例如,面对需要展开的函数f(x),我们可以选择函数在处的泰勒级数展开点为展开点。
3.写出幂级数的通项公式:根据幂级数的定义,通项公式为anxn。
其中,an为系数,xn为基础幂函数。
例如,对于函数f(x),通项公式为an(x-a)n。
4.计算各阶导数:为了计算系数an,我们需要求函数f(x)在展开点处的各阶导数。
对f(x)求导n次后,在展开点处得到导数的值。
5.计算系数:系数an可以根据导数的值来计算。
对于幂级数的通项公式an(x-a)n,将函数在展开点处的导数代入后,可以求得系数an。
6.写出幂级数的展开式:根据上述步骤得到的系数,将其代入幂级数的通项公式,可以得到幂级数的展开式。
7.确定幂级数的收敛域:幂级数的收敛性需要进行判定。
在收敛域内,可以用幂级数近似表示原函数;而在发散域内,则不能用幂级数近似表示原函数。
8.判断边界情况:在计算幂级数展开时需要特别注意边界情况,即幂级数在展开点处是否收敛。
当幂级数在展开点处收敛时,可以得到的展开式为收敛幂级数;当幂级数在展开点处发散时,可以得到的展开式为发散幂级数。
9.验证展开式:为了验证通过幂级数展开得到的近似解,可以将幂级数代入原函数进行验证。
比较幂级数展开式与原函数,在一定范围内进行比较,以判断近似解的有效性。
10.逐步优化展开式:幂级数展开往往是一个近似表示,其精确度通常依赖于使用的级数项数。
如果通过提高级数项数可以获得更高的精确度,则可以逐步添加更多项以优化展开式。
总结:幂级数展开是一种将函数表示为无限次幂的和的方法。
展开步骤包括确定展开点、写出通项公式、计算各阶导数、计算系数、写出展开式、确定收敛域、判断边界情况、验证展开式和优化展开式等。
函数的幂级数展开式的应用

dx
2 (1)n π n0 n!
1 2
x
2n
dx
0
2 π
n0
(1)n n! (2n
1)
1 22n
1
2
1 2
ex2
dx
π0
1 π
1
1 22
3
2
4
1 5
2!
26
1 7
3!
欲使截断误差
rn
1 π
n!(2n
1 1)
n2
比较系数得: a0 0, 6a4 2a3 1
(n 1)(n 2)an (n 2)an1 0 (n 2, n 4)
可任意取值, 因是求特解, 故取 a1 a2 0,
从而得 当n > 4 时,
a3 0,
a4
1 6
an
n
1
1an1
(n
exi y ex (cos y i sin y) ex
z x i y r cos i sin r ei
第七节 第六节
作业 (6-11)
P289 2 (2) (4) (5); 3 (1) ; 4; 6 P298 1 (1); 2(2);3(1); 4(2); P329 10 (1) ; 11(1)
r2
1 ( π )5 5! 20
1 (0.2)5 1 105
120
3
sin π π 1 ( π )3 0.157080 0.000646 20 20 3! 20
函数的幂级数展开-逼近定理汇总

2
傅里叶级数由正弦函数和余弦函数构成,可以表 示为无穷级数的和,其中每一项都是正弦函数或 余弦函数的线性组合。
3
傅里叶级数的定义基于三角函数的正交性,即在 一个周期内,任何两个不同的三角函数都不会有 相同的积分。
傅里叶级数展开的几何意义
01
傅里叶级数展开的几何意义是将一个周期函数表示为一系列正 弦函数和余弦函数的叠加。
收敛性的判定主要依赖于幂级数的系数和项数, 以及自变量 (x) 的取值范围。
02 泰勒级数展开
泰勒级数定义
泰勒级数定义
对于在某点的可微函数,可以表 示为在该点的n阶导数与n阶倒数 的无穷乘积,即f(x)=f(a)+f'(a)(xa)+f''(a)(xa)^2/2!+...+f^(n)(a)(x-
收敛性的判定通常基于三角函数的性质和函数的周期性,不同的函数可能 有不同的收敛条件和收敛速度。
04 拉格朗日插值法
拉格朗日插值法定义
拉格朗日插值法是一种通过已知的离 散数据点来构造一个多项式,并利用 该多项式对未知数据进行逼近的方法 。
该方法由意大利数学家约瑟夫·拉格朗 日于18世纪提出,是数值逼近理论中 的重要工具之一。
牛顿插值法的收敛性
牛顿插值法的收敛性是指当插值节点增加时,插值多项式的逼近效果会越来越好。具体来说,如果函 数在插值节点上取值的极限存在,则当插值节点趋于无穷时,插值多项式的极限就是该函数的极限。
然而,如果函数在插值节点上取值的极限不存在,则插值多项式的极限也不存在,此时插值多项式无 法逼近该函数。因此,在使用牛顿插值法时需要注意函数的性质和取值情况。
THANKS FOR WATCHING
感谢您的观看
函数的幂级数展开式的应用

x6
2 9
x6
]
22 . 45
14
三、积分的近似计算
有些初等函数的原函数不能用初等函数 表示, 故其定积分就不能用牛顿--莱布尼茨 公式计算. 但如果这些函数在积分区间上能 能展开成幂级数, 则可利用幂级数逐项积分 性质来计算这些定积分.
7
函数的幂级数展开式的应用
例 计算 1 sin x dx 的近似值, 精确到104. 0x
在一般情况下泰勒公式比用拉格朗日估计误差的精度更好20sin函数的幂级数展开式的应用有些初等函数的原函数不能用初等函数故其定积分就不能用牛顿莱布尼茨但如果这些函数在积分区间上能表示公式计算
函数的幂级数展开式的应用
一、求极限
有些未定式的极限 可以用幂级数方法求出.
这种方法的优点是: 可以将极限过程中的主要、 次要成份表示得非常清楚.
x0 3! 5!
3! 6
1
函数的幂级数展开式的应用
由此例可看出: 在求极限时,为什么加、减项 的无穷小不能用其等价无穷小代换.
这里, sinx与其等价无穷小x相差高阶无穷小 1 x3 1 x5 .这个高阶无穷小不能与分子 的
3! 5!
第一项x 抵消,它在极限中是起作用的. 但如果将 sinx用x代换,则相当于将这个起作用的高阶无穷 小也略去了, 这显然是错误的.
解 被积函数 sin x 的原函数不能用初等函数表示.
x
由于x
=
0是
sin x
x
的可去间断点,
故定义
sin x lim sin x 1,这样被积函数在[0, 1]上 x x0 x0 x
连续. 展开sin x , 得 x
1sin
第五节函数的幂级数展开式

定理
n f ( x ) 函数 能展开成幂级数 a n x 的必要条 n0
件是 f ( x ) 在点 x 0 处有任意阶导数,且系数
f ( 0 ) f ( 0) , a2 , a0 f (0) , a1 1! 2!
f ( n ) ( 0) an n!
证略
f ( x)
( 1)
2! ( 1)( n 1) n x x ( 1, 1) n!
6
x
2
间接法求展开式: 利用已知展开式, 通过变量代 换, 四则运算, 恒等变形, 逐项求导, 逐项积分等方法, 求展开式 .
例1 将下列函数展开成 x 的幂级数.
(1) f ( x) e
n 0
f
( n)
(0) n f (0) f (0) 2 x f (0) x x n! 1! 2!
3
定理 函数 f ( x ) 能展开成幂级数
n a x n 的充分条件是 n 0
lim Rn ( x ) 0 ,
n
x D
其中 D 是幂级数
n 0
f ( n ) (0) n x 的收敛域, n!
16
n 1 ( 1) n n1 t , 5 t n 0 5
| t | 5
所以
n ( 1 ) 1 n1 ( x 1)n , 4 x n 0 5
收敛域 : x 1 5 , 即 x (4, 6) .
17
作业:P356
16: (1),(5) 17: (1)
n
解
f ( x ) ln(4 3 x x )