季节性分析方法

合集下载

季节性时间序列分析方法

季节性时间序列分析方法

第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。

本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。

本章的学习重点是季节模型的一般形式和建模。

§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。

比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。

对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。

一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。

具有周期特性的序列就称为季节性时间序列,这里S为周期长度。

注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。

但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。

启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。

定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=∇=)1(。

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。

因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。

第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。

二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。

因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。

所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法1. 引言季节性时间序列是指一系列数据在一年中呈现出周期性的模式变化,例如销售量、气温、人口等。

对于这样的时间序列数据,我们需要利用适当的方法进行分析,以便更好地了解和预测未来的趋势和模式。

本文将介绍几种常见的季节性时间序列分析方法,包括季节性平均法、季节指数法、季节性趋势法以及季节分解法。

2. 季节性平均法季节性平均法是一种简单直观的方法,它将每个季节中的数据取平均值,然后用这些季节性平均值来表示整个时间序列的趋势。

具体步骤如下:1.收集时间序列数据,将数据按照季节分组。

2.对每个季节的数据进行平均计算,得到季节性平均值。

3.用季节性平均值来表示整个时间序列的趋势。

季节性平均法的优点是简单易操作,缺点是无法考虑趋势的变化和异常值的影响。

3. 季节指数法季节指数法是一种常用的季节性时间序列分析方法,它通过计算每个季节的指数来表示季节性的影响。

具体步骤如下:1.收集时间序列数据,将数据按照季节分组。

2.对每个季节的数据计算平均值。

3.计算每个季节的指数,即该季节的平均值除以整个时间序列的平均值,并乘以一个常数,通常取100。

4.用季节指数来表示整个时间序列的趋势,可以通过季节指数与相应季节的实际数据相乘得到预测值。

季节指数法的优点是能够较好地考虑季节性的影响,缺点是对于季节性的变化不敏感。

4. 季节性趋势法季节性趋势法是一种综合考虑趋势和季节性的时间序列分析方法,它通过拟合趋势曲线和季节指数来预测未来的趋势。

具体步骤如下:1.收集时间序列数据,将数据按照季节分组。

2.对每个季节的数据计算平均值。

3.计算季节指数,同季节指数法中的步骤。

4.拟合趋势曲线,可以使用线性回归、移动平均等方法。

5.将趋势曲线与季节指数相乘,得到预测值。

季节性趋势法的优点是能够较好地处理季节性和趋势的影响,缺点是计算比较复杂,对于异常值的影响较大。

5. 季节分解法季节分解法是一种常用的季节性时间序列分析方法,它将整个时间序列分解为趋势、季节性和随机成分三个部分,对每个部分进行分析和预测。

统计学中的季节性调整与趋势分析方法

统计学中的季节性调整与趋势分析方法

统计学中的季节性调整与趋势分析方法统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。

在经济学、市场研究、气象学等领域,统计学的季节性调整与趋势分析方法被广泛应用,以帮助人们更好地理解和预测数据的变化趋势。

一、季节性调整季节性调整是指在一定时间范围内,数据呈现出周期性变化的现象。

例如,零售业的销售额在圣诞节和其他假日季节通常会有较大的增长,而在其他时间则相对较低。

季节性调整的目的是消除这种周期性变化的影响,以便更准确地分析趋势。

常用的季节性调整方法包括移动平均法和X-12-ARIMA法。

移动平均法是通过计算一定时间段内的平均值来平滑数据,以消除季节性变化的影响。

X-12-ARIMA法则是一种更复杂的季节性调整方法,它结合了自回归移动平均模型和季节性分解模型,能够更准确地预测和调整季节性变化。

二、趋势分析趋势分析是指通过对数据的长期变化进行分析,预测未来的趋势。

在经济学中,趋势分析可以帮助人们预测市场的发展趋势,从而做出相应的决策。

在气象学中,趋势分析可以帮助人们预测气候变化,制定相应的防灾减灾措施。

常用的趋势分析方法包括线性回归分析和指数平滑法。

线性回归分析是通过建立一个线性模型来描述数据的趋势变化,从而预测未来的趋势。

指数平滑法则是一种基于加权平均的方法,它对历史数据进行加权平均,以预测未来的趋势。

三、季节性调整与趋势分析的应用季节性调整与趋势分析方法在各个领域都有广泛的应用。

在经济学中,它们可以帮助人们预测市场的发展趋势,制定相应的投资策略。

在市场研究中,它们可以帮助人们了解消费者的购买习惯和偏好,从而优化产品和营销策略。

在气象学中,它们可以帮助人们预测气候变化,制定相应的防灾减灾措施。

例如,在零售业中,季节性调整与趋势分析方法可以帮助零售商了解产品销售的季节性变化和趋势,从而合理安排库存和促销活动。

在气象学中,季节性调整与趋势分析方法可以帮助气象学家预测气候变化,提前做好防灾减灾准备。

需求预测的方法有哪些

需求预测的方法有哪些

需求预测的方法有哪些需求预测是指利用历史数据和统计方法来预测未来市场的需求情况。

通过需求预测,企业可以更好地制定采购计划、生产计划和销售策略,降低库存成本,提高生产效率,增强市场竞争力。

需求预测的方法多种多样,可以根据具体的情况选用不同的方法来进行预测。

下面将介绍一些常见的需求预测方法。

1. 趋势分析法趋势分析法是一种常见的需求预测方法,它基于历史数据中的趋势来预测未来的需求。

这种方法适用于需求变化比较平稳的产品。

通过对历史数据进行分析,可以发现产品的需求趋势,进而预测未来的需求情况。

趋势分析法通常使用数学模型来进行预测,如线性回归、指数平滑等。

2. 季节性分析法季节性分析法是一种针对季节性需求变化的预测方法。

许多产品的销量在不同季节会有明显的变化,因此需要通过季节性分析来预测未来的需求。

这种方法通常通过对历史数据进行季节性调整,然后再进行趋势分析来预测未来的需求情况。

3. 历史法历史法是一种简单直接的需求预测方法,它基于历史数据来进行预测。

通过分析历史数据的变化情况,可以预测未来需求的趋势和规律。

历史法适用于产品需求比较稳定,且没有太多外部因素影响的情况。

4. 调查法调查法是一种通过调查受访者的意见和观点来进行需求预测的方法。

这种方法通常适用于新产品的需求预测,通过市场调查和消费者调研来获取未来需求的信息,从而进行预测。

调查法能够更加直观地了解消费者的需求,但其结果受到访调者的主观因素影响较大。

5. 场景法场景法是一种通过构建不同的市场场景来对需求进行预测的方法。

这种方法通常适用于对未来不确定性较大的市场情况进行预测。

通过构建不同的市场情景,可以对未来需求进行多种可能性的预测,进而制定相应的应对策略。

6. 统计预测法统计预测法是一种基于统计学方法进行需求预测的方法,如时间序列分析、回归分析等。

通过对历史数据进行分析和建模,可以预测未来的需求情况。

这种方法通常需要借助统计软件进行分析和建模,能够更加客观地对未来需求进行预测。

季节指数法的原理及应用

季节指数法的原理及应用

季节指数法的原理及应用1. 什么是季节指数法?季节指数法是一种时间序列分析方法,主要用于确定季节性因素对于时间序列数据的影响程度,以及进行季节性趋势的预测和调整。

它基于一种假设,即历史上的季节性变化趋势会在未来重复出现,因此可以利用历史数据来分析和预测未来的季节性变化。

2. 季节指数法的原理季节指数法的原理基于以下步骤: 1. 数据收集和整理:收集时间序列数据,以季度为单位进行整理,例如每个季度的销售额或生产数量。

2. 季节性因素的计算:计算每个季度的平均值,即该季度的数据在历史上的平均水平。

将每个季度的平均值除以整个时间序列的平均值,得到季节指数。

季节指数反映了该季度相对于整体平均的季节性因素。

3. 趋势性分析:对除去季节性因素后的数据进行趋势性分析,例如利用移动平均线或指数平滑法进行趋势性预测。

4. 季节性调整:将趋势性分析得出的预测结果乘以对应季度的季节指数,得到最终的季节性调整结果。

3. 季节指数法的应用季节指数法在实际应用中具有广泛的应用价值,以下是一些常见的应用场景:3.1 销售预测•对于某些产品或行业,销售额可能呈现明显的季节性变化。

通过季节指数法,可以分析每个季度的销售水平相对于整体销售水平的影响程度,从而预测未来季度的销售趋势,并作出相应的调整和决策。

3.2 生产计划•季节指数法可以帮助生产企业优化生产计划,根据季节性因素调整生产数量和时间,以适应季节性需求的变化。

例如,对于农产品,不同季节的需求量可能会有显著差异,通过季节指数法可以预测出不同季节的需求量,从而合理安排生产计划。

3.3 股票市场分析•季节指数法可以用于股票市场的分析,特别是对于某些行业或股票具有明显季节性特征的情况下。

通过分析季节指数,可以了解该股票或行业在不同季度的涨跌情况,从而制定更具针对性的投资策略。

3.4 旅游业规划•季节指数法在旅游业规划中也具有应用价值。

通过分析每个季度的季节指数,可以了解不同季度的旅游需求量以及旅游价格的波动情况,从而制定合理的旅游行程和价格策略,更好地满足游客的需求。

第八章 季节性时间序列分析方法

第八章 季节性时间序列分析方法

81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。

如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。

S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。

对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。

影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。

t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。

❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。

比如对于月度数据S 12比如,对于月度数据则与相关性较强。

我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。

简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。

第七章__季节性时间序列分析方法

第七章__季节性时间序列分析方法

三、季节性模型的建模方法
利用B-J建模型方法来建立季节性时间序 列模型,首先需要判明周期性,即S的取 值,然后根据自相关和偏自相关函数提 供的信息来判别模型的类型(AR、MA 和ARMA)和阶数,最后进行参数估计 和检验,具体步骤可概括如下:
第一步,对时间序列进行差分和季节差分以得到 一个平稳序列。 第二步,计算差分后序列的自相关和偏自相关函 数,选择一个暂定(尝试性的)模型。 第三步,由差分序列的适当自相关和偏自相关值 求得模型的初始估计值。并将这些估计值作为 最小二乘估计的初始值,对模型参数进行最小 二乘估计。 第四步,对估计得到的暂定模型的剩余进行适应 性检验,决定是否接受暂定模型。当模型的适 应性检验表明暂定模型不是最优模型时,可根
2.(1 B12 ) X t (1 1 B)(1 12 B12 )at
显然这个模型也是由两个模型组合而成:一个是 ( 1 B12 ) X t (1 12 B12 )et 它刻画不同年份同月的资料之间 的相关关系;另一个是 et (1 1 B)at 它表示同年不同月份 之间几乎不存在依赖关系,但受前一期扰动的影响,即时间 序列资料消除了季节因素之后适合一个MA( 1 )模型。
推而广之,季节模型的 ARMA形式 U ( B S )Wt V ( B S )et
D 或 U ( B S ) S X t V ( B S )et
(7.1.5) (7.1.6)
其中, U ( B S ) 1 u1 B S u2 B 2 S u p B pS V ( B S ) 1 v1 B S v2 B 2 S vq B qS 这里,et 是原序列消除了周期点 之间相关部分(即季节 分量)之后 的剩余序列。et 不一定独立。因为我们 仅消除了不同周期的同 一周期点上 的相关部分,作为响应 系统,除了不同周期的 同一周期点之间具有一 定相关 随机季节模型有一定的 不足,在一定程度上说 它是一个不完备的模型 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t

Tt S t I t Tt
St It
移动平均趋势剔除法
计算中心化的移动平均数
M
t
Байду номын сангаас

1
(
1
12 2
y t 6 y t 5 y t 1 y t y t 1 y t 5
1 2
y t6 )
M
t
Tt
( t 7 , 8, )
时间序列分析模型
加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
Y T

T S I T
S I
时间序列的分解分析
分解步骤:
① 分析和测定现象变动的长期趋势,求趋势值T。 ② 对时间序列进行调整,即减去或除以T,得出丌包含趋势 变动的时间序列资料。 乘法模型:
Y T T S I T S I
yt M
t

Tt S t I t Tt
St It
平均数趋势整理法
建立趋势预测模型
分别为新原点(7月份)的月趋势值和每月增量 利用此月趋势直线模型求原点年各月份的趋势值 T i
a 0 , b0
求季节指数
先计算同月平均数不原点年该月的趋势值的比值 再消除随机干扰,经过修正后可得到季节指数 F i
yt M
t

Tt S t I t Tt
St It
平均数趋势整理法
求各年的月平均
1 y (1 ) = y(2) = . 1 y(N ) = 12 ( y 12 N -11 + y 12 N -10 + ...... + y 12 N ) 12 1 12 ( y 13 + y 14 + ...... + y 24 ) ( y 1 + y 2 + ...... + y 12 )
钢铁价格
时间序列是将某一统计指标在各个丌同时间上的数 值按时间先后顺序编制所形成的序列
1997-2010年钢铁价格
时间序列的概念
时间序列的构成因素
趋势变动(T): 时间序列在较长持续期内展现出来的总态势 。 季节变动(S): 时间序列随季节更替而呈现的周期性变动 。 循环变动(C): 时间序列中出现以若干年为周期、上升不下降 交替出现的循环往复运动。 随机变动(I): 时间序列由于偶然性因素的影响而表现出的丌 规则波动 。
yt M
t

Tt S t I t Tt
St It
平均数趋势整理法
建立趋势预测模型
根据年的月平均数,建立年趋势直线模型:
ˆ T t = a + bt
其中t是以年为单位
用最小平方法估计参数a,b,幵取序列{ y }的中点年为时 间原点.再把此模型转变为月趋势直线模型
(t )
Tˆt = a 0 + b 0 t b a0 = a + 24 , b0 = b 12
求k个周期中时期j的平均数
y
j

1 k
k

i 1
y
ij
( j 1, 2 , N )
yj T Sj
( j 1, 2 , N )
求时间序列的总平均数
y 1 N
N

j 1
y
j

1 N
N

j 1
TS
j
y

T
计算季节指数
y y
j

T S T
j

S
j
直接平均法
yt M
平均数趋势整理法
求各年同月的平均数
1 r1 = N 1 r2 = N . . 1 r 12 = N ( y 12 + y 24 + ...... + y 12 - N ) ( y 2 + y 14 + ...... + y 12 N -10 ) ( y 1 + y 13 + ...... + y 12 N -11 )
直接平均法
设时间序列包含k个季节变动周期 设每一季节变动周期有N个时点
y 11 y 21 y i1 y k1 y 12 y 22 y i2 yk2 y1j y2 y ij
j
y1N y2N y iN y kN

y kj
直接平均法
季节性分析方法
元/吨
7000 6000 5000 4000 3000 2000 1000 0
1997年01月 1997年07月 1998年01月 1998年07月 1999年01月 1999年07月 2000年01月 2000年07月 2001年01月 2001年07月 2002年01月 2002年07月 2003年01月 2003年07月 2004年01月 2004年07月 2005年01月 2005年07月 2006年01月 2006年07月 2007年01月 2007年07月 2008年01月 2008年07月 2009年01月 2009年07月 2010年01月 2010年07月
计算季节比率及其平均数
y M
t t

Tt S
t
It
S
Tt
t
It
计算季节指数
yt M
t

Tt S t I t Tt
St It
移动平均趋势剔除法
移动平均季节指数
1.04
季节指数
1.02 1 0.98 0.96 0.94 1 2 3 4 5 6 7 8 9 10 11 12
加法模型: ③ 对第2步骤的结果作进一步的分析,消除随机变动的影响, 得出季节变动测定值S
时间序列分解分析的作用
分析和测定有关构成因素的数量表现 将所测定出的某一构成因素数值从时间序列中分离 出去,便于分析序列中其他因素的变动规律。 为时间序列的预测奠定基础。预测程序正好不分解 程序相反。
ri fi Ti
yt M
t

Tt S t I t Tt
St It
平均数趋势整理法
平均数趋势整理季节指数
1.06 1.04 1.02 1.00 0.98 0.96 0.94 0.92 1 2 3 4 5 6 7 8 9 10 11 12
季节指数
同月平均数与季节指数对比
元/吨 3400 3350 3300 3250 3200 3150 3100 3050 3000 1 2 3 4 5 6 7 8 9 10 11 12 1.00 0.98 0.96 同月平均 季节指数 1.06 1.04 1.02
同月平均数与季节指数对比
元/吨 1.04 1.02 1 0.98 0.96 1 2 3 4 5 6 7 8 9 10 11 12 季节指数 同月平均 3400 3350 3300 3250 3200 3150 3100 3050 3000
yt M
t

Tt S t I t Tt
St It
yt M
t

Tt S t I t Tt
St It
预测情况
元/吨 5000 4800 4600 4400 4200 4000 1 2 3 4 5 6 7 8 9
平均数趋势整理预测值
2011预测值 2011实际值
移动平均趋势预测值
元/吨 4900 4800 4700 4600 4500 4400 4300 4200 1 2 3 4 5 6 7 8 9 2011年实际值 2011年预测值
相关文档
最新文档