压铸工艺及压铸模具设计重点
压铸工艺与模具设计

压铸工艺与模具设计压铸是一种常见的金属成型工艺,通过将熔融金属注入到预先设计的模具中,经过冷却与固化,得到所需形状的金属制品。
压铸工艺具有高效、精度高、生产周期短等优点,广泛应用于汽车、机械、电子等领域。
而模具设计是实现压铸工艺的关键环节,决定了产品的质量和生产效率。
下面将从压铸工艺和模具设计两个方面进行详细阐述。
一、压铸工艺1.压铸工艺流程:首先,将金属加热至熔点,并注入到模具中;然后,通过高压注射机构,将熔融金属迅速注入模具中,并保持一段时间;待金属冷却并固化后,打开模具,取出成品。
2.压铸工艺特点:①高效、精度高:压铸通过模具的高速填充和快速冷却,能够实现高效率、高精度的生产;②生产周期短:相比其他金属成型工艺,压铸生产周期较短,适用于大批量生产;③生产成本低:压铸可以实现自动化生产,减少人工成本;④可复杂成型:压铸可以实现复杂形状、薄壁、高强度的金属制品成型。
二、模具设计模具设计是实现压铸工艺的关键环节,影响产品的质量和生产效率的重要因素。
以下是模具设计的主要考虑因素:1.模具材料选择:模具材料要具有耐磨性、耐腐蚀性、热传导性和高温强度,常用的模具材料包括铸钢、合金钢等。
2.模具结构设计:模具结构设计要考虑产品的形状、尺寸及要求,尽可能减少产品缺陷和铸件结构应力,提高生产效率和产品质量。
3.模具冷却系统设计:模具冷却系统的设计直接影响到成品的质量和生产效率。
合理的冷却系统设计可以加快铸件凝固速度,减少缺陷的产生。
4.模具排气系统设计:排气系统的设计对于排除铸件中的气体孔洞和缺陷非常重要,合理的排气系统设计能够提高产品质量。
5.模具表面处理:模具表面处理可以提高成品的表面质量和延长模具寿命,常见的表面处理方式包括硬镀铬、熔融硬化、电镀等。
总结:综上所述,压铸工艺与模具设计是密切相关的。
压铸工艺具有高效、精度高、生产周期短等优点,模具设计是实现压铸工艺的关键环节,包括模具材料选择、模具结构设计、模具冷却系统设计、模具排气系统设计和模具表面处理。
压铸模设计要点及压铸工艺

压铸模设计要点及压铸工艺压铸模设计要点及压铸工艺金属液在通过浇口时,其填充方式可分为层流式填充、喷射流填充、雾化流填充三种方式。
当浇口速度较低时,填充方式显层流的状态;当速度增加,金属液不再是连续流出,而是呈粗颗粒状喷出;当速度更高时,水则会呈雾状的细微颗粒喷出。
采用层流填充或雾状流填充均可产生令人满意的铸件,粗颗粒流填充因在填充过程中热量损失多而填充不好。
一般而言,浇口愈薄,浇口速度愈高才能达到雾化流的状态金属液进入型腔的流动状态是由流道和内浇口的形式决定的。
目前使用较多的流道形式有扇形流道和锥形流道两种。
浇注系统由直浇道,横浇道和内浇道等三部份组成。
扇形流道较适合于内浇口长度较短的产品,锥形流道适合于内浇口长度较长的产品。
不管是扇形流道还是锥形流道,从流道开始到内浇口其截面积应该逐渐缩小,才能保证控制合金液的流态,并防止气体卷入浇注系统;横浇道应具有一定的长度,可对金属液起到稳流和导向作用压铸模设计要点:一、模架1.外表面要求光亮平整,前后模框加2个打出孔,注意要加在没有镶件的位置,防止零件掉出来。
2.为了防止模板变形,起码做2个支撑柱,一个放在分流锥,一个放在分流锥的上面,注意不要与其他零件干涉。
3.模具底板要做通,便于散热。
4.定位圈内孔表面要求内圆磨后氮化,并沿出模方向抛光。
5.定位圈表面的冷却环底部到分流锥表面的长度一般等于料饼厚度。
固定此冷却环的方式有2种:烧焊和加热压入。
6.分流锥一定要做运水来冷却,且离分流锥表面25-30mm.7.模架四个导柱孔要做撬模槽,深度8-10mm。
8.模架一定要调质处理的,最好是锻打的模架。
二、内模,镶件1. 加工后热处理前做去应力处理。
一般铝合金淬火HRC45+/-1°C,锌合金淬火HRC46+/-1-1°C2.内模的配合公差:一般做到小于模框0.05-0.08mm左右,可以用吊环轻松取出放入模框。
顶针配合公差:大于等于8mm的顶针间隙0.05mm,小于等于6mm的顶针间隙0.025mm。
压铸成型工艺与模具设计

压铸成型工艺与模具设计一、引言压铸成型工艺是一种常见的金属零件制造方法,它通过将熔融金属注入模具中,经过冷却凝固后获得所需形状的零件。
模具设计是压铸成型工艺的关键环节,合理的模具设计可以保证产品质量和生产效率。
本文将介绍压铸成型工艺的基本原理以及模具设计的要点。
二、压铸成型工艺原理压铸成型工艺是将金属材料加热至液态,然后通过高压将熔融金属注入模具中,待冷却后获得所需形状的零件。
压铸成型工艺具有以下特点:1. 精度高:压铸成型工艺可以制造出形状复杂、尺寸精确的零件,满足不同行业的需求。
2. 生产效率高:压铸成型工艺具有高度自动化的特点,可以实现连续生产,提高生产效率。
3. 材料利用率高:压铸成型工艺可以减少废料产生,提高材料利用率。
4. 表面质量好:压铸成型工艺可以制造出光滑平整的表面,减少后续加工工序。
三、模具设计要点1. 材料选择:模具的材料应具有良好的热导性和耐磨性,常用的材料有冷作工具钢、热作工具钢和硬质合金等。
根据零件的要求,选择合适的模具材料。
2. 模具结构设计:模具的结构设计应考虑到零件的形状、尺寸和工艺要求,确保零件的成型质量。
模具的结构主要包括模腔、模芯、导向机构和冷却系统等。
3. 浇注系统设计:浇注系统的设计直接影响到熔融金属的流动和充填情况,应合理布置浇口、冲压头和溢流槽等。
同时,应考虑熔融金属的冷却和凝固过程,避免产生缺陷。
4. 铸件脱模设计:铸件脱模设计应考虑到零件的形状、表面质量和模具的结构,以确保零件的完整性和光洁度。
可以采用顶出机构、斜顶和分模等方式来实现铸件的脱模。
5. 冷却系统设计:冷却系统的设计对于模具寿命和零件质量有着重要影响。
应根据零件的形状和厚度,在模具中设置合适的冷却水路,以加快冷却速度,避免产生缺陷。
6. 模具加工工艺:模具的加工工艺应选用适当的加工方法和工艺参数,以确保模具的精度和表面质量。
常用的加工方法包括数控加工、电火花加工和线切割等。
7. 模具试模调试:模具制造完成后,需要进行试模调试,以验证模具的性能和调整工艺参数。
压铸成形工艺与模具设计

压铸成形工艺与模具设计压铸成形是一种常用的金属成形工艺,它通过将熔融金属注入模具中,经过冷却固化后得到所需的零件形状。
压铸成形工艺具有高精度、高生产效率和可自动化的特点,广泛应用于汽车、电子、家电等领域。
本文将介绍压铸成形工艺的基本步骤以及模具设计的要点。
压铸成形的基本步骤包括模具设计、模具制造、材料准备、操作调试、生产、清洁保养等。
其中,模具设计是整个过程中非常关键的一步。
模具设计的好坏直接影响到成品的质量和生产效率。
模具设计的要点包括以下几个方面:1.零件形状的设计:零件形状应符合成形工艺的要求,避免出现浇注不良、缩松、气泡等缺陷。
同时,还要考虑到零件的结构强度和使用功能。
2.模具结构设计:模具结构应具有足够的刚度和稳定性,能够承受来自注射压力和冷却介质的力。
另外,模具的排气和冷却系统也需要进行合理设计。
3.浇注系统设计:浇注系统包括浇注口、溢流道和冷却孔等。
这些部件的设计应能够实现均匀的材料充填和快速的冷却。
浇注口的位置和大小、溢流道的宽度和长度、冷却孔的分布和尺寸等都需要经过计算和优化。
4.模具材料的选择:模具材料应具有足够的强度和耐磨性,能够承受高温和高压的作用。
常用的模具材料有工具钢、硬质合金和热作钢等。
5.模具制造工艺:模具的制造工艺包括数控加工、电火花加工、抛光等。
这些工艺的选择和操作要符合模具设计的要求,确保模具质量和寿命。
总之,压铸成形工艺与模具设计是密不可分的,模具设计的好坏直接影响到产品的质量和生产效率。
要设计出性能良好的模具,需要综合考虑零件形状、模具结构、浇注系统、材料选择和制造工艺等方面的因素。
只有不断优化和改进,才能满足不同产品的要求,推动压铸成形工艺的发展。
压铸模具设计基础知识

熱室壓鑄鋅合金中的合金元素
---雜質元素-鐵
鋅合金中鐵元素含不能>0.02%,鐵 元素可:
☺ 增加合金的硬度
但同時
增加合金的脆性
和合金中的鋁發生反應形成Al5Fe2金屬間化合物, 造成鋁元素的損耗並形成浮渣
在壓鑄件中出現硬點
2024/2/1
压铸模具设计基础知识
五.壓鑄合金及其性能
熱室壓鑄鋅合金中的合金元素 ---雜質元素-硅
t1:F1為克服磨擦力(壓室中)
壓
t2:開始進入型腔﹐因澆口急減﹐阻力 力
F
增大﹐F2>F1,達到高速充填
t3:(快速增壓階段)快速充填直止充滿
型腔最大值F3為壓射壓力
t4:F4靜壓力﹐對鑄件壓實
時間t
(壓射力與時間關係曲線見右圖)
2024/2/1
压铸模具设计基础知识
六.壓鑄工藝
定義2﹕壓射壓力就是在充模剛結束時壓射沖頭作用在金屬液面上的力。 定義3﹕壓射壓力是以壓射比壓來表示﹐壓射比壓就是充模結束時﹐壓射
沖頭作用于單位面積金屬液面上的壓力。
P ﹕壓射比壓( Pa ) P= F 4F F: 壓射壓力(N)
A πd 2 d ﹕壓室直徑 (m) A﹕沖頭截面積( m 2 )
壓射比壓與壓射壓力成正比﹐與壓射沖頭的截面積成反比。
鋅合金的 壓射比壓
壁厚 =<3mm 30MPa 簡單 40MPa 復雜
壁厚 >3mm 50MPa 簡單 60MPa 復雜
有害雜質元素:鐵(Fe),硅(Si),鉛(Pb),鎘(Gd),錫(Sn)
來源於鋁
來源於鋅
2024/2/1
压铸模具设计基础知识
五.壓鑄合金及其性能
2024/2/1
压铸工艺及压铸模具设计要点

压铸工艺及压铸模具设计要点压铸工艺及压铸模具设计要点压铸是一种利用压力将液态金属注入模具中,通过冷却凝固形成定形零件的制造方法。
压铸产品在重量、强度、尺寸方面都有非常高的准确性和稳定性,被广泛应用于汽车、摩托车、电子、通讯设备、家电等产业中,成为目前工业生产中不可或缺的一种制造技术。
下面将从压铸工艺及压铸模具设计要点两个方面进行阐述。
一、压铸工艺1. 材料准备:首先需要准备液态金属,一般使用的是微量合金钢、铝合金、镁合金、铜合金等牌号。
材料的纯度、质量直接影响产品的质量。
2. 模具设计:由于压铸的成形过程主要依靠模具的形状和大小,所以模具设计非常重要。
模具一般由流道、高压室、模腔等主要部分组成,需要用CAD 设计软件绘制出预想的产品三维模型,然后进行分析预测。
3. 夹具安装:很多压铸厂家采用自动化流水线作业,这样可以让夹具自动加载模具。
夹具的准确安装和保持最佳状态对产品稳定的尺寸和质量有着至关重要的作用。
4. 液态金属注入:注入过程需要注意金属温度的控制,因为如果注入过热的金属会造成热缩,也会加快金属与模具接触面损耗的速度。
注入金属的速度和压力也需要掌握恰当的水平。
5. 压力保持和冷却:完成注入后,需要将模具保持一定的压力,通常设置的保持时间在15-20秒之间,直到金属凝固成型,然后通过水冷却或空气冷却来加速金属的冷却,降低模腔温度,以便后续顺利脱模。
6. 脱模:经过强制冷却后,模具表面的金属固化成型,可以脱模取出。
如果模具内存在脱模困难的产品,则采用震动或喷水技术来辅助脱模。
二、压铸模具设计要点1. 模具材料:模具材料的决定因素是金属的特性和成本。
有些材料具有良好的抗磨损性和耐腐蚀能力,例如CrMoV 钢,有些材料则具有良好的导热性和导电性能,例如铝合金。
选用模具材料需要考虑两方面因素:一、材料的使用寿命;二、成本。
2. 模具结构:模具结构需要考虑到成品的尺寸、线条、强度和表面质量等因素。
通常情况下,模具结构应该是四侧对称的,以确保在生产过程中的稳定性和成品准确性。
压铸工艺流程中的模具设计要点

压铸工艺流程中的模具设计要点压铸是一种常用的金属加工工艺,通过将熔融金属注入模具中,并在固化后取出成型件。
模具设计是整个压铸工艺中的关键环节,决定了成型件的质量和生产效率。
本文将从模具结构设计、材料选择和加工工艺三个方面讨论压铸工艺流程中的模具设计要点。
一、模具结构设计要点1. 合理选择模具结构模具结构的设计应根据产品的形状、尺寸和压铸工艺要求进行合理选择。
一般常见的模具结构包括单腔、多腔、合模和分模等。
对于形状复杂的产品,可以采用多腔结构来提高生产效率。
对于尺寸较大的产品,可以考虑采用合模结构来减少模具成本。
2. 考虑产品的冷却和顶针装置在模具设计中,需要考虑产品的冷却和顶针装置。
冷却系统的设计应能够有效地排除熔融金属的热量,以确保成型件的质量。
顶针装置的设计应满足产品的要求,并保证顶针在压铸过程中的精确位置。
3. 设计合理的浇口和溢流槽浇口和溢流槽是模具设计中的重要组成部分。
设计浇口时应考虑熔融金属的流动性和冷却速度,并确保浇口与产品的结合处处于合适的位置。
溢流槽的设计应考虑金属液体的顺利流动,以避免产生气体和杂质。
二、材料选择要点1. 选择耐磨耐热的材料模具在压铸过程中需要承受高温和高压的作用,因此材料的选择至关重要。
一般采用耐磨耐热的工具钢或合金钢作为模具材料,以保证模具的使用寿命和成型件的质量。
此外,还应考虑材料的加工性能和可靠性。
2. 考虑材料的强度和刚性模具的结构设计需要兼顾材料的强度和刚性。
材料的强度直接影响到模具的承载能力,而刚性则影响到模具的稳定性和精度。
因此,在模具设计中应根据产品的要求选择合适的材料,并进行合理的加工和热处理,以提高模具的性能。
三、加工工艺要点1. 精确计算和控制成型参数在压铸工艺中,成型参数的精确计算和控制是保证成型件质量和加工效率的关键。
成型参数包括注射速度、压力、温度和冷却时间等。
合理选择和控制这些参数,可以避免产生缺陷和变形,提高成型件的精度和表面质量。
压铸工艺及压铸模具设计要点

压铸工艺及压铸模具设计要点摘要:压铸机、模具与合金三者,以压铸件为本,压铸工艺贯穿其中,有机地将它们整合为一个有效的系统,使压铸机与模具得到良好的匹配,起到优化压铸件结构,优选压铸机、优化压铸模设计、提高工艺工作点的灵活性的作用,从而为压铸生产提供可靠保证。
所以,压铸工艺寓于模具中之说,内涵之深不言而喻。
关键词:压铸机;模具;压铸工艺;模具设计The Main Points of Die Casting Process andDie Casting Die DesignPAN Xian-Zeng, LIU Xing-fuAbstract: The die casting machine, die and alloy, the three on the basis of die castings, running through with the die casting process forms organically a whole and an effective system. Making the machines well to mate with dies, optimization of die casting construction, optimization of selecting die casting machine, optimization of die design and improving the flexibility of die casting process conveys in the die, this has a profound intension.Key words: die casting machine; die; die casting process; die design1 压铸机—模具—合金系统压铸机、模具和合金这三个因素,在压铸件生产过程中,它们构成了一个系统,即压铸机-模具—合金系统,它是以压铸件为本,工艺贯穿其中,赋予系统活力与效率,而模具则是工艺进入系统的平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压铸工艺及压铸模具设计要点摘要:压铸机、模具与合金三者,以压铸件为本,压铸工艺贯穿其中,有机地将它们整合为一个有效的系统,使压铸机与模具得到良好的匹配,起到优化压铸件结构,优选压铸机、优化压铸模设计、提高工艺工作点的灵活性的作用,从而为压铸生产提供可靠保证。
因此,压铸工艺寓于模具中之讲,内涵之深不言而喻。
关键词:压铸机;模具;压铸工艺;模具设计The Main Points of Die Casting Process andDie Casting Die DesignPAN Xian-Zeng, LIU Xing-fuAbstract: The die casting machine, die and alloy, the threeon the basis of die castings, running through with the die casting process forms organically a whole and an effective system. Making the machines well to mate with dies, optimization of die casting construction, optimization of selecting die casting machine, optimization of die design and improving the flexibility of die casting process conveys in the die, this has a profound intension.Key words: die casting machine; die; die casting process; die design1 压铸机—模具—合金系统压铸机、模具和合金这三个因素,在压铸件生产过程中,它们构成了一个系统,即压铸机-模具—合金系统,它是以压铸件为本,工艺贯穿其中,给予系统活力与效率,而模具则是工艺进入系统的平台。
压铸机、模具与合金三者关系形象地表示如图1所示。
压铸机-模具-合金系统要紧表现为:(1) 内浇口的位置阻碍充填金属熔体的流淌方向及状态,和充填型腔的质量,对模具结构和工艺产生决定性阻碍,这是关键所在。
(2) 选定最佳充型时刻,这是特不重要的一步,阻碍到充型时的金属熔体的体积流量(Q),也确实是充型功率,并据此计算内浇口尺寸。
(3) 选择排气、溢流的位置和尺寸,除正常的排气、排污和温度平衡外,还可减少冲击压力,幸免金属飞溅和产生毛刺。
(4) 加热与冷却,平衡模具温度,保持工作温度。
2 压铸工艺与模具设计的关键技术压铸时内浇口的位置阻碍压铸件的结构设计、质量和压铸模具设计,通过查询资料可得到正确设置内浇口位置的提示。
由于铸件结构的多样性,要选择内浇口的正确位置是专门困难的,但也有一些差不多要求,如普遍认为设置内浇口要使充型时的金属射流尽可能地以自由射流在型腔中流过较长距离,也确实是正确的内浇口位置、形状、尺寸(流向角)配合压铸参数可获得金属射流沿型壁不断有序扩展、转向,并连续不断地扩展至尽头。
型腔的大部分(即主干型腔)由射流充填完成,只有一小部分型腔(即非主干型腔)由金属熔体支流补充完成或由金属熔体股流相碰撞完成充填,并通过排溢系统排除残余。
图2为内浇位置与主干型腔示意图[1]”。
同一个压铸件选择不同的内浇口位置和流向角,能够得到不同的主干型腔、非主干型腔和各自占有的面积百分数,图2中的壳体压铸时,由于内浇口的位置不同,得出不同的主干型腔和非主干型腔。
图2a内浇口垂直于一侧壁,由于零件顶部的长方孔把两侧壁分开,结果是只有一侧为主干型腔;要充填另一侧壁,必须经浇道两端连接处,最后两股液流汇聚完成填充,这一部分确实是非主干型腔。
因主干型腔所占面积百分比不高,因此会产生大量废品,如图2a1。
在图2b中,内浇口位置不作改变,只是把顶部长方孔用等壁厚的工艺筋连接起来,如此充填时金属熔体转向,沿筋板充填另一侧壁,使两侧壁都成了主干型腔,增大了主干型腔所占百分比,铸件质量也大幅度提高,如图2b1。
在图2c 中,零件与图2a相同,顶部方孔不加工艺筋,但将内浇口设置在零件一端,如此金属熔体从两侧壁同时进行充填,从而扩大了主干型腔百分比,保证了质量,提高了合格率。
这是同一零件三种内浇口设置方案,证明内浇口位置的关键性。
尽管计算机技术有助于选定内浇口位置,但计算机技术仅是一种方法,而内浇口位置设计仍不失为一项关键技术。
3 压铸工艺要点3.1 pQ2图和压铸机的泵功率3.1.1 金属压力、速度和流量之间的关系在原理上压铸机是一台液态金属泵,它在压力下将金属熔体输送到压铸模型腔内。
泵的特性是输送功率(体积流量),是压力的函数,这方面早在70年代,首先由澳大亚CSIRO做出有价值的开发工作,用pQ2图建立了一个有用的工具,依照铸件亦即模具的要求,决定机器的调整值,本来是用于热室压铸机的锌合金压铸件上,但专门快就扩展到冷室机上。
在原则上,现在从流体力学原理所熟知的压力与体积流量的关系,转移到压铸机的实际应用。
依照伯努力方程,按照似稳流,金属流淌速度为:式中:υ为流速,m/s;p为流淌压力,N/m3(1 bas=105 N/m2=0.1 MPa);ρ为液态金属密度,kg/m3。
由式(1)可得到压铸机压射单元有两个液压系统:一个是压射蓄能器-压射驱动缸构成的液压系统;另一个是跟着那个系统随动的冲头-压室-喷嘴(热室机)-直浇道-横浇道-内浇口组成的金属液压系统(metal-hydraulic system, metallhydraulisches System)。
关于金属液压系统,内浇口速度是υa,则式(2)变为:金属压力愈高,在喷嘴及内浇口处的金属熔体的流淌速度也愈快,但也必须考虑克服由于流淌截面变化、方向改变和型壁粗糙度存在而产生的流淌阻力,用阻力系数ξ来表示这些阻力之和。
因此,金属压力可写成下式:假如已知无量钢系数ξ,就能够计算出一定内浇口速度所需的金属压力,依照压铸合金和铸件要求,内浇口速度有一经验值,应该遵守,见表1[2],因此需要压铸机提供相应的速度。
表1 内浇口速度的选取Table 1 Choice of velocity at ingate项目 A1 Mg Cu Znυa(m.s-1) 25-60 40-90 30-45 30-50低值用于相对厚的铸件,高值用于相对薄的铸件,一般镁合金铸件的内浇口速度比铝的高25%,真空压铸时的内浇口速度为15-30m/s。
金属熔体的体积流量Q是速度υa和出流面积Sa的乘积,出流面积是指浇注装置的喷嘴面积或压铸模的内浇口面积,其关系为Q=υaSa 式中:Sa为出流面积,m2。
将式(5)代入式(4)得到:公式(6)指出了金属压力和金属流量的关系;充型时,假如体积流量Q不足或液流速度υa达不到要求,就必须提高金属压力,p升高,Q、υa就会升高,即可达到充型要求。
提高压力可通过提高压射阀前蓄能器压力,也可通过调节压射系统压力调节阀(即节流阀)的开度实现。
由式(6)可知,在金属密度ρ、出流面积Sa一定时,所需金属压力p与体积流量Q的平方成正比。
为了描绘压力是体积流量的函数,在纵座标上p采纳线性分度,Q在横座标上采纳平方分度,从座标原点引出一条直线,表示相应的阻力系数ξ,并代表了相应出流面积Sa时的压力的体积流量的关系,这是通常在pQ2图中的阻力线或模具线(DL),见图3[2]。
在理想状态下,无流淌阻力,则ξ=1,阻力线对横座标比较平坦即夹角小,阻力愈大,ξ值越小,阻力线对横座越徒,夹角也愈大,见图4[2]。
3.1.2 压铸机的泵功率和机器特性线(pQ2图)一台已知压铸机它可供使用的金属压力是多高?对此存在两个简单的极限条件:(1)假如活塞(冲头)速度为零(活塞停止),也确实是充型结束时,能达到的最大金属压力(不接通增压器);(2)假如压室中无金属压射时(所谓空压射)冲头所能达到最高的速度,现在可得到最大体积流量,金属压力等于零。
两个极根条件是可确实的,参照图5[2]压铸机的压射装置示意图和下面的公式式中:p1为压射(驱动)缸中的压力,bar;ps为蓄能器压力,bar;υ0为活塞速度,m/s;υ ot max为最大活塞速度(空压射速度),m/s。
由图5和式(7)能够看出:假如υ0=0(活塞停止),则p0=ps,确实是讲压射后在压射缸中建立起全蓄能器压力;假如相反,υ0=υ ot max(空压射速度),则p1=0,也确实是压射活塞上无压力。
假如蓄能器压力和压射活塞面积已知,能够计算静金属压力pstat,它是压射终了冲头施加在金属上的压力。
(8)式中:pstar为静金属压力,bar;pa为蓄能器压力,bar;A1为压射(驱动)活塞面积,m2;A0为冲头面积。
第二个极限条件(最大体积流量)可由空压射时活塞速度求得,见公式(9)。
活塞速度和随动的冲头速度可由测量速度的传感哭(常用位置传感器)测得,见图6[3]。
式中:Qmax为空射时最大体积流量,m3/s;υ ot max为最大活塞(冲头)空压射速度,m/s;A0为冲头面积,m2。
把两个最大值pstat和Qmaxt在pQ2图的座标中用一直线相连,就得到所谓的机器特性线(ML),见图7[2];适于相应的压射活塞、冲头面积,及测量时所选调的蓄能器压力和压射阀开度。
此特性线确定了为得到所需金属体积流量,可提供的金属压力。
为了检验,在充型时期测量压力和活塞(冲头)速度以及充型时刻,冲头速度乘以冲头面积求得体积流量Q,Q在充型时期用所测得的金属压力(即所描绘的压力曲线)也可读取。
体积流量Q也可由铸件体积和充型时刻之商(或由铸件重量除以金属熔体密度和充型时刻之积)求得,那个与p和Q有关的工作点必须位于机器特性线上,机器特性线也可在不明白Qmax时,从pstat通过用金属压射时的工作点连接直线,并延长至横座标,其交点确实是Qmax。
工作点也是阻力线与机器特性线的交点,流淌阻力愈大,工作点的位置愈高,金属压力也愈高,相应的体积流量就愈小,随着内浇口截面积变小,增加了流淌阻力,阻力线走势更陡,因为对同等锁模力的机器,存在明显的压射功率的区不,对相同的压铸模也产生泵功率(也确实是可供的体积流量)相应的区不(见图8[2])。
相同锁模力的机器有专门不同的泵功率,随着锁模力升高,泵功率不一定要跟着同样增大,锁模力对已知铸件投影面积是否足够,机器是否够大,必须检验,可藉助于pQ2图使已知的机器所能提供的需要的金属输达能力得到保证。
因为压铸机特性上的工作点位置是通过机器的输出特性和已知的流淌阻力确定的,为了制造生产铸件的最佳压铸条件,对此应进行优化,这种优化是基于提供冲头最大的压射功率。