田试与生统(概率论与数理统计)xp最新习题解析实用加强版版

合集下载

概率论与数理统计 -课后习题及答案解析(下)

概率论与数理统计 -课后习题及答案解析(下)

3. x1 , x 2 , L , x 2 n 相互独立且都服从参数为 1 的指数分布, X i = min{x i , x 2 n -i +1 }
(i = 1,2,L , n) .
解: (1) P{ X i = 1, X j = 1} =
50 ´ 49 50 50 ¹ ´ = P{ X i = 1} × P{ X j = 1} , 100 ´ 99 100 100
2 2 ü ì ü ì ï ï1 æ X1 X 2 ö ï ïæ X 1 X 2 ö ÷ ç ÷ ³ = + ³ P íç + 79 . 72 P 39 . 86 ý í ý ÷ ç ÷ çX X3 ø 2 X X3 ø ï ï ï ï þ î è 3 þ îè 3 2
= P{F (1,1) ³ 39.86} = 0.10 。
(2) 由 Dç ç
æ 15S 2 2 è s
30s 4 2 2 ö 15 2 2 2 ÷ D S = = 2 ´ 15 = 30 , ( ) 30 , 得 D ( S ) = = s 。 4 ÷ s 15 15 2 ø

E ( X ) = E ( X ) = n , D( X ) =
D ( X ) 2n n = = , E ( S 2 ) = D ( X ) = 2n 。 10 10 5

ìS2 ü £ 2.041ý ,其中 S 2 是样本方差; 2 îs þ
2.求 D ( S 2 ) .
(n - 1) S 2 15S 2 2 ~ c ( n 1 ) , 得 ~ c 2 (15) , 2 2 s s
ì15S 2 ü ìS2 ü P í 2 £ 2.041ý = P í 2 £ 15 ´ 2.041ý = P{c 2 (15) £ 30.615} îs þ î s þ = 1 - P{c 2 (15) > 30.615} = 1 - 0.01 = 0.99 。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

《概率论与数理统计》课后习题及答案解析(上)

《概率论与数理统计》课后习题及答案解析(上)
|B)P(A3)P(B|A3)55 115
3P(B)
(21)221
55
三、两台机床加工同样的零件,第一台的废品率为0.03,第二台的废品率为0.02,加工
出来的零件放在一起,且已知第一台加工的零件比第二台加工的多一倍.
1.求任意取出的零件是合格品的概率.
(C)P(AUB)P(A)(D)P(AUB)P(B)
P(AB)
解:由P(A|B)1,P(B)0,可得P(A|B)1,
P(B)
即P(AB)P(B),
所以,
P(AUB)P(A)P(B)P(AB)P(A),选C.
3.设A、B互为对立事件,且P(A)0,P(B)0,则下列各式中错误的是().
(A)P(B|A)0
=1
9493929190=0.271
100 99 98 9796
解法2:设A表示“产品被拒绝出厂”=“任取五件产品中至少一件为废品”,
利用对立事件的概率公式及古典概率公式,
C5
P(A)1P(A)19410.9290.271
100
六、10名学生入围知识竞赛决赛,共有20道竞赛题,其中数学、英语、历史学科分别
2.一只箱子中共装有100件某产品,其中有8件次品,余下为正品,今从中任取出5
件,则至少有2件次品的概率为.
解:这是古典概型,从100件产品中任取5件,共有C5种可能,基本事件总数为C5,
事件A表示“至少有2个次品”,事件B表示“没有一件次品”,事件C表示“恰有一件次
品”,且B事件与C事件互斥,则ABC,所包含的基本事件数为C0C5C1C4,故
12121212
3C3C3C2C1C3C1C2C3C3C3
P(B)=P(Ai)P(B|Ai)393 983 9796

同济大学版概率论和数理统计修改版答案解析

同济大学版概率论和数理统计修改版答案解析

(D) D1 {抽到的三个产品中有 2 个合格品} 3.下列事件与事件 A B 不等价的是
D2 {抽到的三个产品中有 2 个废品}
[ C]
(A) A AB
(B) ( A B) B
ห้องสมุดไป่ตู้
(C) A B
(D) A B
4.甲、乙两人进行射击,A、B 分别表示甲、乙射中目标,则 A B 表示
[ B]
(A) P(B) P(A)
(B) P(B) (A) P(AB)
(C) P( A B)
(D) P(B) P(AB)
4.A、B 为两事件,若 P( A B) 0.8 , P( A) 0.2, P(B) 0.4 ,则
[ B]
(A) P( A B) 0.32
(B) P( A B) 0.2
解: 9 /16 3P( A) 3P2( A) ( A, B,C两两独立,且ABC=)
P(A) 1/ 4 (3/ 4舍)
5.设 P( A) P(B) P(C) 1 , P(AB) 0 , P( AC) P(BC) 1 ,则 A、B、C 全不发生的概
4
8
率为
1/2
5.设 A、B 为两个随机事件,且 0 P( A) 1, P(B) 0, P(B | A) P(B | A) ,则必有 [ C ]
(A) P( A | B) P( A | B)
(B) P( A | B) P( A | B)
(C) P(AB) P(A)P(B)
(D) P(AB) P(A)P(B)

P(ABC) 1 P(A B C)
解: P(A B C) P(A) P(B) P(C) P(AB) P(AC) P(BC) P(ABC) 3 / 4 2 / 8 0 ( ABC AB)

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。

(完整版)《概率论与数理统计》习题及答案选择题

(完整版)《概率论与数理统计》习题及答案选择题

·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”.解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销’. 选C.2.设,,A B C 是三个事件,在下列各式中,不成立的是( ).(A )()A B B A B -=;(B )()AB B A -=; (C )()A B AB ABAB -=;(D )()()()A B C A C B C -=--.解:()()()A B B AB B A B BB A B -=== ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠ B 不对()()().AB AB A B B A ABAB -=--= C 对 ∴选B.同理D 也对.3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P AB =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B.4.设(),(),()P A a P B b P AB c ===,则()P AB 等于( ).(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P AB c b =-=-=--+=-·152· ∴ 选B.5.设,A B 是两个事件,若()0P AB =,则( ).(A ),A B 互不相容; (B )AB 是不可能事件; (C )()0P A =或()0P B =; (D )AB 未必是不可能事件. 解:()0P AB AB =⇒=∅/. ∴ 选D.6.设事件,A B 满足AB =∅,则下列结论中肯定正确的是( ). (A ),A B 互不相容; (B ),A B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=. 解:,A B 相容 ∴ A 不对. ,,A B B A AB ===Φ ∴ B 错. ()0AB P AB =Φ⇒=,而()()P A P B 不一定为0 ∴ C 错. ()()()()P A B P A P AB P A -=-=. ∴ 选D. 7.设0()1,(|)(|)1P B P A B P A B <<+=,则( ) (A ),A B 互不相容; (B ),A B 互为对立; (C ),A B 不独立; (D ),A B 相互独立.解:()()()()()1()1()()()1()()1()P AB P AB P AB P A B P AB P A B P B P B P B P B P B P B -=+=+=+-- ()(1())()(1()()())()(1())P AB P B P B P A P B P AB P B P B -+--+=-⇒22()()()()()()()P B P B P AB P B P A P B P B -=+--()()()P AB P A P B ∴= ∴ 选D. 8.下列命题中,正确的是( ). (A )若()0P A =,则A 是不可能事件; (B )若()()()P A B P A P B =+,则,A B 互不相容; (C )若()()1P AB P AB -=,则()()1P A P B +=;(D )()()()P A B P A P B -=-. 解:()()()()P AB P A P B P AB =+-()()()()1P A B P AB P A P B ⇒-=+=由()0P A A =⇒=Φ/, ∴ A 、B 错.只有当A B ⊃时()()()P A B P A P B -=-,否则不对. ∴ 选C.·153·9.设,A B 为两个事件,且B A ⊂,则下列各式中正确的是( ). (A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-. 解:()()B A AB A P A B P A ⊂⇒=⇒= ∴选A.10.设,A B 是两个事件,且()(|)P A P A B ≤;(A )()(|)P A P A B =; (B )()0P B >,则有( ) (C )()(|)P A P A B ≥; (D )前三者都不一定成立.解:()(|)()P AB P A B P B =要与()P A 比较,需加条件. ∴选D. 11.设120()1,()()0P B P A P A <<>且1212(|)(|)(|)P A A B P A B P A B =+,则下列等式成立的是( ). (A )1212(|)(|)(|)P A A B P A B P A B =+; (B )1212()()()P A B A B P A B P A B =+; (C )1212()(|)(|)P A A P A B P A B =+;(D )1122()()(|)()(|)P B P A P B A P A P B A =+. 解1:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ 1212(|)0()0P A A B P A A B ⇒=⇒=12121212()()()()()()P A B A B P A B P A B P A A B P A B P A B =+-=+ ∴ 选B. 解2:由1212{|}(|)(|)P A A B P A B P A B =+ 得1212()()()()()P A B A B P A B P A B P B P B +=可见 1212()()()P A B A B P A B P A B =+∴ 选B.12.假设事件,A B 满足(|)1P B A =,则( ). (A )B 是必然事件; (B )()1P B =; (C )()0P A B -=; (D )A B ⊂.解:()(|)1()()()()0()P AB P B A P AB P A P A P AB P A ==⇒=⇒-=()0P A B ⇒-= ∴ 选C.13.设,A B 是两个事件,且,()0A B P B ⊂>,则下列选项必然成立的是( ).·154· (A )()(|)P A P A B <; (B )()(|)P A P A B ≤; (C )()(|)P A P A B >; (D )()(|)P A P A B ≥.解:()()(|)()()()A B P AB P A P A B P A P B P B ⊂====≥ ()()0()1A B P A P B P B ⊂⇒≤<< ∴选B (或者:,()()()(|)(|)A B P A P AB P B P A B P A B ⊂==≤)14.设12()0,,P B A A >互不相容,则下列各式中不一定正确的是( ). (A )12(|)0P A A B =; (B )1212(|)(|)(|)P A A B P A B P A B =+; (C )12(|)1P A A B =; (D )12(|)1P A A B =.解:1212()0P A A A A =⇐=Φ1212()(|)0()P A A B P A A B P B == A 对.121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ B 对. 121212(|)(|)1(|)P A A B P A A B P A A B ==-121(|)(|)1P A B P A B =--≠ C 错.121212(|)(|)1(|)101P A A B P A A B P A A B ==-=-= D 对.∴ 选C.15.设,,A B C 是三个相互独立的事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是( ). (A )A B 与C ; (B )AC 与C ;(C )A B -与C ; (D )AB 与C . 解:[()]()()()()(1())(1())()P AB C P ABC P A P B P C P A P B P C ===--[1(()()()())]()()()P A P B P A P B P C P A B P C =-+-= A 对.()[()]()()()()P ACC P AC C P AC CC P AC P C P AC ===+-()()()P C P AC P C =≠ AC ∴与C 不独立 ∴ 选B.16.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ).(A )A 与BC 独立; (B )AB 与AC 独立;(C )AB 与AC 独立; (D )A B 与A C 独立.·155·解:,,A B C 两两独立, ∴若,,A B C 相互独立则必有()()()()()()P ABC P A P B P C P A P BC == ∴A 与BC 独立.反之,如A 与BC 独立则()()()()()()P ABC P A P BC P A P B P C == ∴选A. 17.设,,A B C 为三个事件且,A B 相互独立,则以下结论中不正确的是( ). (A )若()1P C =,则AC 与BC 也独立; (B )若()1P C =,则A C 与B 也独立; (C )若()1P C =,则A C -与A 也独立;(D )若C B ⊂,则A 与C 也独立. 解:()()(),()1P AB P A P B P C ==∴概率为1的事件与任何事件独立AC ∴与BC 也独立. A 对. [()][()]()P AC B P A C B P AB BC ==()()()()()P AB P BC P ABC P A C P B =+-= ∴B 对.[()]()()()()P A C A P ACA P AC P A P C -===()()P A P AC =∴ C 对 ∴ 选D (也可举反例).18.一种零件的加工由两道工序组成. 第一道工序的废品率为1p ,第二道工序的废品率为2p ,则该零件加工的成品率为( ). (A )121p p --; (B )121p p -; (C )12121p p p p --+; (D )12(1)(1).p p -+- 解:设A =成品零件,i A =第i 道工序为成品 1,2.i = 11()1P A p =- 22()1P A p =-1212()()()()P A P A A P A P A ==12(1)(1)p p =-- 12121p p p p =--+ ∴ 选C.19.设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为( ).(A )44610(1)C p p -; (B )3469(1)C p p -; (C )4459(1)C p p -; (D )3369(1).C p p -解:说明前9次取得了3次成功 ∴ 第10次才取得第4次成功的概率为33634699(1)(1)C p p p C p p -=-∴ 选B.20.设随机变量X 的概率分布为(),1,2,,0kP X k b k b λ===>,则·156· ( ).(A )λ为任意正实数; (B )1b λ=+;(C )11b λ=+; (D )11b λ=-. 解:111()111k kk k k b P X K b b b λλλλλλ∞∞∞=========--∑∑∑ ∴ 11bλ=+ 选C .21.设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则下列各式正确的是( ).(A )0()1f x ≤≤; (B )()()P X x f x ==; (C )()()P X x F x ==; (D )()()P X x F x =≤. 解:()()()F x P X x P X x =≤≥= ∴ 选D. 22.下列函数可作为概率密度的是( ). (A )||(),x f x ex R -=∈; (B )21(),(1)f x x R x π=∈+; (C)22,0,()0,0;xx f x x -⎧≥=<⎩(D )1,||1,()0,|| 1.x f x x ≤⎧=⎨>⎩解:A :||0222x x x e dx e dx e dx +∞+∞+∞----∞===⎰⎰⎰∴ 错.B :211arctan []1(1)22dx x x πππππ+∞+∞-∞-∞==+=+⎰ 且 21()0(1)f x x R x π=≥∈+ ∴ 选B. 23.下列函数中,可作为某个随机变量的分布函数的是( ). (A )21()1F x x =+; (B )11()arctan 2F x x π=+; (C )1(1),0()2,0;x e x F x x -⎧->⎪=⎨⎪≤⎩·157·(D )()()x F x f t dt -∞=⎰,其中() 1.f t dt +∞-∞=⎰解:对A :0()1F x <≤,但()F x 不具有单调非减性且()0F +∞= ∴A 不是. 对B :arctan 22x ππ-≤≤∴ 0()1F x ≤≤.由arctan x 是单调非减的 ∴ ()F x 是单调非减的.11()()022F ππ-∞=+⋅-= 11()122F ππ+∞=+⋅=.()F x 具有右连续性. ∴ 选B.24.设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ).(A )32,55a b ==-; (B )22,33a b ==; (C )13,22a b =-=; (D )13,22a b ==.解:12()()()0F aF bF -∞=-∞--∞=,()1F a b +∞=-=,只有A 满足∴ 选A25.设随机变量X 的概率密度为()f x ,且()(),()f x f x F x -=是X 的分布函数,则对任意实数a 有( ). (A )0()1()a F a f x dx -=-⎰;(B )01()()2a F a f x dx -=-⎰;(C )()()F a F a -=;(D )()2()1F a F a -=-. 解:()()()()a a a F a f x dx f du f u du μ-+∞-∞+∞-==--=⎰⎰⎰()()a f x dx f x +∞-∞-∞=-⎰⎰001(()())a dx f x dx f x dx -∞=-+⎰⎰00111()()22a a f x dx f x dx =--=-⎰⎰由()2()1f x dx f x dx +∞+∞-∞==⎰⎰001()()2f x dx f x dx +∞-∞⇒==⎰⎰∴ 选B.26.设随机变量2~(1,2)X N ,其分布函数和概率密度分别为()F x 和·158· ()f x ,则对任意实数x ,下列结论中成立的是( ).(A )()1()F x F x =--; (B )()()f x f x =-; (C )(1)1(1)F x F x -=-+; (D )11122x x F F -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭. 解:2~(1,2)()X N f x ∴以1x =为对称轴对称.(1)(1)P X x P X x ∴>+=≤-即 (1)1(1)1(1)F x P X x F x -=-≤+=-+ ∴ 选C.27.设22~(,4),~(,5)X N Y N μμ,设1(4)P X p μ≤-=,2(5)P Y p μ≥+=,则( ).(A )对任意实数μ有12p p =; (B )12p p <;(C )12p p >; (D )只对μ的个别值才有12.p p =解:14(4)(1)1(1)4p P X μμμ--⎛⎫=≤-=Φ=Φ-=-Φ⎪⎝⎭25(5)1(5)11(1)5p P Y P Y μμμμ+-⎛⎫=≥+=-<+=-Φ=-Φ ⎪⎝⎭∴ 12p p = ∴ 选A (or 利用对称性)28.设2~(,)X N μσ,则随着σ的增大,概率(||)P X μσ-<的值( ).(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:1)1(2)1()1()(|)(|-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P ∴ 不随σ变 ∴ 选C.29.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数 )(y F Y 为( ).(A ))35(-y F X ; (B )3)(5-y F X ; (C )⎪⎭⎫⎝⎛+53y F X ; (D ).3)(51+y F X解:))3(51()35()()(+≤=≤-=≤=y X P y X P y Y P y F Y ⎪⎭⎫⎝⎛+=53y F X ∴ 选C.·159·30.设X 的概率密度为)1(1)(2x x f +=π,则X Y 2=的概率密度为( ). (A ))41(12y +π; (B )2)4(1y +π;(C ))4(22y +π; (D ))1(22y +π.解:⎪⎭⎫⎝⎛=≤=≤=≤=2)2()2()()(y F y X P y X P y Y P y F X Y∴ )4(2)41(121221)(22y y y f y f X Y +=+⋅=⎪⎭⎫ ⎝⎛=ππ ∴ 选C. 31.设随机变量X 与Y 相互独立,其概率分布分别为212111P X - 212111PY -则下列式子正确的是( ).(A )Y X =; (B )0)(==Y X P ;(C )21)(==Y X P ; (D )1)(==Y X P . 解:A 显然不对. )1,1()1,1()(==+-=-===Y X P Y X P Y X P2121212121)1()1()1()1(=⋅+⋅===+-=-==Y P X P Y P X P ∴ 选C.32.设)1,1(~),1,0(~N Y N X ,且X 与Y 相互独立,则( ).(A )21)0(=≤+Y X P ; (B )21)1(=≤+Y X P ; (C )21)0(=≤-Y X P ; (D )21)1(=≤-Y X P .解:)1,1(~)1,0(~N Y N X 且独立 ∴ )2,1(~N Y X +21)0()1()1(=Φ=>+=≤+Y X P Y X P ∴ 选B. 33.设随机变量2,1,412141101~=⎪⎪⎭⎫⎝⎛-i X i且满足1)0(21==X X P ,则==)(21X X P ( ).·160· (A )0; (B )1/4; (C )1/2; (D )1. 解:(2121P∴ )0()1()(212121==+-====X X P X X P X X P )1(21==+X X P0000=++= ∴ 选A.34.设随机变量X 取非负整数值,)1()(≥==n a n X P n ,且1=EX ,则a 的值为( ).(A )253+; (B )253-; (C )253±; (D )5/1.解:∑∑∑∑∞=∞=∞===-∞='-='====1111)1()(1n n n aX n aX nn n nX a X a naa naEX2)1(11a ax x a a X -='⎪⎭⎫⎝⎛-==∴ 253,013,)1(22±==+--=a a a a a ,但1<a . ∴ 253-=a . ∴ 选B. 35.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=,1,0,1,11)(4x x x x F则X 的数学期望为( ).(A )2; (B )0; (C )4/3; (D )8/3.解:⎪⎩⎪⎨⎧<≥=-114)(5x x xx f3541114144(3dx EX x dx x x x ∞∞∞-=⋅==⨯-⎰⎰34= ∴ 选C.36.已知44.1,4.2),,(~==DX EX p n B X ,则二项分布的参数为( ). (A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ; (D )1.0,24==p n .解:4.06.04.244.144.14.2=⇒=÷=⇒⎭⎬⎫====p q npq DX np EX 6=n∴ 选B.37.已知离散型随机变量X 的可能值为1,0,1321==-=x x x ,且89.0,1.0==DX EX ,则对应于321,,x x x 的概率321,,p p p 为( ).(A )5.0,1.0,4.0321===p p p ;(B )1230.1,0.1,0.5p p p ===; (C )4.0,1.0,5.0321===p p p ;(D )1230.4,0.5,0.5.p p p ===⎪⎭⎪⎬⎫+==+=⇒-=+-==312222319.0)1.0(89.0)(1.0p p EX EX EX DX p p EX 1230.40.10.5p p p ⎧=⎪⇒=⎨⎪=⎩ ∴ 选A.38.设)1,1(~),1,2(~-N Y N X ,且Y X ,独立,记623--=Y X Z ,则~Z __________.(A ))1,2(N ; (B ))1,1(N ; (C ))13,2(N ; (D ))5,1(N . 解:)1,1(~)1,2(~-N Y N X 且独立∴ 2)623(=--=Y X E EZ .949413DZ DX DY =+=+=.又独立正态变量的线性组合仍为正态变量,∴ ~(2,13)Z N ∴ 选C.39.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( ).(A )14; (B )6; (C )12; (D )4. 解:),cov(2)(Y X DY DX Y X D -+=-, 246),cov(=-=-=EXEY EXY Y X 62219)(=⨯-+=-Y X D . ∴ 选B.40.设随机变量X 的方差存在,则( ).(A )22)(EX EX =; (B )22)(EX EX ≥; (C )22)(EX EX >; (D )22)(EX EX ≤.解:0)(22≥-=EX EX DX ∴ 22)(EX EX ≥. ∴ 选D. 41.设321,,X X X 相互独立,且均服从参数为λ的泊松分布,令)(31321X X X Y ++=,则2Y 的数学期望为( ).(A )λ31; (B )2λ; (C )231λλ+; (D )λλ+231.解:321X X X 独立)(~λP )3(~)(321λP X X X ++∴λ3)()(321321=++=++X X X D X X X E3)(91)](31[321321λ=++=++X X X D X X X D 2222)(λ-=-=EY EY EY∴ 322λλ+=EY ∴选C.42.设Y X ,的方差存在,且EXEY EXY =,则( ).(A )DXDY XY D =)(; (B )DY DX Y X D +=+)(;(C )X 与Y 独立; (D )X 与Y 不独立. 解:),cov(2)(Y X DY DX Y X D ++=+DY DX EXEY EXY DY DX +=-++=)(2 ∴选B.43.若随机变量Y X ,满足)()(Y X D Y X D -=+,且0>DXDY ,则必有( ).(A )Y X ,独立; (B )Y X ,不相关; (C )0=DY ; (D )0)(=XY D .解:Y X P Y X Y X D Y X D ,00),cov()()(⇒=⇒=⇒-=+不相关. ∴ 选B.44.设Y X ,的方差存在,且不等于0,则DY DX Y X D +=+)(是YX ,( ).(A )不相关的充分条件,但不是必要条件; (B )独立的必要条件,但不是充分条件; (C )不相关的必要条件,但不是充分条件; (D )独立的充分必要条件.解:由()cov(,)00D X Y DX DY X Y X ρ+=+⇔=⇔=⇔与Y 不相关 ∴ DY DX Y X D +=+)(是不相关的充要条件. A 、C 不对. 由独立DY DX Y X D +=+⇒)(,反之不成立 ∴ 选B.45.设Y X ,的相关系数1=XY ρ,则( )(A )X 与Y 相互独立; (B )X 与Y 必不相关; (C )存在常数b a ,使1)(=+=b aX Y P ; (D )存在常数b a ,使1)(2=+=b aX Y P . 解:⇔=1||XY ρ存在b a ,使1)(=+=b aX Y P ∴ 选C.46.如果存在常数)0(,≠a b a ,使1)(=+=b aX Y P ,且+∞<<DX 0,那么Y X ,的相关系数ρ为( ).(A )1; (B )–1; (C )||1ρ=; (D )||1ρ<. 解:aDX X X a b aX X Y X ==+====),cov(),cov(),cov(1以概率 DX a DY 21以概率==== ||||),cov(1a a DX a aDX DYDX Y X XY=====⋅=以概率ρ||1ρ∴=,以概率1成立. ∴ 选C.47.设二维离散型随机变量),(Y X 的分布律为则( ).(A )Y X ,不独立; (B )Y X ,独立; (C )Y X ,不相关; (D )Y X ,独立且相关.解:1.0)0,0(===Y X P)2.01.0)(25.005.01.0()0()0(+++===Y P X P 12.03.04.0=⨯= )0()0()0,0(==≠==Y P X P Y X P ∴ X 与Y 不独立. ∴ 选A.48.设X 为连续型随机变量,方差存在,则对任意常数C 和0>ε,必有( ).(A )εε/||)|(|C X E C X P -=≥-; (B )εε/||)|(|C X E C X P -≥≥-; (C )εε/||)|(|C X E C X P -≤≥-; (D )2/)|(|εεDX C X P ≤≥-. 解:||||||(||)()()X C X C X C P X C f x dx f x dx εεεε-≥-≥--≥=≤⎰⎰||1()||X C f x dx E X C εε+∞-∞-≤=-⎰∴ 选C.49.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( ).(A )25.0≤; (B )75.0≤; (C )75.0≥; (D )25.0≥. 解:75.0431002511)10|(|2==-=-≥<-εDXEX X P ∴ 选C.50.设 ,,21X X 为独立随机变量序列,且i X 服从参数为λ的泊松分布,,2,1=i ,则( ).(A ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ;(B )当n 充分大时,∑=ni iX1近似服从标准正态分布; (C )当n 充分大时,∑=ni iX1近似服从),(λλn n N ;(D )当n 充分大时,)()(1x x XP ni iΦ≈≤∑=.解:由独立同分布中心极限定理∑∞→=⇒nn i iX1近似服从),(λλn n N∴ 选C51.设 ,,21X X 为独立随机变量序列,且均服从参数为λ的指数分布,则( ).(A ))(/lim 21x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (B ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ;(C ))(/11lim 21x x X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (D )).(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ解:λ1=i EX 21λ=i DX λnX E n i =⎪⎭⎫ ⎝⎛∑1 21λn X D n i =⎪⎭⎫ ⎝⎛∑由中心极限定理⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑∞→x n nX P n i n 21lim λλ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=∑∞→x n n X P n i n 1lim λ)(x Φ=. ∴ 选B.52.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是( ).(A )415X X +; (B )41ii Xμ=-∑;(C )σ-1X ; (D )∑=412i iX.统计量是不依赖于任何未知参数的连续函数. ∴ 选C.53.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫ ⎝⎛=n k X P ( ).(A )p ; (B )p -1;(C )k n k k n p p C --)1(; (D )k n k k n p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.54.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则( ).(A ))1(~/-n t S X ; (B ))1,0(~N X ;(C ))1(~)1(22--n S n χ; (D ))1(~-n t X n .解:∑==ni i X n X 11 0=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ )1(~)1(1)1(2222--=-∴n S n S n χ)1(~-n t n SX . ∴ A 错.∴ 选C.55.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=n i i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是( ).(A )1/1--=n S X T μ; (B )1/2--=n S X T μ;(C )nS X T /3μ-=; (D )n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS n X T μμ ∴ 选B.56.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为( ).(A )431σ; (B )451σ; (C )452σ; (D ).522σ 解:2126,,,~(,),6X X X N n μσ= ∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴ 选C.57.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量; (B )1X 是μ的极大似然估计量; (C )1X 是μ的一致(相合)估计量; (D )1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴ 选A.58.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则( ).(A )2~,X N n σμ⎛⎫ ⎪⎝⎭; (B )2S 与X 独立;(C ))1(~)1(222--n S n χσ; (D )2S 是2σ的无偏估计量. 解:已知总体X 不是正态总体 ∴(A )(B )(C )都不对.∴ 选D.59.设n X X X ,,,21 是总体),0(2σN 的样本,则( )可以作为2σ的无偏估计量.(A )∑=n i i X n 121; (B )∑=-n i i X n 1211; (C )∑=n i i X n 11; (D )∑=-ni i X n 111. 解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i∴ 选A.60.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为( )(A )},,max {1n x x ; (B )},,min{1n x x (C )|}|,|,max {|1n x x (D )|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴ )(θL 在)(n X =θ处取得极大值 |}|,|,max{|ˆ1nn X X X ==θ ∴ 选C.。

概率论与数理统计 习题答案全解

概率论与数理统计  习题答案全解

1.一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P ,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p .)1(2)1(3)1(3525151p p p -+--=2.某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只.(1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率.(3)求B A ,均拿到二级品而C 未拿到二级品的概率.解以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P (2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A 取到1只至2只二级品,其它的为一级品.于是.5441027234103713|(=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P (3).55/32)()|()(==C P C AB P C AB P 3.一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图15.3),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.1L 2L b题15.3图解“系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P )}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P ).1(2)1()1(p p p p p p -=-+-=4.甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为}{}{531 A A A P P =甲胜 +++=)()()(531A P A P A P ),(21两两不相容因 A A ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 5.将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P 因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P 以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故.36/7)(=AB P 今有).(36/7)12/7)(3/1()()(AB P B P A P ===按定义B A ,相互独立.6.B A ,两人轮流射击,每次各人射击一枪,射击的次序为 A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”.12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=-.)1(122--=n p np 注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p .)2(1])1(1[1)1(2222p pP p p --=---=(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,110<=-∑∞=x x x n n 两边求导而得到.)若两枪均由B 击中,以)1(2+n B 表示事件“B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”.)1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np .)2()1(])1(1[1)1(222222p p p p p --=---=因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp --=7.有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性.解以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和:321321321321A A A A A A A A A A A A G =因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=AB12题 15.8 图)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=.)1()1()1(321321321321p p p p p p p p p p p p +-+-+-=8.在如图15.8图所示的桥式结构电路中,第i 个继电器触点闭合的概率为i p ,.54321,,,,i =各继电器工作相互独立.求:(1)以继电器触点1是否闭合为条件,求A 到B 之间为通路的概率.(2)已知A 到B 为通路的条件下,继电器触点3是闭合的概率.解以F 表示事件“A 到B 为通路”,以i C 表示事件“继电器触点i 闭合”,.54321,,,,i =各继电器工作相互独立.(1)得.()|(()|()(1111))C P C F P C P C F P F P +=而)()|(545321C C C C C P C F P =)()()()()(54253254532C C C P C C C P C C P C C P C P --++=)()(5432543C C C C P C C C P +-543254354253254532p p p p p p p p p p p p p p p p p p +---++=)()|(432541C C C C C P C F P =543243254p p p p p p p p p -+=故),1)(|()|()(1111p C F P p C F P F P -+=其中)|(1C F P 543254354253254532p p p p p p p p p p p p p p p p p p +---++=,)|(1C F P 543243254p p p p p p p p p -+=.(2)令,1i i p q -=则)()()]([1)()()|()|(35241333F P C P C C C C P F P C P C F P F C P -==.)()1(354215241F P p q q q q q q q q +--=)(F P 的表达式由(1)确定.9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为1p ,通过课程乙的各次考试的概率为2p ,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以X 表示考生总共需考试的次数.求X 的分布律以及数学期望)(X E .解按题意知考试总共至少需考2次而最多只考4次.以i A 表示事件“课程甲在考第i 次时通过”,以i B 表示事件“课程乙在考第i 次时通过”,2,1=i .事件}2{=X 表示考试总共考2次,这一事件只在下列两种互不相容的情况下发生,一种是课程甲、乙都在第一次考试时通过.亦即11B A 发生(此时他得到证书);另一种是课程甲在第一次、第二次考试均未通过,亦即21A A 发生(此时他不准再考).故2111}2{A A B A X ==,同样211121211}3{B B A B A A B B A X ==,21212121}4{B B A A B B A A X ==.得X 的分布律为)(}2{2111A A B A P X P ==)()(2111A A P B A P +=)()()()(2111A P A P B P A P ++=)1)(1(2121p p p p --+=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}4{21212121B B A A B B A A P X P ==)(121B A A P =)1()1(211p p p --=.)1()1(4])1()1([3])1([2)(211211212121p p p p p p p p p p p X E --+-+-+-+=)]2(1)[2(211p p p -+-=.例如,若431=p ,212=p ,则有66.2)(=X E (次).10.(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第)5,4,3,2(=X X 次找到,求X 的分布规律(注:在实际上第5次检测可无需进行).(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.解(1)X 可能取的值为2,3,4,5.P X P ==}2{{第1次、第2次都取到一只次品}.1014152=⨯=P X P ==}3{{(前两次取到一只次品) (第3次取到一只次品)}=P {第3次取到一只次品|前两次取到一只次品}P ⨯{前两次取到一只次品}.102)42534352(31=⨯+⨯⨯=P X P ==}4{{(前3次取到一只次品) (第4次取到一只次品)}=P {第4次取到一只次品|前3次取到一只次品}P ⨯{前3次取到一只次品}.103)324253324253324352(21=⨯⨯+⨯⨯+⨯⨯⨯=}4{}3{}2{1}5{=-=-=-==X P X P X P X P .10/4=得分布律为(2)以Y 表示所需测试的次数,则Y 的可能取值为2,3,4..10/1}2{}2{====X P Y P }3{=Y 表示“前3次取到都是正品”或“第二只次品在第3次取到”,故}3{}3{}3{=+==X P P Y P 次取到的都是正品前.103102314253=+⨯⨯1031011}3{}2{1}4{--==-=-==X P X P X P .Y 的分布律为11.向某一目标发射炮弹设炮弹弹着点目标的距离为R (单位:10m ),R 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,252)(25/2r r er r f r R 若弹着点离目标不超过5m 时,目标被摧毁.(1)求发射一枚炮弹能摧毁目标的概率.(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹.解(1)所求概率为⎰⎰-∞-==≤525/52252)(}5{dre r dr rf R P r R .632.01|1525/2=-==--e e r(2)设发射n 枚炮弹,则这n 枚炮弹都不能摧毁目标的概率为n)632.01(-,故至少有一枚炮弹能摧毁目标的概率为n )632.01(1--.按题意需求最小的n ,使得.94.0)632.01(1≥--n 即.81.2)368.0/(ln )06.0(ln ,06.0368.0=≥≤n n 故最少需要独立发射3枚炮弹.12.设一枚深水炸弹击沉一潜水艇的概率为31,击伤的概率为21,击不中的概率为61.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:先求击不沉的概率.)解“击沉”的逆事件为事件“击不沉”,击不沉潜水艇仅出现于下述两种不相容的情况:(1)4枚深水炸弹全击不中潜水艇(这一事件记为A ),(2)一枚击伤潜水艇而另三枚击不中潜水艇(这一事件记为B ).各枚炸弹袭击效果被认为是相互独立的.故有,61)(4⎪⎭⎫⎝⎛=A P ,612114)(3⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛=B P (因击伤潜水艇的炸弹可以是4枚中的任一枚),又A ,B 是互不相容的,于是,击不沉潜艇的概率为.613)()()(4=+=B P A p B A P 因此,击沉潜艇的概率为.97989.06131)(14=-=-=B A P p 13.一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样.(1)求第1次和第3次都取到白球的概率.(提示:考虑第2次的抽取.)(2)求在第1次取到白球的条件下,前3次都取到白球的概率.解以,1A ,2A 3A 分别表示1,2,3次取到白球.(1))()()]([)(321321223131A A A P A A A P A A A A p A A P +== )()|()|()()|()|(112213112213A P A A P A A A P A P A A P A A A P +=.111124118103124113101=⨯⨯+⨯⨯=(2)124102113124)()()|(13211321⨯⨯==A P A A A P A A A A P .5531106==14.设元件的寿命T (以小时计)服从指数分布,分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(03.0t t e t F t (1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.(2)由3个独立工作的此种元件组成一个2/3][G 系统(参见第7题),求这一系统的寿命20>X 的概率.解(1)由指数分布的无记忆性(参见教材)1(第56页)知所求概率为}20{}30|50{>=>>=T P T T P p .5488.0)20(16.0==-=-e F (2)由第7题知2/3][G 系统的寿命20>X 的概率为.5730.0)23()1(3}20{232=-=+-=>p p p p p X P 15.(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX 求X 的分布函数.(2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.解(1)由于⎪⎪⎩⎪⎪⎨⎧+∞<≤<<∞-=-.0,21,0,21)(x e x e x f x xX 当0<x 时,分布函数,212121)()(|x x x xx x X X e e dx e dx x f x F ====∞-∞-∞-⎰⎰当0≥x 时,分布函数.2112121212121)()(00x x xx x x X X e e dx e dx e dx x f x F ---∞-∞--=-+=+==⎰⎰⎰故所求分布函数为⎪⎪⎩⎪⎪⎨⎧≥-<=-.0,211,021)(x e x e x F x xX (2),21)0(}0{}1{==≤=-=X F X P Y P .21211}1{1}1{=-=-=-==Y P Y P 分布律为分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤--<=.1,1,11,21,10)(y y y y F Y 16.(1)X 服从泊松分布,其分布律为,,2,1,0,!}{ ===-k k e k X P k λλ问当k 取何值时}{k X P =为最大.(2)X 服从二项分布,其分布律为.,2,1,0,)1(}{n k p p k n k X P kn k =-⎪⎪⎭⎫ ⎝⎛==-问当k 取何值时}{k X P =为最大.解(1)由λλλλ----⨯=-==ek k e k X P k X P k k 1)!1(!}1{}{⎪⎩⎪⎨⎧><===<>=,,1,,2,1,,1,,1λλλλk k k k k 当当当 知道,当λ<k 时,}{k X P =随k 增大而递增;当λ>k 时,}{k X P =随k 增大而递减.从而,若λ为正整数,则当λ=k 时,}1{}{-===λλX P X P 为概率的最大值,即当1-==λλk k 或时概率都取到最大值.若λ不是正整数,令的整数部分),是即λλ00]([k k =则,100+<<k k λ此时有},1{}{},{}1{0000+=>==<-=k X P k X P k X P k X P 因此不难推得]}[{}{0λ===X P k X P 为概率的最大值.(2)由⎪⎩⎪⎨⎧+><=+==+<>--++=---=-==,)1(,1,,2,1,)1(,1,)1(,1)1()1(1)1()1(}1{}{p n k nk p n k p n k p k k p n p k p k n k X P k X P 当当当 知道,当p n k )1(+<时,}{0k X P =随k 增大而递增;,当p n k )1(+>时,}{0k X P =随k 增大而递减.从而,若p n )1(+为正整数,则当p n k )1(+=时,}1)1({})1({-+==+=p n X P p n X P 为概率的最大值,即当1)1()1(-+=+=p n k p n k 或时概率都取到最大值.若p n )1(+不是正整数,令])1[(0p n k +=,则1)1(00+<+<k p n k ,此时有},{}1{00k X P k X P =<-=},1{}{00+=>=k X P k X P 不难推得]})1[({}{0p n X P k X P +===为概率的最大值.17..称X 服从取值为n ,,2,1 的离散型均匀分布.对于任意非负实数x ,记][x 为不超过x 的最大整数.记),1,0(~U U 证明1][+=nU X 服从取值为n ,,2,1 的离散型均匀分布.证对于,,,2,1n i =}1]{[}1]{[)(-===+==i nU P i nU P i X P .1}1{}1{nn i U n i P i nU i P =<≤-=<≤-=证毕.18.设),2,1(~-U X 求X Y =的概率密度.解X 的概率密度为⎩⎨⎧<<-=.,0,21,3/1)(其他x x f X 记X 的分布函数为).(x F X 先来求Y 的分布函数).(y F Y当0≤y 时,,0}{)(=≤=y Y P y F Y 当0>y 时,}{}{)(y X y P y X P y F Y ≤≤-=≤=).()(y F y F X X --=将)(y F Y 关于y 求导可得Y 的概率密度)(y f Y 如下:⎩⎨⎧>-+=.,0,0),()()(其他y y f y f y f X X Y 当10<<y 时,01<-<-y .因而,3/1)(,3/1)(=-=y f y f X X 此时.3/13/1)(+=y f Y 当21<<y 时,12-<-<-y .因而,0)(,3/1)(=-=y f y f X X 此时.3/1)(=y f Y 当2>y 时,,0)(,0)(=-=y f y f X X 因而.0)(=y f Y 故⎪⎩⎪⎨⎧<≤<<=.,0,21,3/1,10,3/2)(其他y y y f Y 19.设X 的概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<≤<=.1,21,10,21,0,0)(2x xx x x f X 求XY 1=的概率密度.解因函数x x g y 1)(==严格单调减少,它的反函数.1)(yy h =当∞<<x 0时,∞<<y 0.由第二章)2(公式(2.1)得Y 的概率密度为⎩⎨⎧≤∞<<'⋅=.0,0,0,)()]([y y y h y h f f X Y⎪⎩⎪⎨⎧≤∞<<⎪⎪⎭⎫ ⎝⎛=.0,0,0,112y y yy f X 因而⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<<≤=.1,1)/1(121,110,121,0,0)(222y y y y y y y f Y 即⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤≤<≤=.1,21,10,21,0,0)(2y y y y y f Y 本题X 和X1的概率密度相同.20.设随机变量X 服从以均值为λ1的指数分布.验证随机变量][X Y =服从以参数为λ--e1的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.解X 的概率密度为⎩⎨⎧>=-.,0,0,)(其他x e x f x X λλ,X 的值域为)(∞,0,故][X Y =的值域为},2,1,0{ ,Y 是离散型随机变量.对于任意非负整数y ,有}1{}]{[}{+<≤====y X y P y X P y Y P )1(1d +--+--==⎰y y y yx e e x e λλλλ 2,1,0,))(1(==--y e e y λλ-.2,1,0,))1(1)(1( =--=--y e e y λλ-这就是说Y 服从以λ--e1为参数的几何分布.这表示一个连续型随机变量经过变换变成了离散型随机变量.21.投掷一硬币直至正面出现为止,引入随机变量=X 投掷总次数.⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律.(2)求条件概率}.1|2{},1|1{====X Y P Y X P 解(1)Y 的可能值是0,1,X 的可能值是.,3,2,1 }1{}1|1{}1,1{======X P X Y P Y X P .2/12/11=⨯=(因1=X 必定首次得正面,故).1}1|1{===X Y P 若1>k ,}{}|1{}1,{k X P k X Y P Y k X P ======.0)2/1(0=⨯=k (因,1>=k X 首次得正面是不可能的,故).,3,2,0}|1{ ====k k X Y P }1{}1|0{}0,1{======X P X Y P Y X P 0)2/1(0=⨯=(因1=X 必须首次得正面,故).0}1|0{===X Y P 当1>k }{}|0{}0,{k X P k X Y P Y k X P ======,3,2),2/1(1=⨯=k k (因,1>=k X 必定首次得反面,故).1}|0{===k X Y P 综上,得),(Y X 的分布律及边缘分布律如下:(2).12/12/1}1{}1,1{}1|1{========Y P Y X P Y X P.0}1{}2,1{}1|2{=======X P Y X P X Y P 22.设随机变量),(~λπX 随机变量).2,max(X Y =试求X 和Y 的联合分布律及边缘分布律.解X 的分布律为.,2,1,0,!}{ ===-k k e k X P k λλX 的可能值是 ,2,1,0;Y 的可能值为.,4,3,2 }0{}0|2{}2,0{======X P X Y P Y X P .}0{1λ-==⋅=e X P }1{}1|2{}2,1{======X P X Y P Y X P .}1{1λλ-==⋅=e X P 2≥i 时}{}|{},{i X P i X j Y P j Y i X P ======,4,3,2,,0,,!},{0},{1=⎪⎩⎪⎨⎧≠==⎩⎨⎧≠=⋅==⋅=-j i j i j i e i j i X P i j i X P i λλ即得Y X ,的联合分布律及边缘分布律为23.设X ,Y 是相互独立的泊松随机变量,参数分别为,,21λλ求给定n Y X =+的条件下X 的条件分布.解}|{n Y X k X P =+=}{},{n Y X P n Y X k X P =+=+==}{},{n Y X P k n Y k X P =+-===独立性}{}{}{n Y X P k n Y P k X P =+-==1)(2121!)()!(!2121-+----⎦⎤⎢⎣⎡+-⋅=n e k n e k e n kn k λλλλλλλλn k n k k k n n )(!)!(!2121λλλλ+-=-.)(2122112121kn kn kn k k n k n --⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=λλλλλλλλλλ这就是说给定n Y X =+的条件下X 的条件分布为以)/(,211λλλ+n 为参数的二项分布.24.一教授将两篇论文分别交给两个打字员打印.以X ,Y 分别表示第一篇第二篇论文的印刷错误.设),(~λπX ),(~μπY X ,Y 相互独立.(1)求X ,Y 的联合分布律;(2)求两篇论文总共至多1个错误的概率.解(1)X ,Y 的联合分布律为,!!!!},{)(y x e y e x e y Y x X P y x y x μλμλμλμλ+---=⋅===.,2,1,0, =y x (2)两篇论文总共至多1个错误的概率为})1{}0({}1{=+=+=≤+Y X Y X P Y X P }1,0{}0,1{}0,0{==+==+===Y X P Y X P Y X P ).1()()()()(μλμλμλμλμλμλ++=++=+-+-+-+-e e e e 25.一等边三角形ROT (如图15.25)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1)写出随机变量),(Y X 的概率密度.(2)求点Q 的底边OT 的距离的分布密度.解(1)因三角形ROT 的面积为4/3,故),(Y X 的概率密度为⎩⎨⎧--≤≤≤≤=.,0),130,303/4),(其他x y x y y x f (2)点),(Y X Q 到底边OT 的距离就是Y ,因而求Q 到OT 的距离的分布函数,就是求),(Y X 关于Y 的边缘分布函数,现在yo题15.25图,230,32134),()(3.13/<<⎪⎪⎭⎫ ⎝⎛-==⎰-y y dx y x f y f y y Y 从而⎪⎩⎪⎨⎧<<⎪⎪⎭⎫ ⎝⎛-=.,0,230,32134)(其他y y y f Y Y 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=.23,1,230,3434,0,0)(2y y y y y y F Y 26.设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x (1)求边缘概率密度).(),(y f x f Y X (2)求条件概率密度).|(),|(||x y f y x f X Y Y X 解(1)当0>x 时,,)()(0)1(x y y xy x y x X e e e dy xe x f -∞==--∞+-===⎰当0>y 时,dx xe y y xe dx xey f y x x x y x y x Y ⎰⎰∞+-∞==+-∞+-+++-==0)1(0)1(0)1(111)(.)1(1)1(22)1(+=+-=∞==+-y y xe x x y x 故边缘概率密度分别是⎩⎨⎧>=-.,0,0,)(其他x e x f x X ⎪⎩⎪⎨⎧>+=.,0,0,)1(1)(2其他y y y f Y (2)条件概率密度:当0>x 时,⎪⎩⎪⎨⎧>=-+-.,0,0,)|()1(|取其他值y y e xe x y f xy x X Y ⎩⎨⎧>=-.,0,0,取其他值y y xe xy 当0>y 时,⎪⎩⎪⎨⎧>+=+-.,0,0,)1/(1)|(2)1(|取其他值x x y xe y x f y x Y X ⎩⎨⎧>+=+-.,0,0,)1()1(2取其他值x x e y x y x 27.设有随机变量U 和V ,它们都仅取1,1-两个值.已知,2/1}1{==U P }.1|1{3/1}1|1{-=-=====U V P U V P (1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率.(3)求x 的方程0)(2=+++++V U x V U x 至少有一个实根的概率.解(1).6/1)2/1)(3/1(}1{}1|1{}1,1{========U P U V P V U P }1{}1|1{}1,1{-=-=-==-=-=U P U V P V U P .6/1)2/1)(3/1(}]1{1[)3/1(===-⨯=U P }1{}1|1{}1,1{==-==-==U P U V P V U P .3/1)2/1)(3/2(}1{}]1|1{1[=====-=U P U V P }1{}1|1{}1,1{-=⋅-====-=U P U V P V U P .3/1)2/1()3/2(}1{}]1|1{1[=⨯=-=-=-=-=U P U V P V U ,的联合分布密度为UV-11-11/62/612/61/6xy题 15.30图(2)方程02=++V Ux x 当且仅当在042≥-=∆V U 时至少有一实根,因而所求的概率为.2/1}1{}04{}0{2=-==≥-=≥∆V P V U P P (3)方程0)(2=+++++V U x V U x 当且仅当在0)(4)(2≥+-+=∆V U V U 时至少有一实根,因而所求的概率为.6/5}1,1{}1,1{}1,1{}0{=-==+=-=+-=-==≥∆V U P V U P V U P P 28.某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律.解读者借书人数的可能值为}{}|{},{,,,2,1,0k X P k X i Y P i Y k X P X Y Y ======≤= =.,,2,1,2,1,!)1(k i k k e p p i k k i k i ==-⎪⎪⎭⎫ ⎝⎛--λλ29.设随机变量X 和Y 相互独立,且都服从U (0,1),求两变量之一至少为另一变量之值两倍的概率.解按题意知,(X,Y )在区域:}10,10|),{(<<<<=y x y x G 服从均匀分布,其概率密度为其它10,10,0,1),(<<<<⎩⎨⎧=y x y x f 所求概率为}2{}2{Y X P X Y P p >+>==⎰⎰⎰⎰+12),(),(G G dxdyy x f dxdy y x f =G 1的面积+G 2的面积=1/2,G 1,G 2见图15.29.30.一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率.解设以X ,Y 分别表示两家保险公司提出的保费.由假设X 和Y 的概率密度均为⎪⎩⎪⎨⎧<<=.,0,2220 ,21)(其他μμf 因X ,Y 相互独立,故),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<==.,0,2220 ,2220 ,41)()(),(其他y x y f x f y x f Y Xoy题15.29图按题意需求概率为}.2.0{≤-Y X P 画出区域:},2.0|),{(≤-Y X y x 以及矩形},2220 ,2220|),{(<<<<y x y x 如图15.30,它们公共部分的面积G 为G =正方形面积-2×三角形面积=4-1.8×1.8=0.76.所求概率=.19.02276.0=⨯31.设),0(~),,0(~2221σσN Y N X 且Y X ,相互独立,求概率}20{2112σσσσ<-<Y X P .解因Y X ,独立,其线性组合Y X 12σσ-仍为正态变量,而)()()(1212=-=-Y E X E Y X E σσσσ22212122122)()()(σσσσσσ=+=-Y D X D Y X D 故).2,0(~222112σσσσN Y X -因而}20{2112σσσσ<-<Y X P =}202200{222121222112σσσσσσσσ-≤--<Y X P =5.0)2()0()22(222121-=-ΦΦσσσσΦ=4207.05.09207.0=-32.NBA 篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问(1)主队胜的概率有多大?(2)在前半场主队落后5分的情况下,主队得胜的概率有多大?(3)在第1节主队赢5分得情况下,主队得胜的概率有多大?解以)4,3,2,1(=i X i 记主队在第i 节的得分与客队在第i 节的得分之差,则有),6,5.1(~N X i ).64,5.14(~41⨯⨯∑=N Xi i记Z 为标准正态随机变量.(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯->⨯⨯=>∑∑==646645.14}0{4141-i i i i X P X P.7889.0}7224.1{=->=Z P (2)由独立性}5{}5|0{432141>+=-=>∑∑==X X P X X P i i i i }33{123562343>=⎭⎬⎫⎩⎨⎧->⨯-+=Z P X X P .8281.0}5577.0{=>=Z P (3)}05{}5|0{432141>+++==>∑=X X X P X XP i i}5{432->++=X X X P ⎭⎬⎫⎩⎨⎧-->⨯-++=185.45635.4432X X X P .4987.0}239.2{}185.9{=->=->=Z P Z P 33.产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X 测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证due Z P u⎰-=>εεε202/221}{解(1)Y 的概率密度为其他.,εεε<<-⎪⎩⎪⎨⎧=y y f Y ,0,21)(故Z =X+Y 的概率密度为⎰+∞∞--=dxx z f x f z f Y X Z )()()(仅当⎩⎨⎧<-<->εεx z x 0即⎩⎨⎧+<<->εεz x z x 0时,上述积分的被积函数不等于零,参考图15.33,即得⎪⎪⎩⎪⎪⎨⎧≥<<-=⎰⎰+--+-其他,,,,0,21,21)(2212210εεεεεεεεz dx xe z dx xez f z z x z x Z题15.33图题 15.34 图=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<--+---+-其他,,,,0],[21],1[21221221221))()(εεεεεεεεz e e z ez z z (2)⎰∞=>εεdzz f Z P Z )(}{=][21221221)()(⎰⎰∞+-∞---εεεεεdz e dz e z z ε21记成[Ⅰ+Ⅱ]其中Ⅰ=⎰⎰∞-∞--=-0),221221du euz eu dz z εεε令Ⅱ=⎰⎰∞-∞+--=+-εεεε2)(221221dueuz dzez 令于是εε21}{=>Z P [Ⅰ+Ⅱ]=⎰-εε2022121dueu 34.在一化学过程中,产品中有份额X 为杂质,而在杂质中有份额Y 是有害的,而其余部分不影响产品的质量.设)5.0,0(~),1.0,0(~U Y U X ,且X 和Y 相互独立,求产品中有害杂质份额Z 的概率密度.解因,XY Z =)5.0,0(~),1.0,0(~U Y U X 且X 和Y 相互独立,于是Z 的概率密度为,d )()(1)(21-x xz f x f x z f Z ⎰+∞∞=)1(*其中,⎩⎨⎧<<=. 0,0.1,0 ,10)(1其他x x f ,⎩⎨⎧<<=.0,0.5,0 ,2)(2其他x x f 易知仅当⎩⎨⎧<<<<0.5,00.1,0z/x x 即⎩⎨⎧<<<<,200.1,0x z x 时,)1(*中的被积函数不等于零,参考题15.34图,即得⎪⎩⎪⎨⎧<<⋅⋅=⎰.0, 0.05,0 ,d 1210)(1.02其他z x xz f z ⎪⎩⎪⎨⎧<<=.0, 0.05,0 ,ln 201.02其他z x zy题 15.35 图1⎩⎨⎧<<-=.0, 0.05,0 ),20ln(20其他z z 35.设随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.0,,0,),(其他y x e y x f y (1)求),(Y X 的边缘概率密度.(2)问Y X ,是否相互独立.(3)求Y X +的概率密度).(z f Y X +(4)求条件概率密度).|(|y x f Y X (5)求条件概率}.5|3{<>Y X P (6)求条件概率}.5|3{=>Y X P 解(1)⎪⎩⎪⎨⎧>==⎰∞.0, 0,,d )(其他x e y e x f -x x -y X ⎪⎩⎪⎨⎧>==⎰.0, 0,,d )(0其他y ye x e y f -y y-y Y (2)Y X ,不是相互独立的.(3)⎰+∞∞-+-=.d ),()(y y y z f z f Y X 仅当,0y y z <-<即⎪⎩⎪⎨⎧<>>z y y zy 02时被积函数不为零.如图15.35图1,得⎪⎩⎪⎨⎧>-==⎰+.0, 0, ,d )(2/2/其他z e ey e z f -z -z zz -y Y X (4)对于,0>y ⎪⎩⎪⎨⎧<<==--. 0, ,0 ,1)|(|其他y x yye e y x f yyY X 即对于固定的)0(>y y X 的条件分布是区间),0(y 上的均匀分布.y 题 15.35 图2(5)如图15.35图2,条件概率为}5{}5,3{}5|3{<<>=<>Y P Y X P Y X P ,)d (d d 50⎰⎰⎰-=yy f xy e Y D y分子=⎰⎰⎰=5355x 53d )(-e d d exx y x-y -y,e e 3)d e (-e 35535--+-=+⎰x -x -=分母=⎰⎰=5Y5d e (y)d y y y f -y x,1e 6d e e 5550+-=+-=⎰--y -yy y 故.82030.0}5|3{=<>Y X P (6)⎪⎩⎪⎨⎧<<=. 0, ,50 ,51)5|(|其他x x f Y X .52d 51}5|3{53===>⎰x Y X P 36.设图书馆的读者借阅甲种图书的概率为p ,借阅乙种图书的概率为α,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.(1)某天恰有n 个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.解(1)以X 表示某天读者中借阅甲种图书的人数,因各人借阅甲种图书的概率均为p ,且由题设各人是否借阅相互独立,故np X E p n b X =)(),,(~因此.(2)以A 表示事件“读者借阅甲种图书”,以B 表示事件“读者借阅乙种图书”,则就读者而言,有).()()()(AB P B P A P B A P -+= 借阅两种图书的行动相互独立,故ααp p B P A P B P A P B A P -+=-+=⋃)()()()()(.以Y 表示至少借阅一种图书的人数,由题设各人是否借阅相互独立,知),(~ααp p n b Y -+,故).()(ααp p n Y E -+=也可这样做.引入随机变量:⎩⎨⎧=.,0,,1种图书的任一种位读者不借阅甲、乙两若第两种图书的一种位读者至少借阅甲、乙若第i i Z i ni ,,2,1 =)()(][)(,111ααp p n Z E Z E Y E Z Y ni i n i i n i i -+====∑∑∑===.这里不需假设读者之间的行动相互独立.37.某种鸟在某时间区间],0(0t 下蛋数为1~5只,下r 只蛋的概率与r 成正比.一个收集鸟蛋的人在0t 时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).(1)写出一个鸟窝中鸟蛋只数X 的分布率.(2)对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率.(3)求拾蛋人在6只鸟窝中拾到蛋的总数Y 的分布律及数学期望.(4)求}4{},4{><Y P Y P (5)当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数Z 的数学期望.解(1)设该中鸟在],0(0t 内下蛋数为X 按题意,5,4,3,2,1,}{===r Cr r X P 其中C 为待定常数.因∑===51,1}{r r X P 即有,11551==∑=C Cr r 所以15/1=C ,因此X 的分布律为.5,4,3,2,1,151}{===r r r X P (2)因当且仅当窝中蛋数多于3时,某人从中取走一只蛋,故拾蛋人在该窝中拾取一只蛋的概率为53155154}5{}4{}3{=+==+==>X P X P X P (3)记拾蛋人在6只鸟窝中拾到蛋的总数为Y ,则)53,6(~b Y ,故518)53(6)(=⨯=Y E (4)}6{}5{}4{1}4{=-=-=-=<Y P Y P Y P Y P =6524535253565253461⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=0.456,(6)第2个拾蛋人仅当鸟窝中最初有5只蛋时,他才能从该窝中拾到一只蛋,故他在一个鸟窝中拾到一只蛋的为,31}5{===X P p 以Z 记第2个拾蛋人拾到蛋的总数,则),31,6(~b Z 故有2)31(6)(=⨯=Z E .38.设袋中有r 只白球,r N -只黑球.在袋中取球)(r n n ≤次,每次任取一只做不放回抽样,以Y 表示取到白球的个数,求)(Y E .解引入随机变量i X :⎩⎨⎧=,,0,,1次取球得到不是白球若第次取到白球若第i i X i ,,,2,1n i =则n 次取球得到的白球数.21n X X X Y +++= 而的分布律为次取球得到白球第i i X Nri P X P ,}{}1{===.,,2,1n i =即知i X 的数学期望为NrX E i =)(.于是得Y 得数学期望为NnrN r n X E X E Y E ni i ni i =⨯===∑∑==11)()()(.本题也可按以下方式写出Y 的表达式,从而求得)(Y E ,将球编号,引入随机变量:i X ⎩⎨⎧=号白球未被取到若第号白球被取到若第i i X i ,0,,1ri ,,2,1 =则r X X X Y +++= 21.事件}1{=i X 发生,表示在袋中取球n 次,若每次任取一只不放回抽样时,第i 号白球被取到.因为事件}1{=i X 可以在第一次、第二次、…、第n 次取球,这n 种两两互不相容的情况发生,且每次取到第i 号白球的概率都是N1.因此r i NnN N N X P i ,,2,1,111}1{ ==+++==,这样N n X E i =)(,从而N nrX E Y E ri i ==∑=1)()(.39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数Y 的数学期望.解引入随机变量.6,5,4,3,2,1,=i X i 如下:,11=X ,,2待次数等待第二不同点所需等是第一点得到后X 3X 是第一、第二两点得到后,等待第三个不同点所需等待次数,654,,X X X 的意义类似.则所需投掷的总次数为621X X X Y +++= .因第一点得到后,掷一次得第二个不同的点的概率为65,因此2X 的分布律为,,2,1,)61(65}{12 ===-k k X P k 即2X 服从参数65=p 的几何分布,又因得到两个不同的点后,掷一次得第三个不相同点的概率为64,故3X 服从参数64=p 的几何分布,其分布律为,2,1,)62(64}{13===-k k X P k 同样,654,,X X X 的分布律分别为.,2,1,63(63}{14 ===-k k X P k .,2,1,64(62}{15 ===-k k X P k .,2,1,65(61}{16 ===-k k X P k 因几何分布 ,2,1,)1(}{1=-==-k p p k X P k 的数学期望为(参见第四章)2(习题选解19题)pX E 1)(=.所以∑∑==+==62161)()()()(i ii i X E X E X E Y E =7.141626364656[1=+++++.40.设随机变量Y X ,相互独立.且Y X ,分别服从以βα1,1为均值得指数分布.求).(2X Ye X E -+解)()()()(22X X e E Y E X E Ye X E --+=+dtee Y E X E X D ttαα-∞-⎰⋅⋅++=02)()]([)(⎰∞+-++=0)1(22111dte t ααβαα.)1(22++=αβαα41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.(1)若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少?(2)设2个顾客是随机坐的,求顾客之间凳子数的数学期望.解(1)将凳子按自左至右编号,设服务员预言为真.)(A 若第一顾客就坐于1号,则另一顾客可坐4或5或6号共三种坐法,)(B 若第一顾客就坐于2号,则另一顾客可坐在5或6号共两种坐法,)(C 若第一顾客就坐于6号,只有一种坐法.综合)(),(),(C B A 三种情况共计6种坐法.同样,若第一顾客分别就坐于6号,5号,4号,则另一顾客也有6种坐法,因此两人共有1226=⨯种坐法,若两人随机就坐共有3026=A 种坐法,故服务员预言为真的概率是523012==p .(2)若两顾客是随机坐的,以Y 记两顾客间的凳子数,则Y 可能取的值为0,1,2,3,4.可知Y 的分布律为于是3415141523153215411550)(=⨯+⨯+⨯+⨯+⨯=Y E .42.设随机变量10021,,,X X X 相互独立,且都服从),1,0(U 又设,10021X X X Y ⋅⋅⋅= 求概率}10{40-<Y P 的近似值.解所求概率为}.1.92ln {}10ln 40{ln }10ln 40{ln }10{1001100140-<=-<=-<=<=∑∏==-i i i i X P X P Y P Y P p 因n X X X ,,,21 相互独立且都服从),1,0(U 知n X X X ln ,,ln ,ln 21 也相互独立,且服从同一分布,又),1,0(~U X i 其概率密度为⎩⎨⎧<<=其他,,010,1)(x x f 故有.112)(,2d ln )(ln ,1d ln )(ln 1221=-===-==⎰⎰i i i X D x x X E x x X E 由中心极限定理得}1.92ln {1001-<=∑=i i X P p ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-<-⨯-=∑=11001001.921100)1(100ln 1001i i X P .7852.0)97.0()1001001.92(=Φ=+-Φ≈43.来自某个城市的长途电话呼叫的持续时间X (以分计)是一个随机变量,它的分布函数是⎪⎩⎪⎨⎧<≥--=--.0,0,0,e 21e 211)(]3[3x x x F x x(其中3[x是不大于3x的最大整数).(1)画出)(x F 的图形.(2)说明X 是什么类型的随机变量.(3)求}6{},4{},3{},4{>>==X P X P X P X P (提示)0()(}{--==a F a F a X P ).解(1)(2))(x F 的所有不连续点为),,2,1(3 =k k X 取这些值的概率的总和为∑∑∞=∞=--==11)]03()3([}3{k k k F k F k X P ∑∞=-----⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=1)133(33]33[33e 21e 211e 21e 211i k k k k ∑∑∞=∞=---=-=-=111.21e )1e (21)e e (21i k k kk 注意到,在)(x F 的任一连续点a 处有;0}{==a X P 又由于∑∞===121}3{k k X P ,因此,不可能取到可列多个值,,,21 x x 使得∑∞===1,1}{k kx X P 故X 不是离散型随机变量.又由于)(x F 不是连续函数,故X也不是连续型随机变量.(3).0}4{==X P )03()3(}3{--==F F X P ⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛--=-----)11(111e 21e 211e 21e 211.316.0)e 1(211=-=-.684.00e 21e 211}4{)4(}4{134=---==-=<--X P F X P.0.0.0.0.1题15.43图.135.0e 21e 2111)6(1}4{222==⎪⎭⎫⎝⎛---=-=>---e F X P 44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数X 占10%.写出X 的分布,并求12.0250⨯>X (即30>X )的概率.设各客户是否提出索赔相互独立.解按题意知)10.0,250(~b X .现在需要求∑=-⎪⎪⎭⎫ ⎝⎛=>2503125090.010.0250}30{x x x x X P 即需求∑=-⎪⎪⎭⎫ ⎝⎛-=>30025090.010.02501}30{x xx x X P 由拉普拉斯定理得⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φ-≈>90.010.025010.0250301}30{X P .1469.08531.01)054.1(1=-=Φ-=45.在区间)1,0(随机地取一点X .定义}.75.0,min{X Y =(1)求随机变量Y 的值域.(2)求Y 的分布函数,并画出它的图形.(3)说明Y 不是连续型随机变量,Y 也不是离散型随机变量.解(1)因},75.0,min{X Y =故X Y ≤且.75.0≤Y 又由于X 的值域是)1,0(,知Y 的值域为]75.0,0(.(2)由(1)知当0<y 时,0}{)(=≤=y Y P y F Y 当75.0≥y 时,.1}{)(=≤=y Y P y F Y 当75.00<≤y 时,事件}{y Y ≤表示X 是在],0(y 随机取的一点.故有⎪⎩⎪⎨⎧≥<≤<=75.0,175.00,0,0)(y y y y y F Y )(y F Y 的图形如题15.45图所示.(3)从题15.45图看出,)(y F Y 在点75.0=y 处不连续,故它不是连续型随机变量.)(y F Y 只有一个不连续点75.0=y .注意到在)(y F Y 的任一连续点a 处,有,0}{==a Y P 而在不连续点75.0=y 处,.01题15.45图。

全国概率论与数理统计答案详解

全国概率论与数理统计答案详解

2022年4月高等教育自学考试(概率论与数理统计)〔经管类〕答案解析一、单项选择题〔本大题共10小题,每题2分,共20分〕1.甲,乙两人向同一目标射击,A表示“甲命中目标〞,B表示“乙命中目标〞,C表示“命中目标〞,则C=〔〕A.AB.BC.ABD.A∪B(答案)D(解析)“命中目标〞=“甲命中目标〞或“乙命中目标〞或“甲、乙同时命中目标〞,所以可表示为“A∪B〞,应选择D.(提示)注意事件运算的实际意义及性质:〔1〕事件的和:称事件“A,B至少有一个发生〞为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②假设,则A∪B=B.〔2〕事件的积:称事件“A,B同时发生〞为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;② 假设,则AB=A.〔3〕事件的差:称事件“A发生而事件B不发生〞为事件A与B的差事件,记做A-B.性质:①;②假设,则;③.〔4〕事件运算的性质〔i〕交换律:A∪B=B∪A, AB=BA;〔ii〕结合律:〔A∪B〕∪C=A∪〔B∪C〕, 〔AB〕C=A〔BC〕;〔iii〕分配律:〔A∪B〕∩C=〔A∩C〕∪〔B∩C〕〔A∩B〕∪C=〔A∪C〕∩〔B∪C〕.〔iv〕摩根律〔对偶律〕,2.设A,B是随机事件,,P〔AB〕=0.2,则P〔A-B〕=〔〕A.0.1B.0.2C.0.3D.0.4(答案)A(解析),,应选择A.(提示)见1题(提示)〔3〕.3.设随机变量X的分布函数为F〔X〕则〔〕A.F〔b-0〕-F〔a-0〕B.F〔b-0〕-F〔a〕C.F〔b〕-F〔a-0〕D.F〔b〕-F〔a〕(答案)D(解析)依据分布函数的定义及分布函数的性质,选择D.详见(提示).(提示)1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F〔x〕≤1;②对任意x1,x2〔x1< x2〕,都有;③F〔x〕是单调非减函数;④,;⑤F〔x〕右连续;⑥设x为f〔x〕的连续点,则f′〔x〕存在,且F′〔x〕=f〔x〕.3.已知X的分布函数F〔x〕,可以求出以下三个常用事件的概率:①;②,其中a<b;③.4.设二维随机变量〔X,Y〕的分布律为0 1 20 1 0 0.1 0.2 0.4 0.3 0则〔〕A.0B.0.1C.0.2D.0.3(答案)D(解析)因为事件,所以,= 0 + 0.1 + 0.2 = 0.3应选择D(提示)1.此题考察二维离散型随机变量的边缘分布律的求法;2.要清楚此题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5.设二维随机变量〔X,Y〕的概率密度为,则〔〕A.0.25B.0.5C.0.75D.1(答案)A(解析)积分地域D:0<X≤0.5,0<Y≤1,所以应选择A.(提示)1.二维连续型随机变量的概率密度f〔x,y〕性质:①f〔x,y〕≥0;②;③假设f〔x,y〕在〔x,y〕处连续,则有,因而在f〔x,y〕的连续点〔x,y〕处,可由分布函数F〔x,y〕求出概率密度f〔x,y〕;④〔X,Y〕在平面地域D内取值的概率为.2.二重积分的计算:此题的二重积分的被积函数为常数,依据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分地域面积0.5.6.设随机变量X的分布律为X﹣2 0 2P 0.4 0.3 0.3则E〔X〕=〔〕A.﹣0.8B.﹣0.2C.0D.0.4(答案)B(解析)E〔X〕=〔﹣2〕×0.4+0×0.3+2×0.3=﹣0.2应选择B.(提示)1.离散型一维随机变量数学期望的定义:设随机变量的分布律为,1,2,….假设级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E〔c〕=c,c为常数;②E〔aX〕=aE〔x〕,a为常数;③E〔X+b〕=E〔X+b〕=E〔X〕+b,b为常数;④E〔aX+b〕=aE〔X〕+b,a,b为常数.7.设随机变量X的分布函数为,则E〔X〕=〔〕A. B. C. D.(答案)C(解析)依据连续型一维随机变量分布函数与概率密度的关系得,所以,=,应选择C.(提示)1.连续型一维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8.设总体X服从区间,]上的均匀分布〔〕,x1,x2,…,x n为来自X的样本,为样本均值,则A. B. C. D.(答案)C(解析),,而均匀分布的期望为,应选择C.(提示)1.常用的六种分布〔1〕常用离散型随机变量的分布〔三种〕:X0 1概率q pA.两点分布①分布列②数学期望:E〔X〕=P③方差:D〔X〕=pq.B.二项分布:X~B〔n,p〕①分布列:,k=0,1,2,…,n;②数学期望: E〔X〕=nP③方差: D〔X〕=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③方差:=〔2〕常用连续型随机变量的分布〔三种〕:A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E〔X〕=,④方差:D〔X〕=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E〔X〕=,④方差:D〔X〕=.C.正态分布〔A〕正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:假设X~,,则~.〔B〕标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E〔X〕=0,④方差:D〔X〕=1.2.注意:“样本〞指“简单随机样本〞,具有性质:“独立〞、“同分布〞.9.设x1,x2,x3,x4为来自总体X的样本,且,记,,,,则的无偏估量是〔〕A. B. C. D.(答案)A(解析)易知,,应选择A.(提示)点估量的评价标准:〔1〕相合性〔一致性〕:设为未知参数,是的一个估量量,是样本容量,假设对于任意,有,则称为的相合〔一致性〕估量.〔2〕无偏性:设是的一个估量,假设对任意,有则称为的无偏估量量;否则称为有偏估量.〔3〕有效性设,是未知参数的两个无偏估量量,假设对任意有样本方差,则称为比有效的估量量.假设的一切无偏估量量中,的方差最小,则称为的有效估量量.10.设总体~,参数未知,已知.来自总体的一个样本的容量为,其样本均值为,样本方差为,,则的置信度为的置信区间是〔〕A.,B.,C.,D.(答案)A(解析)查表得答案.(提示)关于“课本p162,表7-1:正态总体参数的区间估量表〞记忆的建议:①表格共5行,前3行是“单正态总体〞,后2行是“双正态总体〞;②对均值的估量,分“方差已知〞和“方差未知〞两种情况,对方差的估量“均值未知〞;③统计量顺序:, t, x2, t, F.二、填空题〔本大题共15小题,每题2分,共30分〕11.设A,B是随机事件,P 〔A〕=0.4,P 〔B〕=0.2,P 〔A∪B〕=0.5,则P 〔AB〕= _____.(答案)0.1(解析)由加法公式P 〔A∪B〕= P 〔A〕+ P 〔B〕-P 〔AB〕,则P 〔AB〕= P 〔A〕+ P 〔B〕-P 〔A∪B〕=0.1故填写0.1.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________.(答案)(解析)设第三次取到0的概率为,则故填写.(提示)古典概型:〔1〕特点:①样本空间是有限的;②根本领件发生是等可能的;〔2〕计算公式.13.设随机事件A与B相互独立,且,则________.(答案)0.8(解析)因为随机事件A与B相互独立,所以P 〔AB〕=P 〔A〕P 〔B〕再由条件概率公式有=所以,故填写0.8.(提示)二随机事件的关系〔1〕包含关系:如果事件A发生必定导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;〔2〕相等关系:假设且,则事件A与B相等,记做A=B,且P 〔A〕=P 〔B〕;〔3〕互不相容关系:假设事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P 〔AB〕=0;〔4〕对立事件:称事件“A不发生〞为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.〔5〕二事件的相互独立性:假设, 则称事件A, B相互独立;性质1:四对事件A与B,与B,A与,与其一相互独立,则其余三对也相互独立;性质2:假设A, B相互独立,且P 〔A〕>0, 则.14.设随机变量服从参数为1的泊松分布,则________.(答案)(解析)参数为泊松分布的分布律为,0,1,2,3,…因为,所以,0,1,2,3,…,所以=,故填写.15.设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则________.(答案)(解析)因为,则~,所以,故填写.(提示)注意审题,X判定概率分布的类型.16.设二维随机变量〔X,Y〕服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.(答案)(解析)因为二维随机变量〔X,Y〕服从圆域D:上的均匀分布,则,所以故填写.(提示)课本介绍了两种重要的二维连续型随机变量的分布:〔1〕均匀分布:设D为平面上的有界地域,其面积为S且S>0,如果二维随机变量〔X,Y〕的概率密度为,则称〔X,Y〕服从地域D上的均匀分布,记为〔X,Y〕~.〔2〕正态分布:假设二维随机变量〔X,Y〕的概率密度为〔,〕,其中,,,,都是常数,且,,,则称〔X,Y〕服从二维正态分布,记为〔X,Y〕~.17.设C为常数,则C的方差D 〔C〕=_________.(答案)0(解析)依据方差的性质,常数的方差为0.(提示)1.方差的性质①D 〔c〕=0,c为常数;②D 〔aX〕=a2D 〔X〕,a为常数;③D 〔X+b〕=D 〔X〕,b为常数;④D 〔aX+b〕= a2D 〔X〕,a,b为常数.2.方差的计算公式:D 〔X〕=E 〔X2〕-E2〔X〕.18.设随机变量X服从参数为1的指数分布,则E 〔e-2x〕= ________.(答案)(解析)因为随机变量X服从参数1的指数分布,则,则故填写.(提示)连续型随机变量函数的数学期望:设X为连续性随机变量,其概率密度为,又随机变量,则当收敛时,有19.设随机变量X~B 〔100,0.5〕,则由切比雪夫不等式估量概率________.(答案)(解析)由已知得,,所以.(提示)切比雪夫不等式:随机变量具有有限期望和,则对任意给定的,总有或.故填写.20.设总体X~N 〔0,4〕,且x1,x2,x3为来自总体X的样本,假设~,则常数C=________.(答案)1(解析)依据x2定义得C=1,故填写1.(提示)1.应用于“小样本〞的三种分布:①x2-分布:设随机变量X1,X2,…,X n相互独立,且均服从标准正态分布,则服从自由度为n的x2-分布,记为x2~x2〔n〕.②F-分布:设X,Y相互独立,分别服从自由度为m和n的x2分布,则服从自由度为m与n的F-分布,记为F~F〔m,n〕,其中称m为分子自由度,n为分母自由度.③t-分布:设X~N 〔0,1〕,Y~x2〔n〕,且X,Y相互独立,则服从自由度为n的t-分布,记为t~t 〔n〕.2.对于“大样本〞,课本p134,定理6-1:设x1,x2,…,x n为来自总体X的样本,为样本均值,〔1〕假设总体分布为,则的X分布为;〔2〕假设总体X的分布未知或非正态分布,但,,则的渐近分布为.21.设x1,x2,…,x n为来自总体X的样本,且,为样本均值,则________.(答案)(解析)课本P153,例7-14给出结论:,而,所以,故填写.(说明)此题是依据例7-14改编.因为的证明过程比拟复杂,在2022年课本改版时将证明过程删掉,即本次串讲所用课本〔也是学员朋友们使用的课本〕中没有这个结论的证明过程,只给出了结果.感兴趣的学员可查阅旧版课本(高等数学〔二〕第二分册概率统计)P164,例5.8.22.设总体x服从参数为的泊松分布,为未知参数,为样本均值,则的矩估量________.(答案)(解析)由矩估量方法,依据:在参数为的泊松分布中,,且的无偏估量为样本均值,所以填写.(提示)点估量的两种方法〔1〕矩法〔数字特征法〕估量:A.根本思想:①用样本矩作为总体矩的估量值;②用样本矩的函数作为总体矩的函数的估量值.B.估量方法:同A.〔2〕极大似然估量法A.根本思想:把一次试验所出现的结果视为全部可能结果中概率最大的结果,用它来求出参数的最大值作为估量值.B.定义:设总体的概率函数为,,其中为未知参数或未知参数向量,为可能取值的空间,x1,x2,…,x n是来自该总体的一个样本,函数称为样本的似然函数;假设某统计量满足,则称为的极大似然估量.C.估量方法①利用偏导数求极大值i〕对似然函数求对数ii〕对求偏导数并令其等于零,得似然方程或方程组iii〕解方程或方程组得即为的极大似然估量.②对于似然方程〔组〕无解时,利用定义:见教材p150例7-10;〔3〕间接估量:①理论依据:假设是的极大似然估量,则即为的极大似然估量;②方法:用矩法或极大似然估量方法得到的估量,从而求出的估量值.23.设总体X服从参数为的指数分布,x1,x2,…,x n为来自该总体的样本.在对进行极大似然估量时,记…,x n〕为似然函数,则当x1,x2,…,x n都大于0时,…,x n=________.(答案)(解析)已知总体服从参数为的指数分布,所以,从而…,=,故填写.24.设x1,x2,…,x n为来自总体的样本,为样本方差.检验假设:,:,选取检验统计量,则H0成立时,x2~________.(答案)(解析)课本p176,8.3.1.25.在一元线性回归模型中,其中~,1,2,…,n,且,,…,相互独立.令,则________.(答案)(解析)由一元线性回归模型中,其中~,1,2,…,,且,,…,相互独立,得一元线性回归方程,所以,,则~由20题(提示)〔3〕得,故填写.(说明)课本p186,关于此题内容的局部讲述的不够清楚,请朋友们注意.三、计算题〔本大题共2小题,每题8分,共16分〕26.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求〔1〕甲取到黑球的概率;〔2〕乙取到的都是黑球的概率.(分析)此题考察“古典概型〞的概率.(解析)〔1〕设甲取到黑球的概率为p,则.〔2〕设乙取到的都是黑球的概率为p,则.27.某种零件直径X~〔单位:mm〕,未知.现用一种新工艺生产此种零件,随机取出16个零件、测其直径,算得样本均值,样本标准差s=0.8,问用新工艺生产的零件平均直径与以往有无显著差异?〔〕〔附:〕(分析)此题考察假设检验的操作过程,属于“单正态总体,方差未知,对均值的检验〞类型.(解析)设欲检验假设H0:,H1:,选择检验统计量,依据显著水平=0.05及n=16,查t分布表,得临界值t0.025〔15〕=2.1315,从而得到拒绝域,依据已知数据得统计量的观察值因为,拒绝,可以认为用新工艺生产的零件平均直径与以往有显著差异.(提示)1.假设检验的根本步骤:〔1〕提出统计假设:依据理论或经验对所要检验的量作出原假设〔零假设〕H0和备择假设H1,要求只有其一为真.如对总体均值检验,原假设为H0:,备择假设为以下三种情况之一::,其中i〕为双侧检验,ii〕,iii〕为单侧检验.〔2〕选择适当的检验统计量,满足:① 必须与假设检验中待检验的“量〞有关;② 在原假设成立的条件下,统计量的分布或渐近分布已知.〔3〕求拒绝域:按问题的要求,依据给定显著水平查表确定对应于的临界值,从而得到对原假设H0的拒绝域W.〔4〕求统计量的样本值观察值并决策:依据样本值计算统计量的值,假设该值落入拒绝域W内,则拒绝H0,接受H1,否则,接受H0.2.关于课本p181,表8-4的记忆的建议:与区间估量对比分类记忆.四、综合题〔本大题共2小题,每题12分,共24分〕28.设二维随机变量〔X,Y〕的概率密度为〔1〕求〔X,Y〕关于X,Y的边缘概率密度;〔2〕记Z=2X+1,求Z的概率密度.(分析)此题考察二维连续型随机变量及随机变量函数的概率密度.(解析)〔1〕由已知条件及边缘密度的定义得=,〔〕所以;同理可得.〔2〕使用“直接变换法〞求Z=2X+1的概率密度.记随机变量X、Z的分布函数为Fx〔x〕、Fz〔Z〕,则,由分布函数Fz〔Z〕与概率密度的关系有由〔1〕知,所以=.(提示)求随机变量函数的概率密度的“直接变换法〞根本步骤:问题:已知随机变量X的概率密度为,求Y=g〔X〕的概率密度解题步骤:1.;2..29.设随机变量X与Y相互独立,X~N〔0,3〕,Y~N〔1,4〕.记Z=2X+Y,求〔1〕E〔Z〕,D〔Z〕;〔2〕E〔XZ〕;〔3〕P XZ.(分析)此题考察随机变量的数字特征.(解析)〔1〕因为X~N〔0,3〕,Y~N〔1,4〕,Z=2X+Y,所以E〔Z〕=E〔2X+Y〕=2E〔X〕+E〔Y〕=1D〔Z〕=D〔2X+Y〕=4D〔X〕+D〔Y〕=16〔2〕而随机变量与相互独立,所以 E〔XZ〕=6.〔3〕因为,所以.五、应用题〔10分〕30.某次考试成绩X服从正态分布〔单位:分〕,〔1〕求此次考试的及格率和优秀率;〔2〕考试分数至少高于多少分能排名前50%?〔附:〕(分析)此题考察正态分布的概率问题.(解析)已知X~N〔75,152〕,设Z~N〔0,1〕,为其分布函数,〔1〕==即本次考试的及格率为84.13%,优秀率为15.87%.〔2〕设考试分数至少为x分可排名前50%,即,则=,所以,即,x=75,因此,考试分数至少75分可排名前50%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

μ0 =7.25cm,即新 育苗方法与常规方法所育鱼苗一月 龄体长相同。对HA: μ≠ μ0 ; (2)选取显著水平α = 0.05; (3)检验计算:
(1)假设H0:μ=
(4)推断:u分布中,当α
= 0.05时,u0.05 = 1.96 。实得|u|>1.96 ,P<0.05 ,故 在0.05显著水平上否定H0,接受HA, 认为新育苗方法一月龄体长与常规方 法有显著差异。
(2)λ=np,不出现变异株的概率
e e np P(0) e e 0.01 x! 0!
x
0
例3.9
设u服从正态分布N(0, 1),试求:(1)P(u<1);(2)P(u >1);(3)P(-2.0<u<1.5); (4)P(|u|>2.58)。 解:查附表2,得:
解:已知
变异株的概率 p=0.0045 非变异株的概率 q = 1- p = 1-0.0045 = 0.9955, n = 100 (1)获得2株或2株以上变异株的概率: 获得0株,x=0,P(0)= =0.6370 获得1株,x=1,P(1)=…=0.2879 获得2株或以上,x≥2,P(x≥2)=10.6370-0.2879=0.0751
假设H0:μ1= μ2,即两种饲料饲养 的大白鼠体重没有显著差别。对 HA:μ1≠ μ2 ; (2) 规定显著水平α = 0.05 ; (3) 检验计算:
(1)
(4)推断:接令H0,认为两种饲
料饲养大白鼠的增重量没有显著 差别。
例4.7
两小麦品种千粒重(g)的调查结 果如下: 品种甲:50,47,42,43,39,5l, 43,38,44,37; 品种乙:36,38,37,38,36,39, 37,35,33,37。 试检验两品种的干粒重有无显著差异。 解:此题n1 = n2= 10,经F检验,得知 两品种千粒重的方差有显著的不同。
解:
例3.11
利用例2.1小麦株高 资料,试计算:(1)小麦株高 的95%正常值范围;(2)株高 ≥85cm概率。 例2.1 随机抽取20株小麦,其 株高(cm)分别为82,79,85, 84,86,84,83,82,83,83, 84,81,82,81,82,82,82, 80,求小麦的平均株高。
解: 假设小麦株高服从正态分布。
由于总体平均数μ和总体标准差 σ未知,我们用样本平均数 和 x 样本标准差S来估计μ和σ。 例2.1和例2.5已求 x =82.3cm, S=1.7502cm。

(1)查附表3,得两尾0.05概率的 u0.05=1.96,于是 上限为: 82.3+1.96×1.7502=85.73(cm) 下限为: 82.3 - 1.96×1.7502=78.87(cm)
例2.6
中粳“农垦57”在大田 栽植,其穗粒数为44.6,标准 差为18.9,而在丰产田栽植, 其穗粒数为65.0,标准差18.3, 问两种栽植田中穗粒数哪种 变异程度大?
解:
大田中穗粒数cv为: 18.9 cv 100% 42.38% 44.6
丰产田中为:
18.3 cv 100% 28.15% 65
检验计算:
查附表4,当dƒ
=n - 1=9时,t0.05=2.262, 现实得|t|<t0.05,故P>0.05; (4)推断:接受H0,认为该次抽样测定的鱼 塘水中含氧量与多年平均含氧量没有显著 差别, 与μ相差0.079mg· -蛋白和低蛋白两种饲料饲养 一月龄大白鼠,在三个月时,测定两 组大白鼠的增重量(g),两组的数据分 别为:
例4.2
生产某种纺织品,要求棉花纤 维长度平均为30mm以上,现有一棉 花品种,以n=400进行抽查,测得其 纤维平均长度为30.2mm,标准差为 2.5mm,问该棉花品种的纤维长度是 否符合纺织品的生产?
解:由题可知,μ=30.0mm,
mm,s=2.5mm,而σ2未知,但由于n =400,属于大样本,故可用S2来代替 σ2进行u检验;又由于棉花纤维只有大 于30.0mm才符合纺织品生产的要求, 故用单尾检验。 (1)假设H0:μ ≤ 30.0mm,即该棉花品 种纤维长度达不到纺织品生产的要求。 对HA:μ ≥ 30.0mm; (2)确定显著水平 =0.05;
假设H0:μ1= μ2即两品种蛋白质 含量没有显著差别。对HA:μ1≠μ2 ; (2) 取显著水平α = 0.01 ; (3) 检验计算:
(1)
(4)推断:否定H0,接受HA,认 为两品种蛋白质含量有极显著 差异。
以x=3为例计算
n! 5! 5! C x!(n x)! 3!(5 3)! 3!(2 ) !
3 5
1 2 3 4 5 10 1 2 3 1 2) (
例3.6
某小麦品种在田间出现 自然变异植株的概率为0.0045, 试计算:(1)调查100株,获得 两株或两株以上变异植株的概 率是多少?(2)期望有0.99的概 率获得l株或1株以上的变异植 株,至少应调查多少株?(例 3.8幻灯片 79)
解:根据题意,总体方差已知, 故用u检验;又事先不知A、B两法所
得从播种到开花的天数是否相同,需 用双尾检验。 (1)假设H0:μ1= μ2 ,即A、B两法所得 从播种到开花的天数相同。对HA: μ1≠ μ2 ; (2)取显著水平α =0.05;
(3)检验计算:

例4.4 为了比较“42— 67×RRIM603” 和 “42— 67×PB86”两个橡胶品种的割胶产 量,两品种分别随机抽样55株和107 株进行割胶,割胶平均产量分别为 95.4mL.株-l和77.6mL.株-1, 割胶产量的方差分别为 936.36(mL.株—1)2和 800.89(mL· —1)2试检验两个橡胶 株 品种在割胶产量上是否有显著差别。
解:此题σ2未知,且n=l0,为小样本,
故用t检验;又该次测定的水中含氧量 可能高于也可能低干多年平均值,故 用双尾检验。 (1) 假设H0:μ= μ0= 4.5mg.L-1,即该 次测定的水中含氧量与多年平均值没 有显没有显著差别。对HA:μ≠ μ0 ;
(2) (3)
选取显著水平α = 0.05 ;
田间试验与生物统计
Field Experiment and Biostatistics
概率论与数理统计
主要参考文献
1. 李春喜,王志和,王文林. 生物统计学 (第二版),2000,科学出版社,北 京. 2. 盖钧镒主编. 试验统计方法,2000,中 国农业出版社,北京. 3. 南京农业大学主编. 田间试验与统计方 法(第二版) ,1999,中国农业出版 社. 4.刘舒强主编. 概率论与数理统计,天津 大学出版社,2003
(一)一个样本的假设检验
例4.5
某鱼塘水中的含氧量,多年平均为 4.5mg· -1,现在该鱼塘设10个点采集水样, L 测定水中含氧量分别为:4.33,4.62,3.89, 4.14,4.78,4.64,4.52,4.55,4.48,4.26 mg· -1,试检验该次抽样测定的水中含氧 L 量与多年平均值有无显著差别。
解:
假设H0:μ1= μ2即两品种的割胶产 量没有显著差别。对HA:μ1≠ μ2 ;
(1)
(2) (3)
规定显著水平α = 0.01 ;
检验计算:

(4)推断:现实得|u|>u0.01 =2.58,P<0.01 ,故 否定H0,接受HA,即两个橡胶品种的割胶产量 存在极显著的差别,由于 ,所以可以得 出“42—67×RRIM603”的割胶产量显著高于 “42—67×PB86”的结论。
所以,大田中穗粒数的相对变异要比丰 产田大,说明丰产田的穗粒数的整齐度 优于大田。
例3.4
豌豆的红花纯合基因型和 白花纯合基因型杂交后,在F2 代红花植株与白花植株出现的比 率为3:1,若每次随机观察4株, 共观察100次,问得红花为0株、 1株、2株、3株和4株的概率各是 多少?
解:由于在F2代红花:白花=3:1,
lg 0.01 2 n 1021 lg 0.9955 0.001959
(株)
因此,至少应调查1021株才能 满足要求。
例3.7
表3-5 细菌计数的泊松分布
解:各小方格中出现的细菌是小概 率事件,服从泊松分布。样本中每 个格子的细菌平均数:
1 x (0 5 119 9 1) 2.9831 n 118
那么红花的概率p=0.75,白花 q=0.25,观察株数n=4,代入 式3.15,计算结果如表3-4。
例3.5
某批鸡种蛋的孵化率 是0.90,今从该批种蛋中每次 任选5个进行孵化,试求孵出 小鸡的各种可能概率。 解:在此问题中,n=5,p= 0.90,q=1- p=1- 0.90=0.10, 每次孵化5个种蛋得小鸡服从 二项分布B(5,0.90)。
(2)如果期望调查n株中有1株是
变异株的概率是0.99,则获得 非变异株的概率: P(0) = 1-0.99 = 0.01 0 0 n 即:x = 0, P(0) = Cn p q 0.01
因为q = 0.9955,所以,
0.9955 0.01
n
n lg 0.9955 lg 0.01
高蛋白组:134,146,106,119, 124,161,l07,83,113,129,97, 123; 低蛋白组:70,118,101,85,107, 132,94。 试问两种饲料饲养的大白鼠增重量 是否有差别? 解:本题σ12和σ22未知,且为小样本, 用t检验;又事先不知两种饲料饲养的 大白鼠增重量孰高孰低,故用双尾检 验。

=30.2 x
(3)检验计算:

例4.3 根据多年的资料,某杂交黑麦 从播种到开花的天数的标准差为6.9d, 现在相同试验条件下采取两种方法取 样调查,A法调查400株,得出从播种 到开花的平均天数为69.5d;B法调查 200株,得出从播种到开花的平均天数 为70.3d,试比较两种调查方法所得黑 麦从播种到开花的天数有无显著差别。
相关文档
最新文档