最新人教版初中七年级上册数学《近似数》教案

合集下载

《近似数》初中七年级数学教案

《近似数》初中七年级数学教案

近似数教学目标•能够理解近似数的概念;•能够正确地对数进行近似处理;•能够运用近似数解决实际问题。

教学过程1. 通过实物帮助学生理解近似数的概念教师可使用实物来帮助学生理解近似数的概念。

例如,教师可以拿出一本书,询问学生这本书的厚度是多少毫米,让学生用尺子测量。

然后,教师可以逐步引导学生认识到,因为尺子的度量有限,所以学生测量出来的结果只是这本书的近似厚度,而不是精确的数值。

2. 给出近似数的定义教师在学生对近似数的概念有初步的理解之后,可以正式给出近似数的定义。

教师可以说:“近似数是指对于某个数值,由于精确测量较为困难,我们只能得到一个相邻数的值,用这个相邻数来代替原先的数值。

”3. 给出近似数的表示方法教师在学生对近似数的概念有一定理解之后,可以给出近似数的表示方法。

教师可以说:“如果一个数是真实值,我们通过近似方法得到的数称为近似值,一般表示为a≈b(a近似于b)。

其中a是近似值,b是真实值。

”4. 给学生提供练习让学生通过练习来巩固近似数的知识。

例如,教师可以写下一些数,让学生通过简单计算,将这些数进行近似处理。

例如,如果学生要将3.265近似到4位小数,那么学生可以使用截取法,将最后一位数四舍五入,得到3.2650。

5. 运用近似数解决实际问题让学生运用近似数解决实际问题。

例如,教师可以给出一个题目:“如果相邻的两栋房子之间距离是50米,那么一排10栋房子之间的距离是多少米?”学生可以将题目中的50近似处理,得到一个可以进行相关计算的数值,进而求出答案。

教学注意点•近似数是用相邻的数来代替真实值,所以应该尽量减少近似误差;•学生在进行近似数计算的时候,应该了解所需精度,避免无关的计算误差,尤其是在涉及到金融和科学计算等领域;•学生在运用近似数解决实际问题的时候,需要注意保留一定正确的位数,以便得到较为准确的答案。

教学延伸学生可以通过自己的实践,逐渐熟练运用近似数解决实际问题,并将近似数应用到日常生活和学习中,增加数学的实际应用性及实践能力,加强数学运算能力的训练。

人教版数学七年级上册1.5.3《近似数》教学设计1

人教版数学七年级上册1.5.3《近似数》教学设计1

人教版数学七年级上册1.5.3《近似数》教学设计1一. 教材分析《近似数》是人教版数学七年级上册1.5.3的内容,本节课主要介绍近似数的概念及其求法。

学生在学习本节课之前,已经掌握了有理数的概念和运算法则,因此,本节课是在已有知识基础上的拓展和应用。

通过本节课的学习,学生能够理解近似数的概念,掌握求近似数的方法,并能应用于实际问题中。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算法则有一定的了解。

但是,对于近似数这一概念,学生可能比较陌生,因此需要通过实例和操作来帮助学生理解和掌握。

此外,学生可能对于求近似数的方法和应用有一定的困难,需要通过大量的练习和实际问题来培养学生的应用能力。

三. 教学目标1.了解近似数的概念,能正确地求一个数的近似值。

2.能够将近似数的概念和方法应用于实际问题中。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.近似数的概念及其求法。

2.近似数在实际问题中的应用。

五. 教学方法1.采用实例教学法,通过具体的例子来帮助学生理解和掌握近似数的概念和方法。

2.采用问题驱动法,通过提出实际问题来引导学生思考和应用近似数的概念和方法。

3.采用分组讨论法,让学生在小组内进行讨论和交流,培养学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的实例和练习题,用于引导学生进行思考和练习。

2.准备一些实际问题,用于让学生进行应用和拓展。

3.准备多媒体教学设备,用于展示和讲解实例和问题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算法则,为新课的学习做好铺垫。

2.呈现(15分钟)通过实例引入近似数的概念,让学生直观地感受近似数的存在。

然后,讲解近似数的求法,引导学生理解并掌握。

3.操练(10分钟)让学生进行近似数的计算练习,巩固所学知识。

可以设置一些不同难度级别的练习题,让学生根据自己的实际情况选择练习。

4.巩固(10分钟)通过一些实际问题,让学生应用近似数的概念和方法进行解答。

人教版七年级数学上册1.5.3《近似数》教学设计

人教版七年级数学上册1.5.3《近似数》教学设计

人教版七年级数学上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版七年级数学上册 1.5.3的内容,主要介绍了近似数的概念、求法及其应用。

本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能够运用近似数解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于概念的接受能力较强。

但是,对于近似数的概念和求法可能还存在一定的困惑。

因此,在教学过程中,需要通过具体实例和操作活动,帮助学生理解和掌握近似数的概念和求法。

三. 教学目标1.了解近似数的概念,能够正确地求一个数的近似数。

2.能够运用近似数解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.近似数的概念和求法。

2.运用近似数解决实际问题。

五. 教学方法1.情境教学法:通过具体实例和操作活动,引导学生理解和掌握近似数的概念和求法。

2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题的能力。

3.小组合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学课件:制作课件,包括近似数的定义、求法及应用的实例。

2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。

3.计时器:用于控制教学过程中的时间。

七. 教学过程1.导入(5分钟)利用课件展示一些与近似数相关的实例,如天气预报中的温度、身高体重等,引导学生思考和探索近似数的概念和求法。

2.呈现(10分钟)利用课件呈现近似数的定义和求法,结合具体实例进行讲解,让学生理解和掌握近似数的概念和求法。

3.操练(10分钟)学生分组进行操作活动,利用所学知识求一些数的近似数,并交流分享各自的解题过程和方法。

4.巩固(10分钟)利用课件呈现一些实际问题,学生独立解决,巩固所学知识,提高解决问题的能力。

新人教版七年级数学上册1.5.3 《近似数》教学设计2

新人教版七年级数学上册1.5.3 《近似数》教学设计2

新人教版七年级数学上册1.5.3 《近似数》教学设计2一. 教材分析新人教版七年级数学上册1.5.3《近似数》是学生在掌握了实数的概念和四则运算的基础上进行学习的。

本节内容主要介绍近似数的概念、求法以及应用。

通过学习近似数,学生能够更好地理解实际问题,提高解决问题的能力。

教材通过丰富的实例,引导学生探究近似数的求法,并运用近似数解决实际问题。

二. 学情分析七年级的学生已经具备了一定的实数基础和四则运算能力,但对于近似数的概念和求法可能还比较陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过生动的实例和实际问题,激发学生的学习兴趣,引导学生主动探究近似数的概念和求法。

三. 教学目标1.知识与技能:使学生理解近似数的概念,掌握求近似数的方法,能够运用近似数解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生运用数学知识解决实际问题的意识。

四. 教学重难点1.近似数的概念。

2.求近似数的方法。

3.运用近似数解决实际问题。

五. 教学方法1.情境教学法:通过生动的实例和实际问题,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:教师提出问题,引导学生思考,培养学生提出问题、分析问题、解决问题的能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。

六. 教学准备1.教材、教案、PPT等教学资料。

2.计算器、投影仪等教学设备。

3.练习题、测试题等教学用品。

七. 教学过程1. 导入(5分钟)教师通过一个实际问题引入本节课的主题:天气预报中提到的气温3℃是什么意思?引导学生思考近似数的概念。

2. 呈现(10分钟)教师通过PPT展示近似数的定义和求法,引导学生理解近似数的概念,并掌握求近似数的方法。

3. 操练(10分钟)教师给出一些例子,让学生运用近似数的方法进行计算,并及时给予反馈和指导。

2.14近似数(教案)-人教版七年级数学上册

2.14近似数(教案)-人教版七年级数学上册
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解近似数的基本概念。近似数是指用来代替精确数值的数,它是用有限的数字来表示一个实际数值的方法。近似数在科学研究、工程技术以及日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。例如,当我们测量一根木棒的长度时,得到的结果可能是2.8米或3米,这些数值就是近似数。这个案例展示了近似数在实际中的应用,以及它如何帮助我们解决问题。
4.近似数的运算:学习近似数的加减乘除运算规则,了解运算过程中误差的传播。
5.近似数在实际问题中的应用:通过实例分析,培养学生运用近似数解决实际问题的能力。
6.近似数的精度:了解不同精度近似数的表示方法,如千位、百位、十位等。
7.近似数的改写:掌握将一个近似数改写成另一个近似数的方法,如将3.14改写为1.57。
-举例:解释为什么在科学计算中,有时需要保留更多的小数位数,而在日常生活中,则可以使用较少的小数位数。
-近似数的误差处理:学生在进行近似数的运算时,可能会忽略误差的累积,导致结果不准确。
-举例:通过具体的计算例子,展示在连续运算中,误差是如何累积的,以及如何通过适当的近似方法减少误差。
-近似数与精确数的区别:学生可能会混淆近似数与精确数的概念,认为近似数就是准确的数值。
五、教学反思
在今天的教学过程中,我发现学生们对于近似数的概念和表示方法掌握得相对较好。通过引入日常生活中的实例,他们能够迅速理解近似数在实际中的应用。然而,我也注意到在讲解近似数的运算规则和误差传播时,部分学生显得有些困惑。这让我意识到,这部分内容是本节课的难点,需要我在今后的教学中进一步强化。
在实践活动环节,学生们分组讨论和实验操作的表现让我感到惊喜。他们能够积极参与,提出自己的观点,并将所学的近似数知识应用到实际问题中。但同时,我也发现有些小组在讨论时,对于如何将近似数应用于实际问题还显得有些迷茫。为此,我计划在下一节课中增加一些更具针对性的案例分析,以帮助他们更好地理解近似数的实际应用。

人教版七年级数学上册:1.5.3《近似数》说课稿

人教版七年级数学上册:1.5.3《近似数》说课稿

人教版七年级数学上册:1.5.3 《近似数》说课稿一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,进一步对数的认知。

本节课主要介绍了近似数的概念、求法以及应用。

通过学习近似数,学生能更好地理解和掌握数的运算,为后续学习更高级的数学知识打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有一定的了解。

但学生在求近似数方面可能存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及掌握求近似数的方法。

三. 说教学目标1.知识与技能:理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。

2.过程与方法:通过观察、分析、实践等活动,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.重点:近似数的概念、求法以及应用。

2.难点:掌握求近似数的方法,能运用近似数解决实际问题。

五. 说教学方法与手段1.采用情境教学法,以生活中的实际问题引入近似数的概念,激发学生的学习兴趣。

2.利用多媒体课件,直观展示近似数的求法,帮助学生更好地理解。

3.采用小组合作学习,让学生在讨论中掌握求近似数的方法,培养学生的合作意识。

4.运用练习题,巩固所学知识,提高学生的解题能力。

六. 说教学过程1.导入:以生活中的实际问题引入近似数的概念,让学生感受近似数在生活中的应用。

2.新课讲解:介绍近似数的概念,讲解求近似数的方法,并通过例题展示求解过程。

3.学生练习:让学生独立完成练习题,巩固所学知识。

4.小组讨论:学生分组讨论,探讨近似数在实际问题中的应用,分享解题心得。

5.课堂小结:总结本节课所学内容,强调近似数的概念和求法。

6.布置作业:布置适量作业,让学生进一步巩固近似数的相关知识。

七. 说板书设计板书设计如下:1.近似数的概念2.求近似数的方法3.近似数在实际问题中的应用八. 说教学评价1.学生对近似数的概念、求法的掌握程度。

初中近似数教案人教版

初中近似数教案人教版

初中近似数教案人教版教学目标:1. 理解近似数的概念,掌握近似数的求法。

2. 能够正确运用四舍五入法求一个数的近似数。

3. 能够运用近似数解决实际问题。

教学重点:1. 近似数的概念。

2. 四舍五入法求近似数。

教学难点:1. 近似数的求法。

2. 运用近似数解决实际问题。

教学准备:1. 课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的整数、小数和分数知识。

2. 提问:我们在生活中经常会遇到一些不精确的数据,比如称重、测量长度等,这些不精确的数据如何表示呢?二、新课讲解(20分钟)1. 介绍近似数的概念:近似数是对一个数进行四舍五入,使其更接近实际值的一种表示方法。

2. 讲解四舍五入法求近似数的方法:a. 确定要近似的数位。

b. 找到要近似的数位后面的数字。

c. 如果后面的数字大于或等于5,则将要近似的数位加1;如果后面的数字小于5,则要保持要近似的数位不变。

d. 将要近似的数位后面的数字全部变成0。

3. 举例讲解:如将3.14159近似到小数点后两位。

a. 确定要近似的数位为小数点后两位。

b. 找到要近似的数位后面的数字为5。

c. 5大于等于5,所以将小数点后第二位数字4加1,变成5。

d. 将小数点后第三位数字1变成0。

e. 最终结果为3.14。

4. 引导学生思考:近似数在实际生活中有哪些应用?三、练习巩固(15分钟)1. 让学生独立完成练习题,检验对近似数的理解和掌握。

2. 引导学生相互讨论,解决练习题中的问题。

四、总结拓展(10分钟)1. 回顾本节课所学内容,总结近似数的概念和求法。

2. 提问:近似数在实际生活中有哪些应用?3. 引导学生思考:如何运用近似数解决实际问题?五、课后作业(课后自主完成)1. 运用四舍五入法,将给出的数值近似到指定数位。

2. 结合生活实际,思考如何运用近似数解决问题。

教学反思:本节课通过导入、新课讲解、练习巩固、总结拓展和课后作业等环节,使学生掌握了近似数的概念和四舍五入法求近似数的方法。

人教版数学七年级上册1.5.3《近似数》教学设计

人教版数学七年级上册1.5.3《近似数》教学设计

人教版数学七年级上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。

本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

二. 学情分析七年级的学生已经掌握了实数、有理数等基础知识,具备了一定的逻辑思维能力。

但他们对近似数的概念和求法可能还比较陌生,需要通过实例和练习来理解和掌握。

三. 教学目标1.理解近似数的概念,掌握求近似数的方法。

2.能够运用近似数解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.近似数的概念和求法。

2.运用近似数解决实际问题。

五. 教学方法1.实例教学:通过具体的实例来引导学生理解和掌握近似数的概念和求法。

2.小组讨论:学生进行小组讨论,培养学生的团队合作能力和逻辑思维能力。

3.练习巩固:通过布置练习题,让学生在实践中运用所学知识,巩固所学内容。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题。

2.练习题:准备一些相关的练习题,用于巩固所学内容。

七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“一张地图上的两个城市之间的距离是300公里,请问这个距离是精确值还是近似值?”让学生思考和讨论,引出近似数的概念。

2.呈现(10分钟)介绍近似数的定义和求法,通过PPT展示实例和图示,让学生理解和掌握近似数的概念和求法。

3.操练(10分钟)布置练习题,让学生在课堂上进行练习,运用所学知识求近似数。

教师进行个别指导和讲解,帮助学生掌握求近似数的方法。

4.巩固(10分钟)让学生分组讨论,运用近似数解决实际问题。

教师进行巡回指导,给予学生反馈和指导。

5.拓展(10分钟)让学生思考和讨论近似数在实际生活中的应用,如购物、测量等。

分享自己的经验和体会,进一步加深对近似数概念的理解。

6.小结(5分钟)对本节课的内容进行小结,强调近似数的概念和求法,提醒学生注意近似数在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5.3 近似数
【知识与技能】
1.了解近似数的概念.
2.会按精确度要求取近似数.
3.给一个近似数,会说出它精确到哪一位.
【过程与方法】
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
【情感态度】
通过师生合作,联系实际,激发学生学好数学的热情.
【教学重点】
近似数和精确度的意义.
【教学难点】
由给出的近似数求其精确度,按给出的精确度求近似数.
一、情境导入,初步认识
我们常会遇到这样的问题:
(1)七年级(2)班有42名同学;
(2)每个三角形都有3个内角.
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重约是49千克.
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.
我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.
我们把像960万、49这些与实际数很接近的数称为近似数.
近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在计算和测量中有时并不需要很准确的数,只需要一个近似数即可.如地球的表面积约为5.1亿平方千米,某市约有50万人等,这里的5.1亿、50万都是近似数.
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.
我们都知道,π=3.14159…….
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;
如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);
如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
二、典例精析,掌握新知
例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?
(1)某中学七年级有897人;
(2)小华的身高为1.6m;
(3)一本书共有178页;
(4)临园口每天的车流量大约有30000辆;
(5)地球的平均半径约为6370km;
(6)某小区在入冬以后有38户人家向物业部门报修暖气.
【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.
解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.
例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)(1)0.0158(精确到0.001);
(2)304.35(精确到个位);
(3)1.804(精确到0.1);
(4)1.804(精确到0.01).
解:(1)0.0158≈0.016;
(2)304.35≈304;
(3)1.804≈1.8;
(4)1.804≈1.80.
【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.
试一试教材第46页练习.
例3下列由四舍五入法得到的近似数,各精确到哪一位?
(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1);
(2)0.0572精确到万分位(精确到0.0001);
(3)2.40万精确到百位.
【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.
例4一辆卡车最多能装4吨沙子,现有沙子79吨.
(1)至少需要多少辆这样的卡车才能运完沙子?
(2)这些沙子能装满多少辆这样的卡车?
【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.
解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.
(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.
【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.
三、运用新知,深化理解
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数?哪些是近似数?
(1)某中学共有98个教学班;
(2)我国约有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148(精确到千分位);
(2)1.5673(精确到0.01);
(3)0.03097(精确到0.0001).
4.下列由四舍五入得到的近似数,各精确到哪一位?
(1)54.8;(2)0.00204;(3)3.6万.
【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.
【答案】1.略.
2.(1)精确值;(2)近似值.
3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.
4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.
四、师生互动,课堂小结
引导学生回忆相关概念,并由学生表述,互相指点.
1.布置作业::从教材习题1.5中选取.
2.完成练习册中本课时的练习.
3.选做题.
(1)下列由四舍五入得到的近似数各精确到哪一位?
①32;②17.93;③0.084;④7.250;
⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.
(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?
①23.04②23.06③22.99④22.85
【答案】3.(1)①精确到个位;
②精确到百分位;
③精确到千分位;
④精确到千分位;
⑤精确到百位;
⑥精确到百位;
⑦精确到千分位;
⑧精确到万分位.
(2)②和④.
本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生
身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.
作者留言:
非常感谢!您浏览到此文档。

为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。

相关文档
最新文档