人教版七年级数学上册教案全套
人教版七年级上册数学教案【10篇】

人教版七年级上册数学教案【10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!人教版七年级上册数学教案【10篇】教案设计是改善课堂教学的一种更高层次的探索,是提高课堂教学质量和效率的一项必要工作,它可以促进教学的系统化,使老师掌握讲课节奏。
新人教版七年级数学上册全册教案(114页)

新人教版七年级数学上册全册教案第一章有理数1.1正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。
教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)教学过程:一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数,,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数:-3, 3, 2, -2, 0, +0.5, -0.5。
二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。
在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
人教版七年级数学上册教案(5篇)

人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。
下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。
最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。
【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点【教学重点】数轴的意义及作用。
【教学难点】数轴上的点与有理数的直观对应关系。
课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
2024人教版数学七年级上册教案

2024人教版数学七年级上册教案第一章丰富的图形世界第1节几何图形一、教学目标1.了解几何图形的概念,能够识别生活中的几何图形。
2.培养学生的观察能力和空间想象能力。
3.激发学生对几何学的兴趣,提高学生的数学素养。
二、教学重难点重点:几何图形的基本概念和识别。
难点:空间想象能力的培养。
三、教学准备1.准备一些生活中常见的几何图形实物或图片。
2.准备教学课件。
四、教学过程1.导入新课师:同学们,我们日常生活中经常接触到各种各样的图形,你们能举例说明吗?生:例如三角形、正方形、圆形等。
师:很好,这些图形都属于几何图形,今天我们就来学习几何图形的基本概念。
2.讲解新课(1)几何图形的概念师:几何图形是数学中研究的一种基本对象,它包括点、线、面等元素。
请大家观察一下,我们教室里的物品,哪些是几何图形?生:黑板、窗户、课桌等。
(2)几何图形的分类师:几何图形可以分为平面图形和立体图形两大类。
平面图形包括三角形、四边形、圆等,立体图形包括圆柱、圆锥、球等。
请大家举例说明。
生:三角形、正方形、圆形是平面图形,圆柱、圆锥、球是立体图形。
(3)几何图形的性质师:几何图形具有一些基本性质,如三角形的三边关系、四边形的内角和等。
这些性质对于我们解决实际问题有很大的帮助。
3.实例分析师:下面我们来看一些实例,请大家分析这些实例中包含哪些几何图形。
(1)图片实例:展示一张包含多种几何图形的图片,如建筑、自然景观等。
(2)实物实例:展示一些生活中常见的几何图形实物,如球、立方体等。
4.课堂练习师:现在请大家来做一些练习,巩固我们刚刚学习的知识。
A.篮球B.课桌C.水杯A.正方形B.圆形C.球师:今天我们学习了几何图形的基本概念、分类和性质。
通过学习,我们知道了生活中的许多物品都可以用几何图形来表示。
希望大家能够在日常生活中多观察、多思考,发现更多的几何图形。
五、课后作业1.复习几何图形的基本概念、分类和性质。
2.完成课后练习题。
人教版七年级上册数学教案5篇

人教版七年级上册数学教案5篇教案设计是改善课堂教学的一种更高层次的探究,是提高课堂教学质量和效率的一项必要工作,它可以促进教学的系统化,使教师控制讲课节奏。
下面我给大家带来关于人教版七年级上册数学教案,方便大家学习人教版七年级上册数学教案1教学目标(一)通过复习一位数乘整百整十数不进位的口算,学生理解并控制一位数乘两位数进位乘法的口算办法,能正确地进行一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参加到学问的形成过程中,控制口算的办法,能够比拟娴熟地进行口算.教学重点和难点重点:在理解的根底上,控制用一位数乘的口算过程.难点:理解并控制满十向前一位进“1〞的算理.教学过程设计(一)复习预备投影出示口算题:(用纸板笼罩,一题一题出示)10×514×2100×7130×220×334×2200×4210×3老师提问:14×2请你说一说口算过程.(学生答复10×2=20,4×2=8,20+8=28)老师追问:则你能不能说一说140×2又是怎样口算的呢?(同座位的两个小伴侣相互说一说)然后请同学答复(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)老师揭示课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出例如1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)按照14×3的意义,用小棒摆出来.想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比拟14×3与14×2两道口算的异同:(同桌或四人小组的同学相互启发进行研究)然后请同学答复:两道题口算过程是相同的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16×2=25×2=要求同学在练习本上直接写出结果.再把这几道题分离写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体勘误.分离请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分离请同学相互说,集体说,个人说.反复表达口算过程.出例如2:板书:口算:140×3=请同学想一想应当怎样做,然后试做.(老师巡察,个别指导一下)做完后,小组同学相互说一说自己是怎样做的.集中起来说出不同的主意:因为14×3=42,则140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给一定,尤其第三种办法,赋予褒扬和鼓舞.做一做投影出示:130×5=380×2=150×6=每人在自己本上直接写出结果.四人小组进行研究,能用几种办法说出口算过程.小结今日我们学习了“一位数乘两位数、乘整十整百数〞,在学习这局部内容时,要留意个位上、十位上满十向前一位进“1〞.(三)稳固反应1.根本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学相互说一说.最后集体勘误.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.勘误时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并表明口算过程.3.找伴侣游戏.15×318×212×514×435×2220×4240×325×4310×332×326×2160×616×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的伴侣.45366056708807201009109652960489072424809004805204.文字表达题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,勘误时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计表明本节课教学内容口算“一位数乘两位数、乘整百整十数〞.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新学问做预备.讲授新课例1时,抓住满十进一这一难点,以旧学问引出新学问,通过新旧学问的比拟,突出新旧学问的衔接点,通过学生自己动手、动脑、动口获取学问,体现以学生为主体.使学生真正悟出新旧学问的内在联系.通过形式多样的练习,到达能精确、快速地口算的目的.板书设计人教版七年级上册数学教案2【教学目标】1.使学生经受“提出问题—估算—口算—笔算〞的计算过程,在多样化的算法中能自主最优化。
(完整)人教版七年级数学上册全册教案

(完整)人教版七年级数学上册全册教案第一章有理数1.1正数和负数教学目标: 1、了解正数与负数是从实际需要中产生的。
2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3、会用正、负数表示实际问题中具有相反意义的量。
重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。
教学过程:正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。
结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。
为了用数表示具有相反意义的量,我们把其中一种意义的量。
如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。
正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。
根据需要,有时在正数前面也加上“+”(读作正)号。
注意:①数0既不是正数,也不是负数。
0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。
②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。
三、巩固知识1、课本P3 练习1,2,3,42、课本P4例四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。
1.2.1有理数教学目标: 1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。
2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。
重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。
)问题2:观察黑板上的这么数,并给它们分类。
人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。
同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。
)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
人教版初一上册数学教案精选【三篇】

【导语】本⽂为⽆忧考为您整理的⼈教版初⼀上册数学教案精选【三篇】,希望对⼤家有帮助。
课题:1.1正数和负数 教学⽬标1,整理前两个学段学过的整数、分数(包括⼩数)的知识,掌握正数和负数的概念; 2,能区分两种不同意义的量,会⽤符号表⽰正数和负数; 3,体验数学发展的⼀个重要原因是⽣活实际的需要,激发学⽣学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量 教学过程(师⽣活动)设计理念 设置情境 引⼊课题上课开始时,教师应通过具体的例⼦,简要说明在前两个学段我们已经学过的数,并由此请学⽣思考:⽣ 活中仅有这些“以前学过的数”够⽤了吗?下⾯的例⼦ 仅供参考. 师:今天我们已经是七年级的学⽣了,我是你们的数学⽼师.下⾯我先向你们做⼀下⾃我介绍,我的名字是XX,⾝⾼1.73⽶,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总⼈数的37%… 问题1:⽼师刚才的介绍中出现了⼏个数?分别是什么?你能将这些数按以前学过的数的分类⽅法进⾏分类吗? 学⽣活动:思考,交流 师:以前学过的数,实际上主要有两⼤类,分别是整数和分数(包括⼩数). 问题2:在⽣活中,仅有整数和分数够⽤了吗? 请同学们看书(观察本节前⾯的⼏幅图中⽤到了什么数,让学⽣感受引⼊负数的必要性)并思考讨论,然后进⾏交流。
(也可以出⽰⽓象预报中的⽓温图,地图中表⽰地形⾼低地形图,⼯资卡中存取钱的记录页⾯等) 学⽣交流后,教师归纳:以前学过的数已经不够⽤了,有时候需要⼀种前⾯带有“-”的新数。
先回顾⼩学⾥学过的数的类型,归纳出我们已经学了整数和分数,然后,举⼀些实际⽣活中共有相反意义的量,说明为了表⽰相反意义的量,我们需要引⼊负数,这样做强调了数学的严 密性,但对于学⽣来说,更多 地感到了数学的枯燥乏味为了既复习⼩学⾥学过的数,⼜能激发学⽣的学习兴 趣,所以创设如下的问题情境,以尽量贴近学⽣的实际. 这个问题能激发学⽣探究的欲望,学⽣⾃⼰看书学习是培养学⽣⾃主学习的重要途径,都应予以重视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册教案全套1.1 正数和负数【出示目标】1.了解负数产生是生活、生产的需要.2.掌握正、负数的概念和表示方法,理解数0表示的量的意义.3.理解具有相反意义的量的含义.【预习导学】自学指导看书学习第1~4页内容,思考下面的问题.1.举例说明什么是正数,什么是负数?2.0是不是正数或负数?举例说明你对数0的新的认识.3.数的产生和发展主要是为了满足什么需要?举例:用正数和负数表示具有相反意义的量.【教师点拨】净胜球、产量负增长知识探究1.__大于0__的数叫做正数,在正数的前面加上__符号“-”(负)__的数叫负数.2.若把一种量规定为“正”,那么它的相反的量就是“__负__”.【自学反馈】1.下列各数中,哪些是正数?哪些是负数?7,-9.24,-301,31.25,0解:正数:7,31.25负数:-9.24,-3012.在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示?解:-203.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?解:离标准质量差0.03克.【合作探究】活动1:小组讨论1.指出下列各数中,哪些是正数?哪些是负数?-2,+313,0,45,204,-0.02,+3.65,-537. 解:正数:+313,45,204,+3.65负数:-2,-0.02,-5372.(1)一个月内,小明体重增加2 kg ,小华体重减少1 kg ,小强体重无变化.写出他们这个月的体重增长值.(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%法国减少2.4%,英国减少3.5%意大利增长0.2%,中国增长7.5%写出这些国家这一年进出口总额的增长率.解:见课本P3“例题”.活动2:活学活用1.(1)在-7,0,-3,78,+9100,-0.27中,负数有(D)A.0个B.1个C.2个D.3个(2)下列结论中正确的是(D)A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数(3)读出下列各数,指出其中哪些是正数,哪些是负数?-2,0.6,+6,0,-3.141 5,200,-754 200,解:正数:0.6,+6,200负数:-2,-3.141 5,-754 200【教师点拨】正负数的定义,零的认识.2.(1)如果上升8 m记作+8 m,那么下降5 m记作__-5__m__.如果-22元表示亏损22元,那么45元表示__盈利45元__.(2)一种零件的直径尺寸在图纸上是30错误!(单位:mm),表示这种零件的标准尺寸是30 mm,加工要求最大不超过__30.03__mm__,最小不小于__29.98__mm__.(3)七(1)班一次数学测验平均成绩是85分,老师以平均成绩为基准,记为0,超过85分的记为正,那么92分、78分各记作什么?若老师把某3名同学的成绩简记为:-5,0,+8,则这3名同学的实际成绩分别为多少分?解:+7,-7;80,85,93.【教师点拨】正负数表示相反的量.【课堂小结】1.正数和负数的概念.2.正数和负数表示相反意义的量.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.2有理数1.2.1有理数【出示目标】1.理解有理数的概念.2.会判断一个数是整数还是分数,是正数还是负数.3.懂得有理数的两种分类方法.【预习导学】自学指导看书学习第6页后,请你认真思考,你认为整数包括哪些?分数包括哪些?有理数按数的形式可以怎样来分类?你认为正有理数包括哪些?负有理数包括哪些?有理数按性质(符号)可以怎样来分类?知识探究1.正整数、__0__和负整数统称为整数.__正分数__和__负分数__统称为分数.2.__整数__和__分数__统称为有理数.1.把下列各数写在相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16 正整数集合:{ 10,+66,2 009,… }负整数集合:{ -5,-16,… }负分数集合:{ -4.5,-2.15,-35,… } 正分数集合:{ +235,0.01,15%,227,… } 整数集合:{ -5,10,0,+66,2 009,-16,… }负数集合:{ -5,-4.5,-2.15,-35,-16,… } 正数集合:{ 10,+235,0.01,+66,15%,227,2 009,… } 有理数集合:{ -5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16,… } 2.有理数的分类( 分两类 ).【教师点拨】有理数的分类标准要统一.【合作探究】活动1:小组讨论1.在数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4 076,负数有__-5,-0.24,-59,-2__,整数有-5,0,7,4 076,-2,分数有23,-0.24,-59,有理数有__-5,23,0,-0.24,7,4__076,-59,-2__. 2.下列说法不正确的是( A )A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数3.有理数:-7,3.5,-12,112,0,π,1317中正分数有( C ) A .1个 B .2个 C .3个 D .4个活动2:活学活用1.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数是__-8,-44__,负分数有__-113,-0.99__. 2.下列说法正确的是( D )A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数3.有理数中,是整数而不是负数的是__非负整数__,是负有理数而不是分数的是__负整数__.通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.2.2 数轴【出示目标】1.了解数轴的概念,学会画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.2.通过现实生活中的例子,从直观认识到理性认识,从而建立数轴概念;通过学习,初步体会对应的思想、数形结合的思想.3.体会数形结合的思想方法,进而初步认识事物之间的联系,激发学习热情.【预习导学】【自学指导】看书学习第7、8、9页内容,思考和回答以下问题.1.通过阅读课本(数轴部分)你认为画一条数轴必须包括什么?这就是数轴的三要素;请你在下面画一条数轴.2.数轴上有些点表示有理数,如下图,指出A 、B 、C 、D 、E 分别表示什么数?3.完成课本第9页的归纳,由此可见要在数轴上确定一个有理数的位置,必须确定哪两个方面?画一条数轴,把2、-3、-1.5、223、0、-214标在数轴上. 4.所有的有理数都能标在数轴上吗?数轴上的所有点都表示有理数吗?5.数轴上的数都是按照正方向由小到大排列的,左边的数与右边的数大小关系怎样?正数、零、负数的大小关系怎样?由此我们可以根据数轴来比较有理数的大小关系.【知识探究】1.规定了__原点__、__正方向__、__单位长度__的直线叫做数轴.2.数轴是一条__直线__,它可以向__两端__无限延伸.3.数轴上原点左侧是__负__数,正数在原点的__右__侧.【自学反馈】1.数轴的三要素是__原点__、__正方向__、__单位长度__.2.指出图中所画数轴的错误:解:略3.如图,数轴上点A 、B 表示的数分别是__-2.5__、__2__.4.数轴上表示-8的点在原点的__左__侧,距离原点__8__个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是__-5__.5.画一条数轴表示下列各数,并用“<”把这些数连接起来.13,2,-4.5,0,52,-0.5, -14解:略【合作探究】活动1:小组讨论1.画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75;2.画一条数轴,并表示出如下各点:1 000,5 000,-2 000;3.画一条数轴,在数轴上标出到原点的距离小于3的整数;4.画一条数轴,在数轴上标出-5和+5之间的所有整数.【教师点拨】数轴的三要素、画法、适当地选择单位长度和原点的位置.活动2:活学活用1.在数轴上点A 表示-4,如果把原点向负方向移动1.5个单位,那么在新数轴上点A 表示的数是( C )A .-512B .-4C .-212D .2122.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有__4__个. 3.画出数轴并表示下列有理数:1.5,-2,2,-2.5,412,0. 解:略4.写出数轴上点A ,B ,C ,D ,E 所表示的数:解:0,-2,1,2,-35.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?解:-2,-1【教师点拨】利用数轴数形结合解题.【课堂小结】1.数轴的出现对数学的发展起了重要作用,以它作基础师生共同研究,什么是数轴?如何画数轴?如何在数轴上表示有理数?2.利用数轴很多数学问题都可以借助图直观地表示.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.2.3 相反数【出示目标】1.理解相反数的意义.2.掌握求一个已知数的相反数的方法.3.提高观察、归纳和概括的能力.【预习导学】【自学指导】1.在数轴上,到原点距离等于3的点有__两__个,这两个点表示的数是__-3__和__3__,像这样,只有符号不同的两个数叫做互为相反数.也就是说:3是__-3__的相反数,-3是__3__的相反数.2.数a 的相反数记作__-a __.5的相反数记作__-5__,-5的相反数记作__-(-5)__,而-5的相反数是__5__,因此-(-5)=__5__.【知识探究】1.相反数的定义是__只有符号不同的两个数叫做互为相反数__.2.在数轴上表示相反数的两个数的点__关于原点对称__.3.我们规定:0的相反数是__0__.【自学反馈】1.数轴上表示互为相反数的两个点相互之间的距离是8.4,则这两个数是__±4.2__.2.-2.3的相反数是__2.3__;0.01是__-0.01__的相反数.3.相反数等于本身的数是__0__.4.已知有理数a ,则a 的相反数可用__-a __表示.5.表示下列各数的相反数,并求出相反数的值:①7 ②+6.3 ③-334 ④+(-23) ⑤-(+356) ⑥-(-2.6) ⑦ 0解:-7,-(+6.3)=-6.3,-(-334)=334,-[+(-23)]=23, -[-(+356)]=356, -[-(-2.6)]=-2.6, -0=0.【合作探究】活动1:小组讨论1.化简下列各数,你能发现什么规律?(1)-[-(-3)]=__-3__;(2)-[+(-3.5)]=__3.5__;(3)+[-(-6)]=__6__;(4)-[-(+7)]=__7__;规律:__负号个数为奇数时,化简得的结果为负;负号个数为偶数时化简得的结果为正__.2.化简下列各数,并总结一个有理数符号化简的规律.(1)-(-13)=__13__; (2)+(+10)=__10__;(3)+(-412)=__-412__; (4)-{+[-(-2)]}=__-2__;3.已知a 、b 在数轴上的位置如图所示.(1)在数轴上作出它们的相反数;(2)用“<”按从小到大的顺序将这四个数连接起来.解:(1)如图所示;(2)-a <b <-b <a .【教师点拨】相反数的特点和定义:到原点的距离相等,符号相反.活动2:活学活用1.-74的相反数是__74__;13的相反数是__-13__;0的相反数是__0__;a +1的相反数是__-a -1__. 2.若a =-4,则-(-a )=__-4__.若-y =3.1,则y +3.1=__0__;若-a =-(-3),则a =__-3__,b -a 与__a -b __互为相反数.3.__负__数的相反数比它本身大,__正数__的相反数比它本身小,__0__的相反数和它本身相等.4.若a =-2,则-a =__2__;若-b =74,则b =__-74__;若-c =-8,则c =__8__. 5.x 的相反数仍是x ,则x =__0__.6.已知a 与b 互为相反数,a 与b 应满足关系式__a +b =0__. 7.一个数的相反数是最大的负整数,那么这个数是__1__.【课堂小结】相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离原点的距离相等等性质均有广泛的应用.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.2.4 绝对值第1课时 绝对值【出示目标】1.理解绝对值的几何意义和代数意义.2.会求一个有理数的绝对值.【预习导学】自学指导看书学习第11页的内容,思考下面的问题.1.在数轴上和原点相距3个单位长度的点表示的数是什么?-5在原点的哪一侧,与原点相距几个单位?你能在数轴上标出这些距离吗?2.通过学习,你能写出绝对值的定义吗?3.一个有理数a 的相反数怎样表示?通过本节的学习你知道一个有理数a 的绝对值怎样表示吗? 知识探究1.一般地,__数轴上表示数a 的点与原点的距离__,叫做数a 的绝对值.2.一个正数的绝对值是__它本身__,即:若a>0,则|a|=__a__;一个负数的绝对值是__它的相反数__,即:若a<0,则|a|=__-a__;0的绝对值是__0__(双重性).【自学反馈】1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是__±6.03__.所以|6.03|=__6.03__,|-6.03|=__6.03__.2.(1)|+13|=__13__;(2)|-8|=__8__;(3)|+315|=__315__;(4)|-8.22|=__8.22__. 3.-213的绝对值是__213__,绝对值等于213的数是__±213__,它们是一对__相反数__. 4.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离.解:85.在|-7|,5,-(+3),-|0|中,负数共有( A )A .1个B .2个C .3个D .4个6.一个数的绝对值等于这个数本身,这个数是( D )A .1B .+1,-1,0C .1或-1D .非负数【教师点拨】非负数的绝对值是它本身,负数的绝对值是它的相反数.【合作探究】活动1:小组讨论1.-2的相反数是( A )A .2B .-2C .0.5D .-0.52.下列四组数中不相等的是( C )A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1|3.下列说法正确的是( B )A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数4.若|x -3|+|y -2|=0,则x =__3__,y =__2__.活动2:活学活用1.绝对值小于2的整数有__3__个,它们分别是__±1,0__.2.指出下列各式中a 的取值.(1)若|a|=-a ,则a 为__非正数__;(2)若|-a|=a ,则a 为__非负数__;(3)若|a -1|=0,则a 为__1__.3.已知a ,b 是有理数,且满足|a +1|+|2-b|=0,求a +b 的值.解:1【教师点拨】注意绝对值的非负性.【课堂小结】1.绝对值的定义:有理数到原点的距离.2.求一个有理数的相反数.3.化简绝对值.|a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)【随堂训练】教学至此,敬请使用学案随堂训练部分.第2课时 有理数的大小比较【出示目标】1.理解比较有理数大小的规则的合理性.2.会比较有理数的大小.【预习导学】自学指导看书学习第12、13页的内容,思考和回答下列问题.1.研究两个有理数,按照正、负、零分类,有怎样的几种情况?(1)正数与正数;(2)正数与零;(3)正数与负数;(4)零与负数;(5)两个负数.2.课本引导我们利用__数轴__进行有理数的大小比较.在数轴上表示有理数,它们从左到右的顺序,就是从__小__到__大__的顺序.即左边的数__小于__右边的数.知识探究1.在数轴上表示的两个有理数,左边的数__小于__右边的数.2.正数__大于__0,0__大于__负数,正数__大于__负数;两个负数,__绝对值大__的反而小.【自学反馈】1.比较-78和-67;-|-(+5)|和-[-(+5)]的大小,并写出比较过程. 解:-78<-67,-|-(+5)|<-[-(+5)],过程略2.求同时满足:①│a │=6,②-a <0这两个条件的有理数a.解:a =6【教师点拨】先化简,再比较.【合作探究】活动1:小组讨论1.将有理数:-(-4),0,-│-312│,-│+2│,-│-(+1.5)│,-(-3),│-(+212)│表示到数轴上,并用“<”把它们连接起来.解:略2.有理数x 、y 在数轴上的对应点如图所示:(1)在数轴上表示-x ,-y ;解:(2)试把x 、y 、0、-x 、-y 这五个数从大到小用“>”连接.解:x>-y>0>y>-x【教师点拨】数轴上的点表示的数右边的总比左边的大.活动2:活学活用1.下面四个结论中,正确的是( D )A .|-2|>|-3|B .|2|>|3|C .2>|-3|D .|-2|<|-3|2.比较大小(填“>”或“<”).(1)-23>-34(2)-20072008>-20082009(3)-(-19)>-|-110| 解:略3.在数轴上表示下列各数:+223,-12,-(-6),-7,-(+3),1,0,-1.5.并用“<”将它们连接起来.解:略4.已知有理数a ,b 在数轴上的位置如图所示,请比较a ,b ,|a|,|b|的大小.解:即|b|>|a|>a>b.【课堂小结】1.两个负数比较大小,绝对值大的反而小.2.正数大于零,零大于负数,正数大于负数.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则【出示目标】1.了解有理数加法的意义.2.理解有理数加法法则的合理性.3.能运用有理数加法法则正确进行有理数加法运算.【预习导学】自学指导看书学习第16、17、18页的内容,思考并回答:结合课本对两个有理数相加的7个计算式,类似地再列举出相应的计算式并结合数轴解释,得出结果(如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0),根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?知识探究有理数加法法则:1.同号两数相加,取__相同__符号,并把绝对值__相加__.2.绝对值不相等的异号两数相加,取__绝对值较大的加数__的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.【自学反馈】计算:(1)16+(-8)=__8__;(2)(-12)+(-13)=__-56__; (3)(+312)+(-72)=__0__; (4)(+8)+(__-3__)=5;(5)(-0.125)+(18)=__0__; (6)0+(-9.7)=__-9.7__.【教师点拨】在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.【合作探究】活动1:小组讨论1.计算:(1)(-3)+(-9);(2)(-4.7)+3.9.解:(1)-12;(2)-0.8.2.足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0.活动2:活学活用1.计算题:(1)(+3)+(+8);(2)(+14)+(-12); (3)(-312)+(-3.5); (4)(-314)+(+213); (5)(-19)+8.3;(6)-3.4+4.解:(1)11,(2)-14,(3)-7,(4)-1112,(5)10.7,(6)0.6.【教师点拨】注意计算的符号,特别是负号.2.某县某天夜晚平均气温是-10℃,白天比夜晚高12℃,那么白天的平均温度是多少?解:2℃3.两个数的和为负数,则下列说法中正确的是(D)A.两个均是负数B.两个数一正一负C.至少有一个正数D.至少有一个负数4.一个正数与一个负数的和是(D)A.正数B.负数C.零D.不能确定符号【课堂小结】有理数的加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.任意有理数和零相加,仍得这个数.【随堂训练】教学至此,敬请使用学案随堂训练部分.第2课时 有理数的加法运算律【出示目标】1.掌握有理数加法的运算律,理解小学中加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.3.能根据有理数加法算式的特点选择适当的简便运算方法.【预习导学】自学指导看书学习第19、20页的内容,要求学生注意新的知识内容的研究方法和新知识有何作用,理解和应用新知识.知识探究加法的交换律的文字表达:__两个数相加,交换加数的位置,和不变__.加法的交换律的字母表达:__a +b =b +a __.加法的交换律的例子说明:__1+2=2+1__.加法的结合律的文字表达:__三个数相加,先用前两个数相加,或者先用后两个数相加,和不变__. 加法的结合律的字母表达:__(a +b )+c =a +(b +c )__.加法的结合律的例子说明:__(1+2)+3=1+(2+3)__.【自学反馈】计算:(1)(-7.34)+(-12.74)+7.34+12.4;(2)(-35+15)+(-45); (3)(-37)+(+15)+(+27)+(-115); (4)(-20.75)+314+(-4.25)+1934; (5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7). 解:(1)-0.34;(2)-65;(3)-117;(4)-2;(5)1.【随堂训练】活动1:小组讨论1.计算:(1)(-2)+3+1+(-3)+2+(-4)(2)16+(-25)+24+(-35)(3)314+(-235)+534+(-825)(4)(-7)+6+(-3)+10+(-6)解:(1)-3;(2)-20;(3)-2;(4)0.2.(教材P 20例3)解:见教材P 20例3【教师点拨】注意运算律的运用.活动2:活学活用1.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+(-12)+13+(-16); (3)1.125+(-325)+(-18)+(-0.6); (4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)-10;(2)23;(3)-3;(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发地0千米;(2)118a.【课堂小结】有理数加法交换律、结合律:1.加法交换律:a +b =b +a ,加法结合律:(a +b)+c =a +(b +c).2.简便运算:①运用运算律;②运用相反数的和为零;③凑整.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.3.2 有理数的减法第1课时 有理数的减法法则【出示目标】1.掌握有理数的减法法则.2.熟练地进行有理数的减法运算.3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.【预习导学】自学指导看书学习第21、22页的内容,思考下列问题.通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x ,使x +(-3)=4,易知x =7,所以4-(-3)=7①另一方面,4+(+3)=7②由①②有4-(-3)=4+(+3)再试,把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7)得出减法法则:__减去一个数,等于加这个数的相反数__.用字母表示为:a -b =a +(-b)【教师点拨】减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.知识探究有理数的减法法则是:__减去一个数,等于加这个数的相反数__;用字母表示为:__a -b =a +(-b)__.【自学反馈】计算:(1)(-3)-(-6); (2)0-8;(3)6.4-(-3.6); (4)-312-(+514). 解:(1)3;(2)-8;(3)10;(4)-834.【教师点拨】(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a -b =a +(-b)【合作探究】活动1:小组讨论计算:(1)(-38)-(-36); (2)0-(-711); (3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234); (6)(-334)-(+1.75). 解:(1)-2;(2)711;(3)5.2;(4)-114;(5)6512;(6)-5.5.活动2:活学活用1.计算:(1)(-23)-(+112)-(-14); (2)(-0.1)-(-813)+(-1123)-(-110); (3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2);(4)(5-6)-(7-9).解:(1)-2312;(2)-313;(3)-6;(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数;(2)-13的绝对值的相反数与23的相反数的差. 解:(1)-0.81-1.8=-2.61;(2)-|-13|-(-23)=-13+23=13.【课堂小结】1.有理数的减法法则:a -b =a +(-b).2.转化原则:减号变加号,减数变成相反数.【随堂训练】教学至此,敬请使用学案随堂训练部分.第2课时 有理数的加减混合运算【出示目标】1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,提高运算的速度和准确度.3.能把有理数加法运算省略加号和括号,理解有理数的和.4.形成解决有理数加减混合运算问题的一些基本策略.【预习导学】自学指导看书学习第23、24页的内容,体会加法与减法的统一和书写的简约.知识探究把下列算式统一为加法,并写成省略加号的形式:(-20)+(+3)-(-5)-(+7)=__(-20)+(+3)+(+5)+(-7)__=__-20+3+5-7__(-7)+(+5)+(-4)-(-10)=__(-7)+(+5)+(-4)+(+10)__=__-7+5-4+10__认识算式:①2-5、②-5+3、③-2-8、④-4+2-6的意义.【教师点拨】注意有理数的加减混合运算写成省略加号的和的形式的意义.自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略加号的和的形式,并计算. 解:23-45-15+13-1=-1.【合作探究】活动1:小组讨论1.计算:(1)(+27)+(-49)-(+59)-(-57)-(+1); (2)-7-(-8)-(-712)-(+9)+(-10)+1112; (3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1;(2)1;(3)50;(4)-5 050.2.银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进了2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?解:增加了,增加了1 625元.3.把-a +(+b)-(-c)+(-d)写成省略加号的和的形式为__-a +b +c -d__.【教师点拨】总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算;(2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则计算.活动2:活学活用1.把下列算式先统一为加法运算再写成省略括号和的形式,并把结果用两种读法读出来.(1)(+9)-(+10)+(-2)-(-8)+3;(2)(-13)-(+22)+(-17)-(-18).解:(1)9-10-2+8+3;(2)-13-22-17+18.2.计算:(1)(-7)-(+5)+(-4)-(-10);(2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1; (4)-2.4+3.5-4.6+3.5.解:(1)-6;(2)-0.5;(3)-314;(4)0.【课堂小结】1.有理数的加减混合运算.2.加号和括号省略.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则【出示目标】1.了解有理数乘法的实际意义.2.理解有理数的乘法法则.3.能熟练的进行有理数乘法运算.【预习导学】自学指导看书学习第28、29、30、31页的内容,亲历有理数的乘法法则的推导过程,掌握有理数的乘法法则,并进行两个有理数的乘法运算.有理数的乘法法则是:__两数相乘,同号得正,异号得负,并把绝对值相乘__.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算__积的绝对值__. 乘积为1的两个数互为__倒数__.如-3的倒数是__-13__, 0.5的倒数是__2__,-212的倒数是__-25__. 看书第30、31页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由__负因数__的个数决定.当负因数的个数是__偶数__时,积为正;负因数的个数是__奇数__时,积为负.几个数相乘,如果其中有一个因数是0,积等于__0__.【自学反馈】1.计算:(-114)×(-45)=__1__, (+3)×(-2)=__-6__, 0×(-4)=__0__, 123×(-115)=__-2__, (-15)×(-13)=__5__, -│-3│×(-2)=__6__.2.计算:(-2)×(-3)×(-5)=__-30__,(-723)×3×(-123)=__1__, (-9.89)×(-6.2)×(-26)×(-30.7)×0=__0__.【教师点拨】(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.【合作探究】活动1:小组讨论1.计算:(+5)×(+3)=__15__,(+5)×(-3)=__-15__,(-5)×(+3)=__-15__,(-5)×(-3)=__15__,(+6)×0=__0__,6×(-4)=__-24__,(-6)×4=__-24__,(-6)×(-4)=__24__.2.计算:(-112)×815×(-23)×(-214)=__-115__, 14×(-16)×(-45)×(-114)×8×(-0.25)=__8__. 活动2:活学活用1.计算:(1)(-5)×0.2=__-1__;(2)(-8)×(-0.25)=__2__;(3)(-312)×(-27)=__1__; (4)0.1×(-0.01)=__-0.001__;(5)(-59)×0.01×0=__0__;(6)(-2)×(-5)×(+56)×(-30)=__-250__; (7)312×(-47)+(-25)×(-334)=__-12__. 2.a ×(-56)=1则a =__-65__.一个有理数的倒数的绝对值是7,则这个有理数是__±17__. 3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.( × )(2)两数相乘,若积为负数,则这两个数异号.( √ )(3)两个数的积为0,则两个数都是0.( × )(4)互为相反的数之积一定是负数.( × )(5)正数的倒数是正数,负数的倒数是负数.( √ )【课堂小结】1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.【随堂训练】教学至此,敬请使用学案随堂训练部分.第2课时 有理数的乘法运算律【出示目标】1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.3.培养学生通过观察、思考找到合理解决问题的能力.【预习导学】自学指导看书学习第32、33页的内容,学习乘法交换律、结合律和分配律,通过探究,体验由特殊到一般研究问题的演绎思想;通过应用,感受利用运算律优化解题过程,养成观察思考的良好习惯. 知识探究乘法的交换律文字表达:__两个数相乘,交换因数的位置,积相等__.乘法的交换律字母表达:__ab =ba__.乘法的结合律文字表达:__三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等__. 乘法的结合律字母表达:__(ab)c =a(bc)__.乘法的分配律文字表达:__一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加__.乘法的分配律字母表达:__a(b +c)=ab +ac__.【自学反馈】1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1). 解:-9.2.计算:(1)-34×(8-43-1415); (2)191819×(-15). 解:(1)-4310;(2)-299419.【教师点拨】运用运算律进行简便运算.【合作探究】活动1:小组讨论计算:1.(-0.5)×(-316)×(-8)×113; 解:-1.2.-10556×12; 解: -1 270.3.(-34+156-78)×(-24). 解: -5.4.317×(317-713)×722×2122; 解: -4.5.(23-49+527)×27-1117×8+117×8. 解:3活动2:活学活用1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是( D )A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是( C )A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是(C ) A .2 007×(-8-18) B .-2 007×(-8-18)C .2 007×(-8+18)D .-2 007×(-8+18)4.计算1357×316最简便的方法是( D )A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×3165.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117;(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10;(2)1921;(3)250.【课堂小结】1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.【随堂训练】教学至此,敬请使用学案随堂训练部分.。