绝对值与一元一次方程
绝对值与方程及几何意义解题

绝对值与一元一次方程一、形如| x +a | = b 方法:去绝对值符号例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2二、绝对值的嵌套方法:由外向内逐层去绝对值符号例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3三、形如:| ax + b | = cx+d绝对值方程方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。
例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5利用“零点分段“法化简方法:求零点,分区间,定正负,去符号例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、四、“零点分段法”解方程“零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。
例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 |练习:解方程1、3| 2x – 1 | = |-6|2、││3x-5│+4│=83、│4x-3│-2=3x+44、│2x-1│+│x-2│=│x+1│提高题:1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b 的值. (“华杯赛”邀请赛试题)3、讨论方程││x+3│-2│=k的解的情况.绝对值的几何意义解题一、求代数式的最小值1、求│x-1│+│x+2│的最小值2、求│x-3│+│x-4│+│x-5│的最小值3、求│x-1│+│x-2│+│x-3│+……+│x-1997│的最小值4、求│x-2│+│x-4│+│x-6│+……+│x-2000│的最小值二、解绝对值方程1、│x+1│+│x-3│=22、│x+1│+│x-2│-3=02、是否存在有理数x,使│x+1│+│x-3│=x?。
第六讲 绝对值与一元一次方程

第六讲 绝对值与一元一次方程一、含绝对值的一次方程1.含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解;②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a =-;③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a --=.(2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+;③分别解方程ax b cx d +=+和()ax b cx d +=-+;④将求得的解代入0cx d +≥检验,舍去不合条件的解.(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+;②分别解方程ax b cx d +=+和()ax b cx d +=-+.(4)形如()x a x b c a b -+-=<型的绝对值方程的解法:①根据绝对值的几何意义可知x a x b a b -+-≥-; ②当c a b <-时,此时方程无解;当c a b =-时,此时方程的解为a x b ≤≤;当c a b >-时,分两种情况:①当x a <时,原方程的解为2a b c x +-=;②当x b >时,原方程的解为2a b c x ++=.(5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =; ②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法: 解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f+≥,求出x的取值范围;②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d+=+-+和()()ax b ex f cx d+=-+-+;③解②中的两个绝对值方程.二.例题讲解:【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11 提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B 提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.习题训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.方程││x-2│-1│=2的解是________.6.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.7.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.8.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.9.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200110.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n11.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数12.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个13.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在14.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)15.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)16.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)17.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.18.讨论方程││x+3│-2│=k的解的情况.19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值. (“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.。
知识点106--含绝对值符号的一元一次方程解答题

三、解答题1、(2008•乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为 1或﹣7 ;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.考点:含绝对值符号的一元一次方程;解一元一次不等式。
专题:阅读型。
分析:仔细阅读材料,根据绝对值的意义,画出图形,来解答.解答:解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与﹣3的距离为4的点对应的x的值为1或﹣7.(3分)(2)∵3和﹣4的距离为7,因此,满足不等式的解对应的点3与﹣4的两侧.当x在3的右边时,如图,易知x≥4.(5分)当x在﹣4的左边时,如图,易知x≤﹣5.(7分)∴原不等式的解为x≥4或x≤﹣5(8分)(3)原问题转化为:a大于或等于|x﹣3|﹣|x+4|最大值.(9分)当x≥﹣1时,|x﹣3|﹣|x+4|应该恒等于7,当﹣4<x<﹣1,|x﹣3|﹣|x+4|=﹣2x﹣1随x的增大而减小,当x≤﹣4时,|x﹣3|﹣|x+4|=7,即|x﹣3|﹣|x+4|的最大值为7.(11分)故a≥7.(12分)点评:本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.2、解方程:.考点:含绝对值符号的一元一次方程。
数学竞赛专题讲座七年级第8讲绝对值与一元一次方程(含答案)

第八讲 绝对值与一元一次方程绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.纯粹数学,就其本质而言,是逻辑思想的诗篇.——爱因斯坦爱因斯坦(1879~1955),生于德国,近代最伟大的理论物理学家,相对论的创立者,曾获得诺贝尔物理学奖.例题讲解【例1】方程5665-=+x x 的解是 . (重庆市竞赛题)思路点拨 设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.【例2】 适合81272=-++a a 的整数a 的值的个数有( ).A .5B .4C . 3D .2 (希望杯邀请赛试题)思路点拨 用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.链接:形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx ,才是原方程的根,否则必须舍去,故解绝对值时应检验.【例3】解方程:413=+-x x ; (天津市竞赛题)思路点拨 从内向外,根据绝对值定义性质简化方程.形如e d c b ax =+++的方程,含有多层的绝对值,可从外向内逐层去掉绝对值符号,将原方程化为形如d cx b ax +=+的方程求解.【例4】解下列方程: (1)113+=--+x x x (北京市“迎春杯”竞赛题) (2)451=-+-x x . (“祖冲之杯”邀请赛试题)思路点拨 解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.【例5】已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论.思路点拨 方程解的情况取决于a 的情况,a 与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键.运用分类讨它法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.题中给出了条件,但没有明确的结论,这是一种探索性数学问题,它给我们留有自由思考的余地和充分展示思维的广阔空间,我们应从问题的要求出发,进行分析、收集和挖掘题目提供的各种信息,进行全面研究.【例6】方程431=-++x x 的整数解有( ).A .2个B .3个C .5个D .无穷多个 (希望杯邀请赛试题)思路点拨 用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简洁的解题途径.基础训练一、基础夯实1.方程3(│x │-1)= ||5x +1的解是_______;方程│3x-1│=│2x+1│的解是____. 2.已知│3990x+1995│=1995,那么x=______.3.已知│x │=x+2,那么19x 99+3x+27的值为________.4.关于x 的方程│a │x=│a+1│-x 的解是x=0,则a 的值是______;关于x 的方程│a │x=│a+1│-x 的解是x=1,则有理数a 的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x 的值是( ). A.-2 B.0 C. 23D.不存在 6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x 的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m 的值是( ). A.10或25 B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题) 8.若│2000x+2000│=20×2000,则x 等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程│││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值. (“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.答案:1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、 •12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.提高训练1.若方程32100210021002=-x 的解分别是1x 、2x ,则21x x +=______.(希望杯邀请赛试题)2.方程11213=++--x x x 的解是______. (希望杯邀请赛试题)3.已知:有理数x 、y 、z 满足0<xy ,0>yz ,并且3=x ,2=y ,21=+z ,则z y x ++=______. (北京市迎春杯竞赛题)4.已知13+=x x ,则=++20092)94864(x x ________. (广东省竞赛题)5.方程133=+-x x 的解是_________. (山东省竞赛题)6.满足方程123422-=--x x 的所有解的和为______. (新加坡竞赛题)7.若关于x 的方程a x =--12有三个整数解,则a 的值为( ).A .0B .1C .2D .3 (重庆市竞赛题) ★8.如果关于x 的方程a x x =-++11有实根,那么实数a 的取值范围是( ).A .0≥aB .0>aC .1≥aD .2≥a (CASIO 杯武汉市选拔赛试题)9.用符号“⊕”定义一种新运算:对于有理数a 、b 0(≠a ,)1≠a ,有a ⊕b =a a b a -+220042003,已知2004⊕x =2,求x 的值. (北京市迎春杯竞赛题)。
含参数的一元一次方程、含绝对值的一元一次方程

含参数的一元一次方程、含绝对值的一元一次方程一. 含有参数的一元一次方程1. 整数解问题2. 两个一元一次方程同解问题3. 已知方程解的情况求参数4. 一元一次方程解的情况(分类讨论)二: 解含有绝对值的一元一次方程一. 含有参数的一元一次方程1. 整数解问题(常数分离法)例题1:⑴ 【中】 已知关于x 的方程9314x kx +=+有整数解,求整数_____k = 答案:(9)11k x -=119x k=- ∵,x k 均为整数∴91,11k -=±±∴2,8,10,20k =-⑵ 【中】 关于x 的方程()2(1)130n x m x -+--=是一元一次方程 (1)则,m n 应满足的条件为:___m ,____n ;(2)若此方程的根为整数,求整数=____m答案:(1)1,1≠=;(2)由(1)可知方程为(1)3m x -=, 则31x m =- ∵此方程的根为整数.∴31m -为整数 又∵m 为整数,则13,1,1,3m -=--∴2,0,2,4m =-测一测1: 【中】 关于x 的方程143+=+x ax 的解为正整数,则整数a 的值为( )A.2B.3C.1或2D.2或3答案:D方程143+=+x ax 可化简为:()24-=-x a 解得42--=a x 解为正整数,()214--=-或a 32或=a测一测2: 【中】 关于x 的方程917x kx -=的解为正整数,则k 的值为___________ 答案:917x kx -=可以转化为(9)17k x -=即:179x k =-,x 为正整数,则88k =或-测一测3: 【中】m 为整数,关于x 的方程 6x mx =- 的解为正整数,求_____m = 答案: 由原方程得:61x m =+ ,x 是正整数,所以1m + 只能为6的正约数, 11,2,3,6m += 所以0,1,2,5m =2. 两个一元一次方程同解问题例题2:⑴ 【易】若方程29ax x -=与方程215x -=的解相同,则a 的值为_________【答案】第二个方程的解为3x =,将3x =代入到第一个方程中,得到369a -= 解得 5a =⑵ 【中】若关于x 的方程:k (x +3)(2)10354k x x --=-与方程1252(1)3x x --+=的解相同,求___k = 【答案】由方程k(x+3)(2)10354k x x --=-解得x=2, 代入方程1252(1)3x x --+=中解得k=4测一测1:【易】方程213x +=与202a x --=的解相同,则a 的值是( ) A 、7 B 、0 C 、3 D 、5【答案】D第一个方程的解为1x =,将1x =代入到第二个方程中得:12=02a --,解得5a = 例题3: 【中】 若关于x 的方程231x -=和32x k k x -=-解互为相反数,则k 的值为() A. 143- B. 143 C. 113k =- D. 113k = 【答案】 A首先解方程231x -=得:2x =;把2x =-代入方程32x k k x -=-,得到:232k k x --=-; 得到:143k =- 测一测1:【中】当m=_______时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍【答案】由4231x m x -=-可知21x m =-,由23x x m =-可知3x m =∵ 关于x 的方程4231x m x -=-的解是23x x m =-的2倍∴2123m m -=⨯解得14m =- 3. 已知方程解的情况求参数例题4:⑴ 【易】已知方程()2412x a x +=-的解为3x =,则____a = 【答案】根据方程的意义,把3x =代入原方程,得()234312a ⨯+=-,解这个关于a 的方程,得10a =测一测1:【易】 若3x =是方程123x b -=的一个解,则b=________。
知识点106 含绝对值符号的一元一次方程解答题

三、解答题1、(2008•乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为1或﹣7;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.考点:含绝对值符号的一元一次方程;解一元一次不等式。
专题:阅读型。
分析:仔细阅读材料,根据绝对值的意义,画出图形,来解答.解答:解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与﹣3的距离为4的点对应的x的值为1或﹣7.(3分)(2)∵3和﹣4的距离为7,因此,满足不等式的解对应的点3与﹣4的两侧.当x在3的右边时,如图,易知x≥4.(5分)当x在﹣4的左边时,如图,易知x≤﹣5.(7分)∴原不等式的解为x≥4或x≤﹣5(8分)(3)原问题转化为:a大于或等于|x﹣3|﹣|x+4|最大值.(9分)当x≥﹣1时,|x﹣3|﹣|x+4|应该恒等于7,当﹣4<x<﹣1,|x﹣3|﹣|x+4|=﹣2x﹣1随x的增大而减小,当x≤﹣4时,|x﹣3|﹣|x+4|=7,即|x﹣3|﹣|x+4|的最大值为7.(11分)故a≥7.(12分)点评:本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.2、解方程:.考点:含绝对值符号的一元一次方程。
绝对值方程详解及答案

第九讲 绝对值与一元一次方程绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题【例1】方程5665-=+x x 的解是 .(重庆市竞赛题)思路点拨 没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.【例2】 适合81272=-++a a 的整数a 的值的个数有( ).A .5B .4C . 3D .2( “希望杯;邀请赛试题)思路点拨 用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.注:形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx , 才是原方程的根,否则必须舍去,故解绝对值时应检验.【例3】解方程:413=+-x x ;思路点拨 从内向外,根据绝对值定义性质简化方程.(天津市竞赛题)【例4】解下列方程:(1)113+=--+x x x (北京市“迎春杯”竞赛题)(2)451=-+-x x . (“祖冲之杯”邀请赛试题)思路点拨 解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.【例5】已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论.思路点拨 方程解的情况取决于a 的情况,a 与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键.运用分类讨它法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.注 本例给出了条件,但没有明确的结论,这是一种探索性数学问题,它给我们留有自由思考的余地和充分展示思维的广阔空间,我们应从问题的要求出发,进行分析、收集和挖掘题目提供的各种信息,进行全面研究.学力训练1.方程15)1(3+=-xx 的解是 ;方程1213+=-x x 的解是 .2.已知199519953990=+x ,那么x = .3.已知,2+=x x ,那么19x 99+3x+27的值为 .4.关于x 的方程x a x a -+=1的解是x=0,则a 的值 ;关于x 的方程x a x a -+=1的解是x=1,则有理数a 的取值范围是 .5.使方程0223=++x 成立的未知数x 的值是( ).A .一2B .0C .32 D .不存在 6.方程055=-+-x x 的解的个数为( ).A .不确定B .无数个C . 2个D .3个(“祖冲之杯”邀请赛试题)7.已知关于 x 的方程mx+2=2(m-x)的解满足0121=--x ,则m 的值是( ) A .5210或 B .5210-或 C .5210或- D .5210--或 (山东省竞赛题)8.若20002020002000⨯=+x ,则x 等于( ).A .20或一21B .一20或21C .—19或21D .19或一21(重庆市竞赛题)9.解下列方程:(1)8453=+-x ;(2)43234+=--x x ;(3)312=+-x x ;(4)1212++-+-x x x .10.讨论方程k x =-+23的解的情况.11.方程212=--x 的解是 .12.若有理数x 满足方程x x +=-11,则化简1-x 的结果是 .13.若0,0<>b a ,则使b a b x a x -=-+-成立的x 取值范围是 .14.若100<<x ,则满足条件a x =-3的整数a 的值共有 个,它们的和是 .15.若m 是方程x x +=-20002000的解,则2001-m 等于( ).A .m 一2001B .一m 一2001C .m+2001D .一m+200116.若关于x 的方程032=+-m x 无解,043=+-n x 只有一个解,054==-k x 有两个解,则m 、n 、k 的大小关系是( ).m>n>k B .n>k>m C .k>m>n D . m>k>n17.适合关系式62343=++-x x 的整数x 的值有( )个.A .0B .1C .2D .大于2的自然数18.方程1735=--+x x 的解有( ).A .1个B .2个C . 3个D .无数个19.设a 、b 为有理数,且0>a ,方程3=--b a x 有三个不相等的解,求b 的值. (“华杯赛”邀请赛试题)20.当a 满足什么条件时,关于x 的方程a x x =---52有一解?有无数多个解?无解?21.已知y y x x +---=-++15912,求x+y 的最大值与最小值.(江苏省竞赛题)22. (1)数轴上两点表示的有理数是a 、b ,求这两点之间的距离;(2)是否存在有理数x ,使x x x =-++31?(3)是否存在整数x ,使144334=++++-+-x x x x ?如果存在,求出所有的整数x ;如果不存在,说明理由.参考答案。
绝对值与一元一次方程(含问题详解)-

绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、•12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值与一元一次方程
绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符合中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程。
解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解,前者是通法,后者是技巧。
解绝对值方程时,常常要用绝对值的几何意义,去绝对值的符号法则,非负数性质,绝对值常用的基本性质等与绝对值相关的知识、技能与方法。
【例1】方程5665-=+x x 的解是 。
【例2】适合81272=-++a a 的整数a 的值的个数有( )。
A 、5
B 、4
C 、3
D 、2
【例3】解下列方程:413=+-x x ;
【例4】解下列方程:(1)113+=--+x x x ; (2)451=-+-x x .
【例5】已知关于x 的方程a x x =-+-32,研究a 存在的条件,对这个方程的解进行讨论。
练习
1、方程3(1-x )=15+x
的解是 ;方程1213+=-x x 的解是 。
2、已知19953990+x =1995,那么x = 。
3、已知x =x+2,那么19x 99
+3x+27的值为 。
4、关于x 的方程x a x a -+=1的解是x=0,则a 的值是 ;关于x 的方程x a x a -+=1的解是x=1,则有理数a 的取值范围是 。
6、方程055=-+-x x 的解的个数为( )A 不确定 B 无数个C 2个D 3个
7、已知关于x 的方程mx+2=2(m – x )的解满足0221=--
x ,则m 的值是( ) A 、10或52 B 、10或52- C 、-10或52 D 、-10或5
2- 8、若20002020002000⨯=+x ,则x 等于( )
A 、20或-21
B 、-20或21
C 、-19或21
D 、19或-21
9、解下列方程:
(1)8453=+-x ; (2)43234+=--x x ;
(
3)312=+-x x ;
10、讨论方程23-+x =k 的解的情况。
12、若有理数x 满足方程x x +=-11,则化简1-x 的结果是 。
13、若a >0,b <0,则使b a b x a x -=-+-的成立的x 的取值范围是 。
14、若0<x <10,则满足条件a x =-3的整数a 的值共有 个,它们的和是 。
15、若m 是方程x x +=-20002000的解,则2000-m 等于( )。
A 、m – 2001
B 、-m – 2001
C 、m + 2001
D 、-m + 2001
16、若关于x 的方程032=+-m x 无解,043=+-n x 只有一个解,054=+-k x 的有两个解,则m 、n 、k 的大小关系是( )。
A 、m >n >k
B 、n >k >m
C 、k >m >n
D 、m >k >n
17、适合关系式62343=++-x x 的整数x 的值有( )个。
A 、0
B 、1
C 、2
D 、大于2的自然数
18、If a <b <c ,ac <0 and c <b <a ,then the minimum of c x b x a x ++-+- is ( )。
A 、3c
b a ++ B 、b C 、
c – a D 、-c – a
19、设a 、b 为有理数,且a >0,方程3=--b a x 有三个不相等的解,求b 的值。
20、当a 满足什么条件时,关于x 的方程a x x =---52有一解?有无数多个解?无解?
21、已知y y x x +---=-++15912,求x + y 的最大值与最小值。