最全面LTE物理层总结
lte知识总结(共7篇)

lte知识总结(共7篇):知识lte lte网络优化基础知识lte题库l te上行视频教程篇一:LTE基础知识汇总及说明总结一、协议知识1. LTE帧结构及物理资源基本概念RE/RB/CCE/REG/RBG帧结构Type1:FDD(全双工和半双工)(FDD上下行数据在不同的频带里传输;使用成对频谱) 每一个无线帧长度为10ms,由20个时隙构成,每一个时隙长度为Tslot = 15630 x Ts = 0.5ms。
对于FDD,在每一个10ms中,有10个子帧可以用于下行传输,并且有10个子帧可以用于上行传输。
上下行传输在频域上进行分开。
帧结构Type2:TDD (TDD上下行数据可以在同一频带内传输;可使用非成对频谱)一个无线帧10ms,每个无线帧由两个半帧构成,每个半帧长度为5ms。
每一个半帧由8个常规时隙和DwPTS、GP和UpPTS三个特殊时隙构成,DwPTS和UpPTS的长度可配置,要求DwPTS、GP以及UpPTS的总长度为1ms。
DwPTS: Downlink Pilot Time Slot GP: Guard Period (GP越大说明小区覆盖半径越大) UpPTS: Uplink Pilot SlotTs = 1 / (15000x2048) sFrame 帧的长度:Tf = 307200 x Ts = 10msSubframe 子帧的长度:Tsubframe = 30720 x Ts = 1ms Slot 时隙的长度:Tslot = 15360 x Ts = 0.5ms1 Sub-Carrier = 15 kHz;1 TTI = 1 ms = 1 sub-frame =2 slots (0.5 ms *2)# for one user, min2 RB allocation.1 RB = 12 sub-carriers during 1 slot (0.5 ms) =12 * 15kHz = 180kHz (Bandwidth); = 12 * 7 symbols= 84 REs 1 RE = 1 sub-carrier x 1 symbol period (Each symbol is QPSK, 16QAM or 64QAM modulated.) LTE支持可变带宽:1.4MHz, 3, 5, 10, 15 和20MHz一个小区最少使用6个RB, 即最少包含72个sub-carriers: 6 RB * 12 sub-carriers = 72 sub-carriers特殊帧格式7:DwPTS:GP:UpPTS = (21952Ts-32Ts) : 4384Ts : 4384Ts= 10:2:2 最小分配单位为: 2192?TsConfigure TDD: 上下行配置(下图)+ 特殊帧格式(上图)(e.g.: 2:7 1:7)= 5ms转换周期:一个帧的上下半帧的特殊帧格式配置相同,= 10ms转换周期:一个帧分成上下半帧,下半帧的特殊帧为DwPTS=1ms,用于DL传输(如上图3,4,5所示)RE:Resource Element,称为资源粒子,是上下行传输使用的最小资源单位。
LTE 物理层解析

Extended cyclic prefix DwPTS GP UpPTS
0
3
10
3
8
“D”代表此子帧用于 下行传输,“U” 代表
此子帧用于上行传输, “S”是由DwPTS、GP 和UpPTS组成的特殊 子帧。
1
9
4
8
3 1 OFDM
2
10
3
1 OFDM symbols
9
2 symbols
3
11
2
10
LTE物理信道
下行物理信道
信道类型 PDSCH(Physical Downlink Shared Channel ) PBCH (Physical Broadcast Channel)
功能 承载下行业务数据 承载广播信息
下行Unicast/MBSFN子帧,控制区 域与数据区域进行时分;
下行MBSFN专用载波子帧中不存在 控制区域,即控制区域OFDM符号数 目为0;
上行常规子帧中控制区域与数据区域 进行频分
控制区域
数据区域
下行Unicast/MBSFN子帧
控制区域与数据区域进行 时分
控制区域OFDM符号数目可 配置
PHY
逻辑信道和传输信道的映射功能 HARQ 传输格式选择 UE内部逻辑信道之间优先级调度功能 UE间根据优先级动态调度功能
S1接口
协议栈
用户平面接口位于E-NodeB 和S-GW之间,传输网络层 建立在IP传输之上, UDP/IP之上的GTP-U用来 携带用户平面的PDU。
S1控制平面接口位于ENodeB和MME之间,传输 网络层是利用IP传输,这点 类似于用户平面;为了可靠 的传输信令消息,在IP曾之 上添加了SCTP;应用层的 信令协议为S1-AP。
LTE物理层总结二-3

4.7.5 举例和补充规范中确实明确了同一个UE 不能同时发送PUSCH 和PUCCH.和HSPA 类似.PUCCH 主要回答HARQ/CQI 信息,很容易丢失和发生错误.因此往往要增大PUCCH 信道的发射功率.这是最主要的问题了.上行PUCCH 和PUSCH 不会同时传输就是说PUCCH 和PUSCH 不会在同一子帧中传输,当然是针对同一个UE不能同时传的原因个人认为有两个(引自论坛)第一是因为PUCCH 和PUSCH 的处理过程不同(PUCCH 是循环CP 、PUSCH 为DFT 扩展方式),所以最后产生的SC-FDMA 符号不一样。
假如同时传的话,基站就不知道是接受哪一个SC-FDMA 符号了。
第二是因为PUCCH 和PUSCH 中分别有CQI 的周期上报和CQI 的非周期上报,假如同时传的话,就不知道到底是接受周期上报还是非周期上报了 简单的说:对于一个UE 。
如果在需要上传PUCCH signaling 的时候,同时有PUSCH 数据需要上传,则control message will be multiplexed with the PUSCH data. Then there will be no PUCCH. 如果没有并发PUSCH 数据,才会使用PUCCH 来上传控制消息。
所以对于一个UE 来说,PUCCH 和PUSCH 的发送不会同时出现。
最主要的原因是为了保持上行信号的单载波特性,因为PUSCH 和PUCCH 是独立编码调制的,如果同时传输的话将产生多个载波,从而提高PAPR 。
事实上,我觉得上行的很多设计都是为了保持上行发送信号的单载波特性的,包括连续导频符号的设计,以及上行的一些高层协议。
4.7.5.1 PUSCH 的RE 映射● 过程由于对于上行的每个子帧(除了特殊帧)最后一个OFDM 符号都到插入导频,因此以子帧的偶数时隙为例,对PUSCH 的RE 映射进行说明。
LTE物理层关键技术及物理层传输方案汇总

LTE物理层关键技术及物理层传输方案汇总LTE(Long Term Evolution)是一种高速无线通信技术,它的物理层关键技术和传输方案为实现高速的无线通信提供了支持。
1. MIMO(Multiple Input Multiple Output)技术:MIMO技术是LTE物理层的核心技术之一,它利用多个天线在发送和接收端同时传输和接收多个数据流,从而提高了系统的容量和数据传输速率。
LTE中使用了2x2 MIMO或4x4 MIMO技术,分别表示在发送和接收端使用2个或4个天线。
2. OFDM(Orthogonal Frequency Division Multiplexing)技术:OFDM技术是LTE物理层的另一个重要技术,它将频域上的数据划分为多个子载波,每个子载波上都可以传输不同的数据。
这种分频复用的方式可以提高频谱效率和抗干扰能力。
3. RB(Resource Block)分配:在LTE中,物理资源被划分为一组资源块,每个资源块占据12个子载波和一个时隙。
RB分配是根据用户的需求和系统的负载情况进行动态分配,以最大化系统资源的利用效率。
4. HARQ(Hybrid Automatic Repeat Request)技术:HARQ技术是一种自动重传技术,用于提高数据传输的可靠性。
当接收端收到有错误的数据时,它可以向发送端发送一个重传请求,从而实现数据的可靠传输。
5. CQI(Channel Quality Indicator)反馈:CQI反馈是在LTE中用于评估信道质量的指标,它通过接收端测量信道的质量,并将评估结果发送给发送端。
根据CQI反馈,发送端可以选择适当的调制和编码方案,以最大化数据传输速率和系统容量。
6. TDD(Time Division Duplexing)和FDD(Frequency Division Duplexing):TDD和FDD是两种不同的LTE物理层传输方案。
LTE物理层协议总结——LTE36系列协议总结

终端一致性系列规范
TS36.508
UE一致性测试的通用测试环境
主要描述终端一致性测试公共测试环境的配置,包含小区参数配置以及基本空口消息定义等
23-Sep-2010
TS36.509
UE的特殊一致性测试功能
主要描述了终端为满足一致性测试而支持的特殊功能定义,包括数据回环测试功能等
SPECIFICATION WITHDRAWN
TR36.804
E-UTRA;基站(BS)无线电传输和接收
SPECIFICATION WITHDRAWN
TR36.805
E-UTRA;下一代网络的最小化驱动测试
36.805协议主要用于捕捉在下一代网络驱车测试的最小化可行性研究的内容
21-Dec-2009
复用和信道编码
主要描述了传输信道和控制信道数据的处理,主要包括:复用技术,信道编码方案,第一层/第二层控制信息的编码、交织和速率匹配过程
17-Sep-2010
TS36.213
物理信道过程
定义了FDD和TDD E-UTRA系统的物理过程的特性,主要包括:同步过程(包括小区搜索和定时同步);功率控制过程;随机接入过程;物理下行共享信道相关过程(CQI报告和MIMO反馈);物理上行共享信道相关过程(UE探测和HARQ ACK/NACK检测);物理下行共享控制信道过程(包括共享信道分配);物理多点传送相关过程
主要是M3接口的M3应用协议控制平面信令,包括M3AP业务、功能、过程以及消息描述
27-Sep-2010
TS36.445
M1数据传输
主要是M1接口的用户平面传输承载,用户平面协议栈及功能
14-Jun-2010
TS36.446
最全面LTE物理层总结

12
物理层相关参数
13
物理层相关参数
在TYPE2子帧中,一般子帧0和子帧5固定用于下 行传输,而子帧2和7用于上行,其他帧可配置上 行或下行子帧,LTE TDD支持5ms和10ms的上下 行子帧切换周期,其具体配置规定如下
14
物理层相关参数
▪下行传输资源结 构
15
物理层相关参数
▪上行传输资源结 构
n28,n32, n36, n40, n44, n48, n52, n56 n60, spare1}; messageSizeGroupA={bit56, bit144, bit208, spare1}; messagePowerOffsetGroupB ={minusinfinity, spare1}; UE MAC层根据以上基本参数配置,确定物理层随机接入前导序列的时频资源的配
18
上行共享信道PUSCH
19
物理上行控制信道PUCCH
上行控制信道 PUCCH,用于传输 上行控制信息。同 一UE端不能同时在 PUSCH和PUCCH上 传输。此外PUCCH 不能在UpPTS时隙 中传输。
20
物理上行控制信道PUCCH
物理上行控制信道支持多种格式传输
PUCCH format
22
物理随机接入信道PRACH
➢前导序列发送功率配置参数 ➢功率爬坡步长:owerRampingStep ={dB0, dB2,dB4, dB6}; (2) 前导序列初始发送功率:preambleInitialReceivedTargetPower ={dBm-120,
dBm-118, dBm-116, dBm-114, dBm-112,dBm-110, dBm-108, dBm-106, dBm-104, dBm-102,dBm-100, dBm-98, dBm-96, dBm-94,dBm-92, dBm-90} ➢随机接入前导发送与接收随机接入响应的相关配置 (1) 随机接入前导最大发送次数:preambleTransMax= {n3, n4, n5, n6, n7, n8, n10, n20, n50,n100, n200, spare5, spare spare3,spare2, spare1}, (2) PDCCH信道检测窗:ra-ResponseWindowSize={sf2, sf3, sf4, sf5, sf6, sf7,sf8, sf10} (3) 冲突解决计数器:mac-ContentionResolutionTimer ={sf8, sf16, sf24, sf32, sf40, sf48,sf56, sf64} (4) 随机接入资源请求信息自动重传次数:maxHARQ-Msg3Tx =INTEGER (1..8)
LTE物理层总结二-2

4.3.3 其他上下行信道的调制/解调处理4.4 传输预编码Transform precoding (DFT )将数据依次作串并转换,变成并行的PUSCHSCM 点数据,再依次送入作PUSCHSCM 点的DFT变换。
这里指的传输预编码主要是做一个 DFT 变换,将数据变成频域数据。
The block of complex-valued symbols )1(),...,0(symb -M d d is divided into PUSCHsc symb M M sets, each corresponding to one SC-FDMA symbol. Transform precoding shall be applied according to1,...,01,...,0)(1)(PUSCH sc symb PUSCHsc 12PUSCHsc PUSCHscPUSCHsc PUSCH sc sc-=-=+⋅=+⋅∑-=-M M l M k ei M l d M k M l z M i M ikjπresulting in a block of complex-valued symbols)1(),...,0(symb -M z z . Thevariable RB scPUSCH RB PUSCH sc N M M ⋅=, where PUSCHRB M represents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfilULRBPU SCH RB 532532N M ≤⋅⋅=ααα where 532,,ααα is a set of non-negative integers.输入:)1(),...,0(symb -M d d ,经过复值调制后的符号序列输出:DFT 后的symb M 点数据,以PUSCHSC M 点为一个并行单元4.5 层映射层映射和接下来的与编码过程都与MIMO 有关MIMO 技术是LTE 中采用的关键技术之一,在LTE 系统中,MIMO 传输方案大致可分为两大类:发送分集和空间复用。
LTE的物理层技术-OFDM

LTE的关键物理层技术LTE的关键物理层技术主要有:正交频分的多载波传输(OFDM)、多入多出(MIMO)、高阶调制(LTE最高64QAM)。
OFDM的特点正交频分传输是一种多载波传输技术,整个传输信号由很多子载波组成,各子载波之间互为正交(而传统的频分复用技术的各载波是不正交),来避免子载波之间的互相干扰。
与传统的频分复用相比,正交频分复用技术使得子载波可以排列更紧密,频谱效率更高。
(CDMA系统中的各码道之间也是互相正交的。
正交信号之间的互相干扰是可以消除的)OFDM的作用OFDM的引入主要是为了抗信道衰弱。
无线信道由于信号在传输过程中的各种反射、折射、多谱LE频移,使接收到的信号的幅度和相位产生剧烈的变化,就会产生严重的衰弱现象。
在同样的衰弱情况下,较窄的信道带宽,在整个传输带宽内,它的衰弱可能是比较一致的,称为平坦衰落(从时域的角度看,也称为慢衰落);而较宽的信道带宽,在整个传输带宽内,它的衰弱可能是变化的,称为不平坦衰落(从时域的角度看,也称为快衰落)。
平坦衰落由于在传输信道带宽内信号变化是一致的,在产生衰落时可以用较简单的均衡技术来恢复;而不平坦衰落导致的传输失真的恢复比较困难。
由于LTE要求的传输速率相当高,它的信道带宽必然比较宽(20M,而LTE-A 可以达到100M);并且,LTE系统需要支持这种使用环境,最高移动速度达到500公里每小时(LTE -TDD支持的最高速度是300公里)(衰落最严重的情况是市区内高速运动)。
因此,LTE系统的信道衰落比较严重(在高速率的传输系统中,OFDM已成为一种趋势)。
OFDM在抗多径衰落方面有着先天的优势。
OFDM把较宽的带宽分割成很多子载波(LTE中子载波带宽15K),因此,在每个子载波内,衰落是平坦的。
这样,就可以通过简单的均衡技术来达到较好的效果。
OFDM技术的主要特点∙1.高速数据先经过串并转换,再调制到各子载波。
这样子载波上的码速率就很低,可以有效降低码间串扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
物理层相关参数
CP的长度是由所要求的系统容量、信道相关时间和FFT复杂度(限制OFDM符号周期)共 同决定的。 ➢常规小区的单播系统采用 CP 4.6875us和66.67us的符号,在一个子帧的7 个符号中,前6个符号的CP均为4.6875us,最后一个符号的CP为5.208u s ➢大小区的单播系统或单播/MBMS混合载波的E-MBMS系统采用扩展CP 16.67us和 符号66.75us ➢DC-MBMS系统采用33.33CP和133.33us的符号
12
物理层相关参数
13
物理层相关参数
在TYPE2子帧中,一般子帧0和子帧5固定用于下 行传输,而子帧2和7用于上行,其他帧可配置上 行或下行子帧,LTE TDD支持5ms和10ms的上下 行子帧切换周期,其具体配置规定如下
14
物理层相关参数
▪下行传输资源结 构
15
物理层相关参数
随机接入信道 RACH
物理随机接入信 道PRACH
上行控制信息 UCI
PUCCH、PUSCH
8
物理层相关参数
基本传输和多址技术:上行单载波频分多址SC-FDMA,下行正交频分多址OFDMA 双工方式:TDD,FDD(全双工和半双工FDD) 帧结构:无线帧长10ms,分10个子帧,长1ms,每个子帧分为两个时隙(TDD方式 中包含3个特殊时隙,共1ms) 子载波间隔:15KHz或7.5KHz。取决于频谱效率和抗频偏能力的折中,主要考虑 多普勒频移。在单播系统中采用15kHZ的子载波间隔,相应的符号长度为66.75us(不 包括CP),在载波MBMS(Dedicated Carrier MBMS,DC-MBMS)中,由于是低 速移动,故为7.5kHz的子载波,相应符号长度为133.33us(不包括CP) ,一个1ms子帧包含六个OFDM符号 资源分配方式:基本资源块RB大小12个宽度15KHz或24个宽度为7.5KHz的子载 波,180KHz,下行支持集中和分散分配,上行只支持集中分配。
SCH
道PDSCH
寻呼信道PCH
物理下行共享信 道PDSCH
广播信道 BCH
物理广播信道 PBCH
多播信道MCH
物理多播信道 PMCH
控制信息
物理信道
7
传输信道与物理信道的映射
上行传输信道与物理层信道的映射关
系 传信道信道/ 控制
信息
物理信道
上行共享信道 UL- 物理上行共享信
SCH
道 PUSCH
11
物理层相关参数
TDD模式下,每个10ms无线帧包括2个长度为 5ms的半帧,每个半帧由4个数据子帧和1个特殊 子帧组成。特殊子帧包括3个特殊时隙:DwPTS ,GP和UpPTS,总长度为1ms。下行导频时隙保 护间隔DwPTS用于下行传输同步符号,UpPTS也 用于传输上行同步符号,不用于传输上行数据, 而GP为保护间隔,防止上下行间的干扰。上行导 频时隙DwPTS和UpPTS的长度可配置,DwPTS 的长度为3~12个OFDM符号,UpPTS的长度为1 ~2个OFDM符号,相应的GP长度为1~10个 OFDM符号
5
物理信道的种类
下行物理信道 ➢ PDSCH:下行物理共享信道,承载下行数据传输、SIB和寻呼信息 ➢ PBCH:物理广播信道,传递UE接入系统所必需的系统信息,如带宽、天线数目和小区 ID等 ➢ PMCH:物理多播信道,传递MBMS(单频网多播和广播)相关的数据 ➢ PCFICH:物理控制格式指示信道,表示一个子帧中用于PDCCH的OFDM符号的数量 ➢ PHICH:物理HARQ指示信道, 用于eNodB向UE反馈和PUSCH相关的ACK/NACK信息 ➢ PDCCH:下行物理控制信道,用于指示和PUSCH,PDSCH相关的格式,资源分配,HARQ信 息,位于子帧的前n个OFDM符号,n<=3
上行物理信道 ➢ PUSCH:物理上行共享信道 ➢ PRACH:物理随机接入信道,获取小区接入的必要信息进行时间同步和小区搜索等 ➢ PUCCH:物理上行控制信道,UE用于发送ACK/NAK,CQI,SR,RI信息
6
传输信道与物理信道的映射
下行传输信道与物理层 信道的映射传关输系信道
物理信道
下行共享信道 DL- 物理下行共享信
TS 36.201――LTE物理层―总体描述 TS 36.211――物理信道、参考信号、帧结构 TS 36.212――信道编码、交织、速率匹配、复用 TS 36.213――随机接入等物理层的工作过程 TS 36.214――物理层的测量技术 TS 36.302――物理层向高层提供的数据传输服务
最全面LTE物理层总结
2
目录
LTE的性能需求指标 与LTE物理层相关的协议编号及内容 物理信道的种类 传输信道与物理信道的映射 物理层相关参数 物理信道结构 参考信号和信道估计功能 LTE物理层过程
3
LTE的需求指标
支持1.4MHz-20MHz带宽 峰值数据率:上行50Mbps,下行100Mbps。频谱效率达到3GPP R6的2-4倍 提高小区边界的比特率,保证业务的一致性 用户面延时:零负载(单用户、单数据流)、小IP分组条件下单向时延小
调制方式及AMC ➢下行 BPSK QPSK 16QAM 64QAM, ➢上行 QPSK,16QAM,64QAM
信道编码:Turbo 、卷积码 多天线技术
➢下行 预编码SU-MIMO、预编码MU-MIMO、波束赋形、发射分集 ➢上行 MU-MIMO、天线选择
10
物理层相关参数
子帧格式:LTE支持两种基本的工作模式,即频分双工(FDD)和时分双工(TDD) ;支持两种不同的无线帧结构,即Type1和Type2帧结构,帧长均为10ms。前者适用于 FDD工作模式,后者适用于TDD
于5ms 控制面延时:从驻留状态转换到激活状态的延迟小于1OOms 每个小区在5MHz带宽下最少支持200个用户 实现合理的终端复杂度、成本和耗电 对低速移动优化系统,同时支持高速移动 以尽可能相似的技术同时支持成对(paired)和非成对(unpaired)频段
4
与LTE物理层相关的协议编号及内容