高中数学抛物线最值问题
高中数学抛物线最值问题精品

抛物线求最值问题(第一类)1.已知抛物线和一条直线,求抛物线上的一点到直线与(y 轴、准线、焦点)距离之和的最小值问题。
此类题常用方法转化为求焦点到直线的距离。
例题已知抛物线方程为x y 42=,直线l 的方程为04=+-y x ,在抛物线上有一动点P 到y 轴的距离为d1到直线l 的距离为d2,则d12的最小值为多少? 分析:如图点P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线4=0的垂线,此时d12最小,依据抛物线方程求得F ,进而利用点到直线的距离公式求得d12的最小值.解:如图点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1.过焦点F 作直线4=0的垂线,此时d122-1最小,∵F (1,0),则2,则d12的最小值为.抛物线求最值问题(其次类)2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差肯定值的最值问题。
此类题常用方法转化为三点共线或者顶点到直线问题。
例题已知点P在抛物线y2=4x上,则点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.⎪⎭⎫⎝⎛-1,41B.⎪⎭⎫⎝⎛1,41C.(1,2)D.(1,-2)分析:先推断点Q与抛物线的位置,即点Q在抛物线内,再由点P到抛物线焦点距离等于点P到抛物线准线距离,依据图象知最小值在M,P,Q三点共线时取得,可得到答案.解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图,故最小值在M,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,抛物线求最值问题(第三类)3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。
此类题常用方法:①设点转化成二次函数问题;②求导数,让抛物线上点的切线斜率等于直线斜率。
抛物线中的最值问题

解:设 = P (x, y ) ∴ y
2 2
Q P 点在抛物线上, 点在抛物线上, PA = = = (x − 3)2 + y x 2 − 6x + 9 + x x 2 − 5x + 9 5 2 11 (x − ) + 2 4
例三、 例三、 已知定点M ),F是抛物线y =2x的焦点 的焦点, 已知定点M(3,2),F是抛物线y2=2x的焦点, 在此抛物线上求一点P |PM|+|PF|取得最小值 取得最小值, 在此抛物线上求一点P,使|PM|+|PF|取得最小值, 求点P 求点P的坐标
分析: ,由抛物线的定义: 如图, 分析: 如图 由抛物线的定义:
抛物线上的点到焦点的距离 与到准线的距离相等。 与到准线的距离相等。 即|PF| = |PN| ∴ |PM|+|PF|= |PM|+|PN| ∴当 M、P、N三点共 线时距离之和最小。 线时距离之和最小。
N F F
M
P M
解: 如图所示 在抛物线 y2 = 2x上任取一点 上任取一点 P’(x’,y’),作P’N’⊥准线 ,作MN 准线L, 作 交抛物线于P( , ) ⊥L ,MN交抛物线于 (x,y) 交抛物线于 由抛物线的定义得: 由抛物线的定义得: |P’F|= |P’N’|
练习: 练习:
1.已知M(a,0) 为抛物线y = 2px(p> 0)的对称轴
2
上的一个定点在抛物线上求一点N, 使得 MN 最小
2、求抛物线y2=64x上的点到直线 、求抛物线 上的点到直线 4x+3y+46=0 距离最小值,并求取得最小值 距离最小值, 时抛物线上的点的坐标
关于抛物线的十个最值问题-模板

关于抛物线的十个最值问题本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用, 现用定理形式叙述如下: 定理 1.抛物线的所有焦半径中,以过顶点的焦半径为最短. 证明:不妨设抛物线的极坐标方程为ρ= ,则显然有ρ≥,其中等号成立当且仅当θ=2kπ+π(k∈Z)即焦半径通过抛物线的顶点时.证毕. 定理 2.抛物线的过焦点的所有弦中,以抛物线的通径为最短. 证明:设抛物线极坐标方程为ρ= ,焦点弦为AB,且设A(ρ1,θ),B(ρ2,θ+π),则有│AB│=ρ1+ρ2 = +=≥ 2p =通径长, 其中等号成立当且仅当θ=kπ+π/2 (k∈Z) 即弦AB为通径时.证毕. 定理 3.设A(a,0)是抛物线 y2=2px(p>0)的对称轴上的定点,M(x,y)是抛物线上的动点,则│MA│m in =证明:由│MA│2= (x-a)2+y2=(x-a)2+2px = x2-2(a-p)x+a2 = [x-(a-p)]2+p(2a-p),并且注意到x∈[0,+∞),立知结论成立.证毕. 定理4.设A(a,b)是抛物线 y2=2px(p>0)内一定点, F是焦点,M 是抛物线上的动点,则y (│MA│+│MF│)min=a+p/2.Q MA(a,b) 证明:如图1所示,作AQ⊥准线L:x=-p/2于Q,则知O Fx (│MA│+│MF│)m in =│AQ│= a-(-p/2)=a+p/2.证毕.图1 定理5.设线段AB是抛物线y2=2px(p>0)的过焦点的弦,分别以A、B为切点的抛物线的两条切线相交于点M,则三角形ABM的面积的最小值为p2. 证明:设A(x1,y1),B(x2,y2),则由A、F、B三点共线可得:x1y2-x2y1=p/2·(y2-y1)……………(1)于是利用(1)式由两切线方程yAM:y1y=p(x+x1),A BM:y2y=p(x+x2),M Fx 易得M的坐标(x,y)适合:B∵ kMF·kAF=-1, ∴MF⊥AB,即│MF│是△MAB的AB边上的高. 图2 ∵ │MF│≥│FK│(焦点F到准线x=-p/2的距离)=p, 又由定理2知│AB│≥2p(通径长), ∴ S△MAB=1/2·│AB│·│MF│≥1/2·2p·p=p2,因其中等号当且仅当AB⊥x 轴时成立,故三角形MAB的最小值为p2.证毕. 定理6.过抛物线y2=2px的顶点O引两条互相垂直的动弦OA和OB,则三角形OAB的面积的最小值为4p2.y 证明:设A(x1,y1),B(x2,y2),则由OA⊥OB 得A x1x2+y1y2=0 ……………………………………(1) Ox 将y12=2px1, y22=2px2代入(1)立得: x1x2=4p2 (2)于是B (S△OAB) 2=1/4·│OA│2·│OB│2 图3 =1/4·(x12+y12)·(x22+y22)=1/4·(x12+2px1)·(x22+2px2)=1/4·[(x1x2)2+2px1x2(x1+x2)+4p2x1x2] ≥1/4·[(x1x2)2+2px 1x2 (2√x1x2)+4p2x1x2]………………………………………(3)将(2)式代入(3)则得(S△OAB)2≥16p4,从而S△OAB≥4p2,因其中等号当x1=x2=2p时取到,故三角形OAB的面积的最小值为4p2。
抛物线的最大最小值怎么求

抛物线的最大最小值怎么求
概述
在数学中,我们经常要求解抛物线函数的最大值和最小值,这对于确定函数的
凹凸性和函数图像的特点都具有重要意义。
本文将介绍如何求解抛物线函数的最大值和最小值的方法。
抛物线函数的一般形式
抛物线函数通常表示为y=ax2+bx+c的形式,其中a eq0。
其中,a控制
了抛物线开口的方向,正值表示开口向上,负值表示开口向下;b控制了抛物线的
位置;c是y轴的截距。
最大最小值的求解
对于抛物线函数y=ax2+bx+c,它的最大值或最小值发生在顶点处。
因此,我们只需找到抛物线的顶点坐标即可求解最大最小值。
求解顶点坐标
抛物线的顶点坐标可以通过公式 $x = -\\frac{b}{2a}$ 求解得到。
将x的值代入
抛物线函数中即可得到对应的y值,从而确定顶点坐标。
确定最大最小值
通过观察a的正负性可以确定抛物线的开口方向,若a>0,则抛物线开口向上,顶点为最小值点;若a<0,则抛物线开口向下,顶点为最大值点。
示例
假设有抛物线函数y=2x2−4x+3,我们按照上述方法求解其最大最小值。
1. 求解顶点坐标: $x = -\\frac{-4}{2*2} = 1$,将x=1代入函数得到y=2∗12−
4∗1+3=1,所以顶点坐标为(1,1)。
2. 确定最大最小值:由于a=2>0,故
顶点为最小值点,最小值为1。
结论
通过以上方法,我们可以求解任意抛物线函数的最大最小值,进而帮助我们理
解函数的特性和性质。
抛物线函数的最大最小值计算在数学建模和实际问题求解中具有广泛的应用。
抛物线最值问题

2
= x2 - 2x + 9
= ( x - 1) 2 + 8
min
x³ 0
= 2 2, 此时M (1, 2)
变3
\ 当x = 1时,
2
变式训练:
已知点M 在抛物线y = 4 x上运动, 点Q在圆(x - 3) + y = 1上运动,则 MQ 的最小值是
.
2 2 2
小组讨论、交流:
只需求出动点M到圆心 A(3,0)距离最小值再 减去圆半径即可。
y
M
F
练习
A
Q .
x
所以 MQ min = 2 2 - 1
2
的最小值是多少?
小组讨论、交流:
y
M
F
x
l
已知点F为抛物线 y 2 = 4 x 的焦点,A(3,2) 为定点,点M 是抛物线上任意一点,则 MA + MF 的最小值是 ,此时点M的 坐标是
小组活动:
。
探究2
y
M A
讨论解决方案
F
x
探究3
已知抛物线y =4x和定点A(7,8), 抛物线上有一动点M,点M到点A 的距离为d1,点M到抛物线准线距离 为d 2,则d1+d 2的最小值是 .
2 2 最小值为AF =(7-1) +(8-0) =10
y M F
A
M
x
思考:已知点A30,点 ( , ) M在抛物线y2=4x 上运动,求 MA 的最小值,及此时点M的坐标.
解:设点M( x, y)是抛物线y 2=4x 上任一点,则y = 4 x
AM =
=
2
y M F Ax
思维特训(九) 抛物线背景下线段和(差)的最值问题

思维特训(九) 抛物线背景下线段和(差)的最值问题类型一二次函数中的“饮马问题”基本原理:两点之间,线段最短.解题思路:利用抛物线自身的轴对称性找到抛物线上某点关于对称轴的对称点,实现化“折”为“直”,再结合函数的相关知识解决.1.如图9-1,抛物线y=ax2+bx+c 经过A(-1,0),B(3,0),C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的解析式;(2)设P 是直线l 上的一个动点,当PA+PC 最小时,求点P 的坐标.图9-12.如图9-2,抛物线y=ax2+bx+3 经过A(1,0),B(4,0)两点.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.图9-23.如图9-3,已知抛物线y=ax2+bx+c 经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l 与x 轴交于点H.(1)求该抛物线的解析式;(2)PQ 是该抛物线对称轴l 上的动线段,且PQ=1,求PC+QB 的最小值.图9-3类型二二次函数中线段差的最大值问题基本原理:三角形任何两边之差小于第三边.解题思路:先根据原理确定线段差的最值问题时的图形,再根据已知条件进行求解.4.如图9-4,抛物线y=x2+bx+c 过点A(3,0),B(1,0),交y 轴于点C,P 是该抛物线上一动点,点P 从点C 沿抛物线向点A 运动(点P 不与点A,C 重合),过点P 作PD∥y 轴交直线AC 于点D.(1)求抛物线的解析式.(2)当D 在线段AC 上运动时,求点P 在运动的过程中线段PD 长度的最大值.(3)在抛物线的对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M 的坐标;若不存在,请说明理由.图9-45.2016·眉ft已知:如图9-5,在平面直角坐标系xOy 中,A,B,C 分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,(1)求经过A,B,C 三点的抛物线的解析式.(2)在平面直角坐标系xOy 中是否存在一点P,使得以点A,B,C,P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)若M 为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|取最大值时点M 的坐标,并直接写出|PM-AM|的最大值.图9-56.已知:如图9-6,在平面直角坐标系xOy 中,直线y 3+6 与x 轴、y 轴的交点=-4x分别为A,B,将∠OBA 对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点C.(1)直接写出点C 的坐标,并求经过A,B,C 三点的抛物线的解析式.(2)若(1)中抛物线的顶点为D,在直线BC 上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若把(1)中的抛物线向左平移3.5 个单位长度,则图象与x 轴交于G,N(点G 在点N 的左侧)两点,交y 轴于点E,则在此抛物线的对称轴上是否存在一点Q,使点Q 到E,N 两点的距离之差最大?若存在,请求出点Q 的坐标;若不存在,请说明理由.图9-63 典题讲评与答案详析 1.解:(1)∵抛物线 y =ax 2+bx +c 经过 C (0,3),∴c =3.∵抛物线 y =ax 2+bx +3 经过 A (-1,0),B (3,0),⎧0=a -b +3, ∴⎨ ⎧a =-1, 解得⎨⎩0=9a +3b +3, ⎩b =2,∴抛物线的解析式为 y =-x 2+2x +3. (2)∵y=-x 2+2x +3=-(x -1)2+4,∴对称轴为直线 x =1.∵A ,B 是抛物线与 x 轴的交点,∴点 A ,B 关于直线 l 对称,∴PA +PC 最小时,点 P 就是直线 BC 与直线 l 的交点(如图).∵B (3,0),C (0,3),∴直线 BC 的解析式为 y =-x +3.∵点 P 在直线 l 上,∴点 P 可设为(1,m ).将(1,m )代入 y =-x +3,可得 m =2,∴P (1,2).2.解:(1)由已知,得⎧a +b +3=0, ⎧a =4, ⎨ 解得⎨ 15 ⎩16a +4b +3=0, ⎩b =- 4 . ∴抛物线的解析式为 y 3 2 15+3.=4x - 4 x(2)∵A ,B 关于对称轴对称,如图,连接 BC ,∴BC 与对称轴的交点即为所求的点 P ,此时 PA +PC =BC ,∴四边形 PAOC 的周长的最小值为 OC +OA +BC .∵A (1,0),B (4,0),C (0,3), ∴OA =1,OC =3,BC = OB 2+OC 2=5,∴OC +OA +BC =3+1+5=9,∴在抛物线的对称轴上存在点 P ,使得四边形 PAOC 的周长最小,四边形 PAOC 周长的最小值为 9.3. 解:(1)∵抛物线 y =ax 2+bx +c 经过 C (0,3),∴c =3.∵抛物线 y =ax 2+bx +3 经过 A (-3,0),B (1,0),⎧0=a +b +3, ∴⎨ ⎧a =-1, ∴⎨⎩0=9a -3b +3, ⎩b =-2,∴抛物线的解析式为 y =-x 2-2x +3.(2)过点 C 作直线 l 的对称点 E ,过点 E 作 EG ⊥AB 于点 G ,过点 Q 作 QF ∥PE ,交 EG 于点 F ,连接 FB ,如图,则有 PC =PE ,EF ∥PQ .∵EF ∥PQ ,QF ∥PE ,∴四边形 EFQP 是平行四边形,∴EF =PQ =1,PE =FQ ,∴PC =FQ ,∴PC +QB =FQ +QB ,根据两点之间线段最短可得 FQ +QB (即 PC +QB )的最小值为 FB .∵抛物线 y =-x 2-2x +3 的对称轴为直线 x =-1,C (0,3),∴点 E 的坐标为(-2,3), ∴点 F 的坐标为(-2,2).在 Rt △FGB 中,FG =2,GB =1-(-2)=3,根据勾股定理可得 FB = FG 2+GB 2= 13.∴PC +QB 的最小值为 13.4.解:(1)∵抛物线 y =x 2+bx +c 过点 A (3,0), B (1,0), ⎧9+3b +c =0, ⎧b =-4, ∴⎨ ⎩1+b +c =0, 解得⎨ ⎩c =3, ∴抛物线的解析式为 y =x 2-4x +3. (2)令 x =0,则 y =3,∴点 C (0,3), 则直线 AC 的解析式为 y =-x +3. 设点 P (x ,x 2-4x +3).∵PD ∥y 轴, ∴D (x ,-x +3), ∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x 3 2 9 .∵a =-1<0,∴当 x 3 -2) +4(0<x <3) PD 的长度有最大值9=2时,线段 4.(3)∵抛物线的对称轴垂直平分 AB ,∴MA =MB .由三角形的三边关系,可知|MB -MC |<BC ,∴当 M ,B ,C 三点共线时,|MB -MC |的值最大,为 BC 的长度. 设直线 BC 的解析式为 y =kx +m (k ≠0),⎧k +m =0, ⎧k =-3, 则⎨ ⎩m =3, 解得⎨⎩m =3,∴直线 BC 的解析式为 y =-3x +3.∵抛物线 y =x 2-4x +3 的对称轴为直线 x =2,∴当 x =2 时,y =-3×2+3=-3,∴M (2,-3),即抛物线的对称轴上存在点 M (2,-3),使|MA -MC |的值最大.5.解:(1)设抛物线的解析式为 y =ax 2+bx +c .3 ⎧ =-4, , ⎨ 由题意易知 A (1,0),B (0,3),C (-4,0),⎧a +b +c =0, ∴⎨c =3, ⎩16a -4b +c =0,⎧a 3 解得⎨b9 ⎩=-4, c =3, ∴经过 A ,B ,C 三点的抛物线的解析式为 y =-3 2 9 +3.(2)存在.∵OB =3,OC =4,OA =1,∴BC =AC =5,AB = 10. 如图,当 BP 綊 AC 时,四边形 ACBP 为菱形,∴BP =AC =5,且点 P 到 x 轴的距离等于 OB ,∴点 P 的坐标为(5,3).4x -4x当点 P 在第二、三象限时,以点 A ,B ,C ,P 为顶点的四边形只能是平行四边形,不 是菱形,∴当点 P 的坐标为(5,3)时,以点 A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线 PA 的解析式为 y =kx +m (k ≠0).∵点 A (1,0),P (5,3)在直线 PA 上,⎧k = , ⎧5k +m =3,4 ∴⎨ ⎩k +m =0, 解得⎨ ⎩m =-3 4 ∴直线 PA 的解析式为 y 3 3=4x -4.当点 M 与点 P ,A 不在同一直线上时,根据三角形的三边关系,知|PM -AM |<PA , 当点 M 与点 P ,A 在同一直线上时,|PM -AM |=PA ,∴当点 M 与点 P ,A 在同一直线上时,|PM -AM |的值最大,即 M 为直线 PA 与抛物线的交点. 3 3 y = x - , 解方程组 4 4 3 9 ⎩y =-4x 2-4x +3, ⎧x 1=1,⎧⎪x 2=-5, 得⎨ ⎨ 9 ⎩y 1=0,⎪⎩y 2=-2, ∴点 M 的坐标为(1,0)或(-59 时,|PM -AM |的值最大.此时|PM -AM |的最大值 为 5.6.解:(1)如图①,连接 CH .,-2)由轴对称的性质,得 CH ⊥AB ,BH =BO ,CH =CO ,∴在 Rt △CHA 中,由勾股定理,得4 AC 2=CH 2+AH 2. ∵直线 y 3 +6 与 x 轴、y 轴的交点分别为 A ,B , =-4x ∴当 x =0 时,y =6,当 y =0 时,x =8, ∴B (0,6),A (8,0), ∴BO =6,OA =8, 在 Rt △AOB 中,由勾股定理,得 AB =10. 设 C (p ,0),则 OC =p , ∴CH =p ,AH =4,AC =8-p , ∴(8-p )2=p 2+42,解得 p =3,∴C (3,0). 设抛物线的解析式为 y =ax 2+bx +c . ⎧a 1 ⎧6=c , =4, 由题意,得⎨64a +8b +c =0,解得⎨b 11 ⎩0=9a +3b +c , =- , ⎩c =6, ∴抛物线的解析式为 y 1 2 11x +6. =4x - 41 2 11 1⎛x 11⎫ (2)不存在.理由:如图②,设抛物线对称轴交 x 轴于点 F .∵y =4x - 4 x +6=4⎝ - 2 ⎭ 2 25 -16, ∴ 11 25 25 D ( 2 ,-16),∴DF =16. 设直线 BC 的解析式为 y =kx +b ′,则有 ⎧6=b ′, ⎨ ⎧k =-2, 解得⎨ ⎩0=3k +b ′, ⎩b ′=6, ∴直线 BC 的解析式为 y =-2x +6. 设存在点 P 使四边形 ODAP 是平行四边形,P (m ,n ). 过点 P 作 PM ⊥OA 于点 M , 则∠PMO =∠AFD =90°,PO =DA ,PO ∥DA , ∴∠POM =∠DAF ,∴△OPM ≌△ADF , ∴PM =DF =n 25 25 2m +6, =16,∴16=- ∴m 71 =32, 但 OM =AF =8 11 5 71 - 2 =2≠32, ∴点 P 不在直线 BC 上,即直线 BC 上不存在满足条件的点 P . (3)由题意得,平移后的抛物线的解析式为 y 1 -2)225 为直线 x =2.=4(x -16,∴平移后抛物线的对称轴1 9∴⎨9当x=0 时,y=-16;当y=0 时,01(x-2)225=41 9解得x1=-,x2=.-16,2 2∵点G 在点N 的左侧,∴G(19 9-2,0),E(0,-16),N(2,0).如图③,连接EG,直线EG 交直线x=2 于点Q,则此时点Q 到E,N的距离之差最大.设直线EG 的解析式为y=k0x+b0,则⎧0=-2k0+b0,⎧k0=-8,⎨9 解得⎨9⎩b0=-16,⎩b0=-16,∴直线EG 的解析式为y=-9 9⎧y 9 9 8x-16,⎧x=2,⎪=-8x-16,⎪解得⎨ 45⎪⎩x=2,∴Q(2 45 .⎪⎩y=-16,,-16)。
抛物线最值问题

抛物线最值问题最值训练一:例1.在抛物线y2=8x 上求一点P,使P到焦点F 的距离与到Q(4 ,1)的距离的和最小,并求最小值。
例2、在抛物线y2=64x上求一点,使它到直线L:4x+3y+46=0的距离最短,并求此距离。
跟踪训练练习1:在抛物线y2=64x上求一点,使它到直线L:4x+3y+46=0的距离最短,并求此距离。
练习2: 已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。
练习3: 已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。
练习4:若直线y=kx+b与抛物线x²=4y相较于A、B两点,且|AB|=4(1)试用k来表示b(2)求弦AB中点M离x轴的最短距离最值训练二:1、A、B是抛物线y²=2px (p>0)上的两点,满足OA⊥OB(O为坐标原点)。
求证:(1)A、B两点的横坐标之积,纵坐标之积分别为定值(2)直线AB经过一个定点跟踪训练:定长为5的线段AB的两端点在抛物线y²=4x上移动,试求线段AB中点M 到y轴的最短距离。
2.已知定点M(3,2),F是抛物线y²=2x的焦点,在此抛物线上求一点P,使|PM|+|PF|取得最小值,求点P的坐标。
跟踪训练1:设P是曲线y²=4(x-1)上一动点,则求点P到点(0,1)的距离和点P到y轴的距离之和的最小值。
跟踪训练2:设P为抛物线y=x²上一动点,求P到直线l:3x-4y-6=0的距离的最小值最值训练三1、已知抛物线y²=x,动弦AB长为2、求AB中点纵坐标的最小值。
跟踪训练1:点P在抛物线y²=x上,定点A(3,0),求|PA|的最小值跟踪训练2:若P为抛物线y²=x上一动点,Q为圆(x-3²+y²=1上一动点,求|PQ|的最小值。
高中数学抛物线最值问题讲课稿

抛物线求最值问题(第一类)1.已知抛物线和一条直线,求抛物线上的一点到直线与(y 轴、准线、焦点)距离之和的最小值问题。
此类题常用方法转化为求焦点到直线的距离。
例题已知抛物线方程为x y 42=,直线l 的方程为04=+-y x ,在抛物线上有一动点P 到y 轴的距离为d1,P 到直线l 的距离为d2,则d1+d2的最小值为多少?分析:如图点P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x-y+4=0的垂线,此时d1+d2最小,根据抛物线方程求得F ,进而利用点到直线的距离公式求得d1+d2的最小值.解:如图点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1.过焦点F 作直线x-y+4=0的垂线,此时d1+d2=|PF|+d2-1最小, ∵F (1,0),则|PF|+d2==,则d1+d2的最小值为.抛物线求最值问题(第二类)2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差绝对值的最值问题。
此类题常用方法转化为三点共线或者顶点到直线问题。
例题已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.⎪⎭⎫⎝⎛-1,41B.⎪⎭⎫⎝⎛1,41C.(1,2)D.(1,-2)分析:先判断点Q与抛物线的位置,即点Q在抛物线内,再由点P 到抛物线焦点距离等于点P到抛物线准线距离,根据图象知最小值在M,P,Q三点共线时取得,可得到答案.解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PM+PQ,故最小值在M,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,抛物线求最值问题(第三类)3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线求最值问题(第一类)
1.已知抛物线和一条直线,求抛物线上的一点到直线与(y轴、准线、焦点)距离之和的最小值问题。
此类题常用方法转化为求焦点到直线的距离。
例题已知抛物线方程为x
y4
2=,直线l的方程为0
-y
x,在抛物线上
4=
+
有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值为多少?
分析:如图点P到y轴的距离等于点P到焦点F的距离减1,过焦点F作直线x-y+4=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.
解:如图点P到准线的距离等于点P到焦点F的距离,
从而P到y轴的距离等于点P到焦点F的距离减1.
过焦点F作直线x-y+4=0的垂线,此时d1+d2=|PF|+d2-1最小,∵F(1,0),则|PF|+d2==,
则d1+d2的最小值为.
抛物线求最值问题(第二类)
2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差绝对值的最值问题。
此类题常用方法转化为三点共线或者顶点到直线问题。
例题已知点P 在抛物线y2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.⎪⎭⎫ ⎝⎛-1,41 B .⎪⎭⎫ ⎝⎛1,41 C .(1,2)D .(1,-2)
分析:先判断点Q 与抛物线的位置,即点Q 在抛物线内,再由点P 到抛物线焦点距离等于点P 到抛物线准线距离,根据图象知最小值在M ,P ,Q 三点共线时取得,可得到答案.
解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图PF+PQ=PM+PQ ,故最小值在M ,P ,Q 三点共线时取得,此时P ,
Q的纵坐标都是-1,
抛物线求最值问题(第三类)
3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。
此类题常用方法:①设点转化成二次函数问题;②求导数,让抛物线上点的切线斜率等于直线斜率。
例题抛物线x
y2
2=上任一点到直线x-y+1=0的距离的最小值是多少分析:由题意可设P为抛物线上任意一点,则P到直线x-y+1=0的距离d===,由二次函数的性质可求距离d的最小值
解:方法一由题意可设P为抛物线上任意一点,
则P到直线x-y+1=0的距离d===
由二次函数的性质可知,当y=1即P()时,d=
故答案为:
方法二求导x
=,1
y2
1=
y
可知当y=1即P()时,d最小,故答案为:。