直线电机开发及应用研究
直线电机的计算机辅助设计及研究

直线电机的计算机辅助设计及研究随着科技的不断发展,计算机辅助设计(CAD)技术广泛应用于各个领域。
在电机设计领域中,CAD技术的应用也取得了显著的成果。
本文将重点介绍一种新型的电机设计技术——直线电机的计算机辅助设计及研究。
直线电机是一种将电能直接转换为直线运动机械能的装置。
相较于传统的旋转电机,直线电机具有结构简单、维护方便、精度高等优点。
因此,直线电机在机床、交通运输、自动化生产线等领域得到了广泛的应用。
随着计算机技术的迅速发展,直线电机CAD技术也不断进步。
早期的直线电机CAD技术主要依赖于设计师的手动设计和计算,效率低下且精度难以保证。
随着CAD软件的不断完善,现在的直线电机CAD技术已经可以实现自动化设计和优化。
(1)参数化设计:通过设定相关参数,软件可以自动完成直线电机的设计,并生成相应的三维模型。
(2)性能预测:软件可以根据设计模型,预测直线电机的性能指标,如推力、速度、精度等。
(3)结构优化:根据性能预测结果,软件可以对设计模型进行优化,提高直线电机的性能。
在直线电机设计中,有限元分析是一种常用的数值分析方法。
通过有限元分析,可以精确地模拟直线电机的电磁场分布、推力输出、热分布等情况,为设计师提供有力的参考依据。
仿真分析是通过建立数学模型,模拟直线电机的实际运行情况,以便评估其性能和可靠性。
通过仿真分析,设计师可以预测直线电机在不同工况下的表现,及时发现和解决潜在的问题。
这里以某款高速直线电机为例,介绍其计算机辅助设计和研究过程。
该款直线电机应用于高精度数控机床,要求推力大、行程长、定位精度高。
利用CAD软件进行参数化设计,调整电机结构尺寸,优化电磁方案。
根据客户要求,设定电机的行程、推力、精度等参数,软件自动生成三维模型。
利用有限元软件对设计模型进行电磁场分析,发现电磁力分布不均匀,影响了电机的推力输出。
通过调整电磁方案和结构设计,优化电磁力分布。
根据优化后的设计模型进行仿真分析,评估电机的性能和可靠性。
现代直线电机关键控制技术及其应用研究

现代直线电机关键控制技术及其应用研究一、本文概述随着科技的不断进步和工业领域的快速发展,现代直线电机及其关键控制技术已经成为现代工业自动化领域的重要研究内容。
直线电机以其高效、高精度、高速度等显著优点,在高速交通、精密机械、电子设备等多个领域得到了广泛应用。
然而,直线电机的控制技术作为影响其性能的关键因素,一直是研究的热点和难点。
本文旨在深入探讨现代直线电机的关键控制技术,并分析其在实际应用中的研究现状和发展趋势,为相关领域的科研工作者和工程师提供有益的参考。
本文首先简要介绍了直线电机的基本原理和分类,阐述了直线电机在现代工业中的重要地位。
随后,重点分析了直线电机的关键控制技术,包括位置控制、速度控制、力控制等方面,并详细探讨了各种控制技术的原理、特点以及适用场景。
在此基础上,本文还综述了直线电机在高速交通、精密机械、电子设备等领域的应用案例,分析了这些应用中的技术难点和解决方案。
本文展望了现代直线电机关键控制技术的发展趋势,探讨了未来可能的研究方向和应用前景。
通过本文的研究,旨在为推动现代直线电机控制技术的进步和实际应用的发展提供有益的借鉴和指导。
二、直线电机基本原理与分类直线电机,又称线性电机,是一种能够实现直线运动的特殊电机。
其基本原理与传统的旋转电机相似,都是基于电磁感应原理进行工作。
但与传统电机不同的是,直线电机不需要通过旋转运动转化为直线运动,而是直接产生直线运动。
直线电机的基本结构主要包括定子、动子和支撑结构。
定子通常由铁心和绕组构成,负责产生磁场;动子则负责在磁场中运动,其结构形式多样,可以是磁铁,也可以是带有绕组的导体。
当定子中的电流变化时,产生的磁场也会随之变化,进而驱动动子在直线方向上运动。
根据动子与定子之间的相对运动关系,直线电机可以分为动磁式和动圈式两类。
动磁式直线电机中,动子是磁体,定子是线圈,电流在定子线圈中产生磁场,从而驱动动子做直线运动。
而动圈式直线电机则相反,动子是线圈,定子是磁体,电流在动子线圈中产生磁场,与定子磁场相互作用,驱动动子直线运动。
国内外直线电机技术的发展与应用综述

国内外直线电机技术的发展与应用综述一、直线电机技术的发展直线电机是一种能够直接产生直线运动的电机,它是融合了电磁学、力学和控制理论的高新技术产品。
随着工业自动化和智能制造的发展,直线电机技术在国内外得到了广泛的应用和推广。
在这样的背景下,直线电机技术的发展也迅速走向成熟,实现了快速、精密、高效的直线运动控制。
1. 直线电机技术的起源直线电机技术的起源可以追溯到20世纪初,当时的工业生产需要更高效的动力传动设备,传统的旋转电机在直线运动控制方面存在较大的局限性。
由此,人们开始研究和开发能够直接产生直线运动的电机,而直线电机应运而生。
2. 直线电机技术的发展历程20世纪50年代,磁悬浮直线电机技术开始初露头角,但由于材料、加工工艺等方面的限制,当时的直线电机技术仍处于萌芽阶段。
随着硬磁材料和控制技术的不断改进,直线电机技术逐渐成熟,应用领域也不断拓展。
3. 直线电机技术在国际上的发展状况在国际上,直线电机技术已经得到了广泛的应用和研究。
欧美国家在直线电机技术方面具有较强的研发实力和生产能力,其在航空航天、高铁、机器人等领域的应用取得了显著的成绩。
而在亚洲地区,日本和韩国也在直线电机技术领域拥有一定的技术积累和市场份额。
二、直线电机技术的应用直线电机技术作为一种先进的动力传动技术,其在工业生产和科学研究领域得到了广泛的应用,并且在特定领域具有独特的优势。
1. 工业自动化领域在工业生产中,直线电机技术可以实现高速、高精度的直线运动控制,广泛应用于数控机床、激光切割设备、半导体生产设备等领域。
直线电机可以实现电磁直接驱动,避免了传统传动系统中的机械传动链路和间隙,提高了系统的动态响应性能和定位精度。
2. 航空航天领域直线电机技术在航空航天领域的应用也日益广泛。
在卫星姿态控制系统中,直线电机可以实现对姿态控制器的精确调整,提高了卫星的姿态控制精度和灵活性。
在航空器的起落架和飞行控制系统中,直线电机也可以实现更加稳定和精密的动力传递。
直线电机工作原理,特点及应用(数控大作业)

《数控技术》大作业二1.综述直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。
其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。
直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。
初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。
设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。
2.工作原理直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。
显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。
行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。
如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。
因此直线电动机可实现往返直线运动。
3.直线电机的特点直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。
旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。
直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。
其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。
电机研究报告

电机研究报告电机是一种将电能转化为机械能的装置,是现代工业中非常重要的一种设备。
本报告将对电机的工作原理、分类、应用领域以及未来的发展方向进行研究。
电机的工作原理是基于电磁感应的原理。
当通过导线中通入电流时,会在导线周围产生磁场。
而当导线位于磁场中时,导线会受到力的作用,从而产生机械运动。
这就是电机的基本工作原理。
电机可以根据不同的工作方式和结构特点进行分类。
按照工作方式,电机可以分为直流电机和交流电机。
直流电机是通过直流电源供电,产生恒定的磁场,其转速可以实现调速;而交流电机是通过交流电源供电,在磁场中产生旋转磁场,从而产生机械运动。
按照结构特点,电机可以分为直线电机和旋转电机。
直线电机主要用于需要直线运动的场合,而旋转电机则是最常见的电机,包括了直流电机、异步电机和同步电机等。
电机的应用领域非常广泛。
在工业生产中,电机广泛应用于机械设备、输送设备、风机、水泵、压缩机等各种设备中,它们是工业自动化系统的核心部件。
在交通运输领域,电机驱动各种交通工具,如汽车、火车、电动自行车等。
此外,电机还应用于家电产品、办公设备、医疗设备以及军事装备等领域。
未来电机的发展趋势主要集中在以下几个方面。
首先,随着科技的进步,电机的能效和控制精度将不断提高,以提高能源利用效率和减少能源消耗。
其次,随着新材料的应用和制造技术的革新,电机的体积和重量将不断减小,提高电机的功率密度。
此外,电机的智能化水平将不断提高,可以实现远程控制、自动化运行和故障诊断等功能。
综上所述,电机是一种非常重要的设备,广泛应用于各个行业。
随着科技的进步和需求的不断变化,电机的发展也在不断推进。
未来,电机将更加高效、轻巧和智能化,为各个领域带来更多的应用和便利。
直线电机在电力驱动系统中的应用研究

直线电机在电力驱动系统中的应用研究直线电机是一种利用磁场作用力来实现直线运动的电动机,相比传统的转子电机,它有着更广泛的应用前景。
在电力驱动系统中,直线电机的应用研究已经成为一个热点领域。
本文将从不同角度探讨直线电机在电力驱动系统中的应用研究。
一、直线电机的概述直线电机是一种杰出的电动机械设备,它是一种线性装置,它能够将电能转化为机械能,将直流电能或者交流输入。
它有三个主要部分组成,包含定子、铁芯、滑块和推进块组成。
直线电机的工作原理是基于洛伦兹力和磁场之间的相互作用,通过改变磁场和电流的强弱来改变直线电机的行程和速度。
直线电机在医疗、航空、汽车、工业等领域有着广泛的应用。
二、直线电机在电力驱动系统中的优势与传统的转子电机相比,直线电机在电力驱动系统中具有一些独特的优势。
首先,直线电机具有高效率和高加速度的特点。
由于直线电机不需要通过转子来实现转换,它能够提供更高的加速度和更高的转速,从而提高了整个电力驱动系统的效率。
其次,直线电机具有更好的控制性能。
直线电机能够实现精确的位置控制和速度控制,可以适应多种工况,提高了电力驱动系统的可控性和稳定性。
此外,直线电机还具有更大的功率密度和更小的体积,使其更适合电力驱动系统的集成化和紧凑化设计。
三、直线电机在电力驱动系统中的应用案例1. 电动汽车电动汽车是直线电机在电力驱动系统中的一个重要应用领域。
由于直线电机具有高效率和高控制性能,可以有效提高电动汽车的性能和续航里程。
直线电机的快速响应和无级变速特性,能够实现更好的加速和刹车效果,提高整车的操控性能。
此外,直线电机的紧凑设计和高功率密度特点,也使得电动汽车能够减少整车的体积和重量,增加电池的容量和续航里程。
2. 工业自动化工业自动化是直线电机在电力驱动系统中的另一个重要应用领域。
直线电机具有高精度和高重复定位精度的特点,可以实现工业机器人和自动生产线的精确控制。
直线电机可配备位置反馈传感器,实现闭环控制,以满足不同工况下的自适应和快速响应要求。
直线电机的应用
3
按加速度分类
• 中低加速直线电机 • 适用于磁悬浮列车及其他地面交通 工具 • 高加速直线电机 • 能把物件在短时间内加至极高速度, 适用于粒子加速器、制造武器等。
4
5
直线电机军事应用
• 首先,直线电机的速度极高,比如,英国皇家飞 机制造公司利用直线电机制成的导弹发射装置, 其速度可达1600km/h,该国曾制成另一枚直线电 机感应发射器,其速度可达4800km/h
9
直线电机车辆的必要性
• 目前, 在地铁轨道交通运载系统中, 列车牵引是以 旋转电机为基础的轮轨粘着驱动方式, 对曲线半径、 线路纵断面坡度和隧道断面的限制要求高 • 随着城市规模的不断扩大, 楼宇建筑和地铁路网建 设的不断发展,城市多层立体轨道交通网络使城市 地下隧道的埋深逐渐加深, 线路坡度越来越大, 曲 线半径越来越小, 传统的轮轨粘着驱动技术已不能 完全满足国内城市轨道交通建设的需要。
14
直线电机运载系统用道岔的选择
15
道岔的技术参数
• 正线采用8号可动心轨辙叉单开道岔(全长为25 884mm) , 尖轨、心轨各设1 个牵引点, 采用有螺 栓弹性扣件, 基础为直联式整体道床。由于采用可 动心轨辙叉道岔, 消灭了道岔辙叉的有害空间, 列 车运行平稳, 振动和噪声低, 舒适度较好 • 存车线采用4 号对称道岔( 全长为16 587mm ) 。 尖轨设1个牵引点, 固定型辙叉, 采用有螺栓弹性 扣件, 基础为直联式整体道床
16
• 车辆段采用4号单开道岔(图3)。尖轨设1个牵引点, 固定型辙叉, 采用有螺栓弹性扣件, 基础为安装位 置与钢轨用扣件或道岔用拉杆/连杆等金属部件之 间, 确保一定的安全间隙; 在考虑到辙叉理论尖端 附近钢轨的下沉问题, 设计时感应直线电机牵引系统的轨道与道岔技术的研究, 不仅 会为目前在建的直线电机牵引系统轨道设计、施 工提供安全、可靠的技术支持, 而且也为我国开发 城市轨道交通直线电机牵引系统轨道结构标准打 下良好基础。直线电机驱动的轨道交通系统以其 自身的特点,必将占有一定的市场份额, 与其他交 通工具的理论和试验基础, 为交通运载系统设备的 产业化开创了广阔的应用前景
直线电机的发展及其在电梯行业的应用
直线电机的发展及其在电梯行业的应用作者:朱广慧来源:《中国机械》2014年第02期摘要:直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。
基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。
关键词:直线电机;电梯;应用传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。
就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。
而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。
1.直线电机的发展和研究情况1.1.直线电机的发展史直线电机的概念是在1840年被提出来的,距今有一百多年的历史。
可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。
其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。
在开发阶段科学家在直线电动机研究的基础上,取得了非常大的研究成果,发表了一些比较系统的电机类著作和文章,极大的推进了直线电机的发展,同时也引起了广大研究人员对直线电机的重视[1]。
从1971年开始对直线电机进行了独立应用,在这个阶段,研究人员选择了出了适合直线电机使用的途径,各种各样的直线电机被广泛的推广,研究出了非常多的具有使用价值的产品,比如冲压机、空压机、煤机等。
1.2.近年来国内外对直线电机的研究情况近年来,直线电机得到了迅速的发展,很多人都开始对直线电机进行研究。
直线电机工作原理及其驱动技术的应用
直线电机工作原理及其驱动技术的应用摘要:简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有的巨大优势。
介绍了直线电机进给驱动技术在数控机床上的几个应用实例,指出直线电机进给驱动技术将是高速数控机床未来发展的方向。
引言随着航空航天、汽车制造、模具加工、电子制造行业等领域对高效率地进行加工的要求越来越高,需要大量高速数控机床。
机床进给系统是高速机床的主要功能部件。
而直线电机进给系统彻底改变了传统的滚珠丝杠传动方式存在的弹性变形大、响应速度慢、存在反向间隙、易磨损等先天性的缺点,并具有速度高、加速度大、定位精度高、行程长度不受限制等优点,令其在数控机床高速进给系统领域逐渐发展为主导方向。
1 直线电机及其驱动技术现代先进的驱动技术主要分为两大类:一类为电磁式的,另一类则为非电磁式的。
电磁类的现代先进的驱动技术主要由现代电磁类驱动器与现代控制系统组成,它的驱动器包括传统改进型的电磁驱动器与新发展型的电磁驱动器。
它们中有旋转的、直线的、磁浮的、电磁发射的等等。
除了在一般通用电机技术基础上改进获得的电机技术外,还有更多的是在通用电机技术基础上进一步发展的新型电机技术,如直线电机技术、无刷直流电机技术、开关磁阻电机技术和各种新型永磁电机技术等。
直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。
旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。
直线电机结构示意图如下图所示。
直线电机是将传统圆筒型电机的初级展开拉直,变初级的封闭磁场为开放磁场,而旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。
在电机的三相绕组中通入三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。
直线电机设计及其控制技术研究
直线电机设计及其控制技术研究随着科技的不断发展,直线电机已经成为现代机械工业不可或缺的一部分。
直线电机主要应用在各种机动装置中,例如高速平面,精密定位等等。
直线电机的设计与极化方式作为电机的一种工业开发方向,已经受到了越来越多技术专家的关注。
在这篇文章中,我们将探讨直线电机的设计和控制技术。
一、直线电机的设计直线电机一般是由磁场线圈和移动部件组成。
在磁场带中心时,可以是线圈产生等力线,但线圈之前的空间间隔较大时就不能产生等力线。
在这种情况下,直线电机的性能就会受到影响。
因此,为了更好地解决这个问题,我们需要对直线电机进行设计。
直线电机的设计中,需要特别关注线圈的制造。
目前,常用的生产设备有线圈拉伸机,是许多制造商所使用的主要工具。
使用线圈拉伸机,可以生产出更加优质的线圈,提高直线电机的整体性能。
此外,在设计直线电机时,还需要考虑其散热问题,合理规划空间结构,以降低温度,同时保证电机运行的可靠性和稳定性。
除此之外,直线电机的设计还需要考虑各种电气元件的选配,例如传感器、控制器等。
在设计中,还要采用优化设计方式,不断完善设计流程,提高其性能和可靠性。
二、直线电机控制技术的研究在直线电机的控制技术研究中,我们首先要考虑如何精确地控制电机的运动。
直线电机电动力学的研究表明,当磁极以直线运动时,电机有效电动力矢量的大小与方向会随着其位置改变而发生变化。
如何克服这一问题,需要对电机的控制进行研究。
在直线电机的控制技术中,我们还需要考虑如何有效地防止电机的“抖动”现象。
这个问题的解决需要运用复杂的控制技术和算法,例如模糊控制算法、神经网络控制算法等等。
在实际应用中,这些技术可以有效地减少电机的抖动现象,提高其运行效率和稳定性。
在直线电机的控制中还需要考虑如何有效地监测和控制电机的温度。
随着电机的运行,温度会逐渐升高,如果超过一定的范围就会影响电机的性能和寿命。
因此,在控制技术中,需要考虑如何通过温度传感器实时检测电机的温度,并通过控制器进行准确的控制,保证电机的稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年第1期唐丽婵,等:基于LabVIEW 的无线远程温度监控系统25文章编号:1674-540X(2009)01-025-07收稿日期:2009-01-15作者简介:王振滨(1973-),男,博士研究生,主要从事分数阶线性系统和电气传动方面的研究工作,E mail:wangzhenbing@直线电机开发及应用研究王振滨1, 余鹿延2, 周守国3(1.上海电气集团股份有限公司中央研究院,上海200070;2.上海赛科现代交通设备有限公司,上海200023;3.上海捷晟电机有限公司,上海200075)摘 要:介绍了直线电机国内外的发展现状,指出永磁同步直线电机将是直线电机今后的发展方向。
阐述了永磁同步直线电机的磁阻力产生的原因及其造成的推力波动对永磁同步直线电机控制性能的影响,并归纳出减小磁阻力的方法。
最后简要介绍了上海电气中央研究院在开展永磁同步直线电机研究及应用的情况。
关键词:永磁同步直线电机;磁阻力;控制;开发与应用中图分类号:T M 33 文献标识码:AThe Development and Application Research of Linear MotorsW A N G Zhenbin 1,YU L uyan 2,ZH O U S houguo3(1.Shang hai Elect ric Group Co.Lt d.Cent ral A cademe,Shang hai 200070,China;2.Shanghai SEC M odern Traffic Equipment Co.Ltd.,Shanghai 200023,China;3.Shanghai Jie Sheng M ot or Co.,Ltd.,Shanghai 200075,China)Abstract:It intro duces the up to date researches o f linear mo to rs hom e and abro ad,and points out permanent magnet linear synchronous m otors (PMLSM )w ill be the development dir ectio n of linear motor s in the future.T he r easo ns orig inated fr om detent for ce of PM LSMs are illustrated as w ell as the influences of the thrust force r ipple caused by it on the control per for mances of PM LSMs,and the methods o f reducing detent force is summed up.Finally,a brief introduction is g iven of the researches and applications of PM LSM s made by Shanghai Electr ic Gr oup Co.Ltd.Centr al A cademe.Key words:PM LSM;detent force;contr ol;development and applicatio n1 直线电机国内外研究现状1.1 快速发展的永磁直线电机技术永磁直线电动机具有结构简单、体积小、无电励,效率高、单位推力大等优点,随着稀土永磁材料、电磁场数值计算与分析、智能控制理论以及计算机技术的不断发展,永磁直线电动机的发展越来越快,己成为学术研究和开发应用的热点。
永磁直26 上海电气技术2009年第1期线电机将引领直线电机的发展潮流[1,2]。
永磁直线电动机种类较多,结构多样。
目前的研究,主要以交流永磁直线电动机为多。
在交流永磁直线电动机当中,又较多的集中在有铁心永磁直线电动机方面。
对于该电机,人们主要是研究如何减少磁阻力(包含端部力和齿槽力)及由其产生的推力波动影响。
通过大量的理论分析、试验验证以及实际应用,目前已取得了明显的成果。
在国外,有很多高校和研究机构从事永磁直线电机方面的研究。
在扁平型永磁直线电机方面, Deng Zesheng,Bo ldea和Nasar等早在1986年利用等效磁化电流的方法对单边扁平型永磁直线电机进行了解析求解;Yu Xiongg uang和Nasar则在1989年利用磁荷的概念和镜像法,对扁平型永磁直线电机进行了解析求解;美国M IT的T rumper根据Max w ell方程组,推导出矢量磁位的微分方程组,并推导出磁密、推力、磁链、自感和反电势的解析公式等。
在圆筒型永磁直线电机方面,意大利的Nicola Bianchi分别采用等效磁路法和等效磁化强度的方法分析了轴向和径向充磁结构的圆筒型永磁直线电机,分析了几个电机主要尺寸对磁场的影响;澳大利亚悉尼理工大学的Lu H aiw ei,Zhu Jiang uo设计了1种微型无槽式圆筒型永磁直线电机,并将其应用在微型机器人上;意大利的M arignetti, Scarano设计了1种轴向充磁的圆筒型永磁直线电机,详细分析了电机尺寸对性能的影响等。
国内研究扁平型永磁直线电机的单位比较多,其中包括中科院电工所、河南理工大学(原焦作工学院)、浙江大学、清华大学、华中科技大学和太原理工大学等。
研究内容包括永磁直线电机的线性分析模型;等效电路参数的推导;采用等效磁化电流的方法求解电机磁场;建立永磁直线电机的 整体分层线性模型 ;三维场的分析推导和数学模型的建立;端部效应对永磁直线电机电枢磁链的影响;法向力与推力、电机尺寸与推力的关系,机床进给系统用永磁直线电机的设计方法;以及永磁直线电机推力波动产生的机理和减小推力波动的技术措施。
此外,还有一些关于永磁直线电机动、静态性能分析的研究等。
国内关于圆筒型永磁直线电机的研究相对较少,目前主要有太原理工大学、浙江大学、山东大学、河南理工等机构采用 等效磁势法 和 等效磁化强度法 对空心式永磁直线电机内磁场进行解析分析,通过解析分析与有限元分析的比较,证明 等效磁化强度法 的求解结果更准确;推导了电机气隙磁密、推力和反电势的解析公式,并详细分析了电机主要尺寸对电机性能的影响;对不同向充磁圆筒型永磁动圈或动铁式永磁直线电动机的气隙磁场进行了解析分析和有限元分析,给出了永磁直线电机设计的基本方法等。
在目前的直线电机的产品中,永磁直线电机占了很大的份额,生产商主要集中在日本、美国、英国、德国等发达国家。
他们在永磁直线电机的研究和开发方面取得了显著成果。
1.2 大推量、高速高精度、伺服性直线电机技术1.2.1 大推力直线电机技术的研究发展(1)在交通领域的发展近些年来,直线电机在大推力、大容量方面的发展也是比较快的。
其应用领域如:20世纪80年代开始在加拿大、日本、美国、马来西亚等应用的直线感应电机的城轨交通(地铁和轻轨),现在发展很快,特别在日本和中国。
其优势主要体现在降低车体高度,减小隧道面积,成本减少,土地节约;爬坡能力强,转弯半径小;非接触牵引,节能,噪音低;列车加减速度快,效率高;维护量少,运营成本低;长期的安全运行纪录。
如温哥华空中列车在14年的时间里安全运送乘客4.5亿人次,运行里程超过10亿km。
日本自1990年3月在大阪7号线采用了直线感应电机驱动的地铁,1991年在东京12号线采用直线电机驱动地铁后,神户、横滨、福冈、仙台和其他一些城市也引入直线电机地铁。
我国广州地铁的4号线、5号线、6号线、7号线,有的已用,有的将要用。
北京机场一东直门的直线电机轻轨地铁线已于2008年7月投入使用。
国内浙江大学与上海南洋电机集团合作的直线电机驱动地铁车试验线正在调试中。
另外,中科院与泰富公司也在从事这方面工作。
直线电机在大推力、大容量方面的发展除在地铁和轻轨的应用领域外,在磁浮交通方面的应用也是令人注目的一部分。
目前一些国家在磁浮交通驱动技术方面仍在不断向前发展,如日本、德国、美国以及其他一些国家以不同的方式开展研发和推进应用。
中国的沪杭磁浮交通线仍在进行相关调研工作。
(2)在物流及工业设备方面的发展发达国家企业的物流设备占项目总投资的比2009年第1期王振滨,等:直线电机开发及应用研究27例一般都在20%以上,从而使得物流设备不断地改进发展,其中由直线电机驱动的物流传输设备代表了现代先进物流传输技术的1种应用和1种潮流。
一些发达国家(如美国、日本、德国、法国、意大利、丹麦等),在物流传输领域,如机场行包输送,邮政自动化分拣、报刊书籍配送中心,工厂流水线等系统中,已基本实现了自动化。
这些设备普遍采用直线电机作为驱动系统,适应多批量灵活安排的需求,代表着目前世界物流传输技术的发展水平。
1.2.2 高速高精度、伺服性直线电机技术的研究发展直线电机在高速、高精度伺服性能方面的发展首推在现代机床业中的应用。
传统机床的驱动装置依赖丝杆驱动,具有长度限制、机械背隙、磨擦、扭曲、螺距周期误差、较长的振动衰减时间、与电机的耦合惯量以及丝杠的轴向压缩等缺点。
所有这些因素均限制了其进一步的应用,而直线伺服电机驱动有传统滚珠丝杠驱动装置无法达到的高速、高精度、高刚度、运行时噪声低和行程长度不受限制等优点,将是高性能数控机床的首选驱动方式。
目前,世界上最知名的机床厂家,如美国Ingersoll公司、意大利普瑞玛工业公司和德国DMG 等公司几乎无一例外地都推出了直线电机驱动的机床产品,品种覆盖了绝大多数机床类型。
这些直线电机驱动数控机床极大地提高了生产质量和效率。
例如,克莱斯勒汽车公司使用了6台直线电机驱动的HVM600卧式加工中心,用来生产高级汽车发动机汽缸盖,这6台加工中心每天生产300个汽缸盖,相当于11台非直线电机驱动的加工中心的生产量之和。
意大利普瑞玛工业公司采用双机同步联动结构和直线电机并联运动方式,在切割过程中加速度可达6g(g=9.8m/s2)。
它每分钟可以切割超过1000个孔,而市场上目前最快的激光切割机也只能加工600个孔。
意大利JOBS公司为航宇和模具制造业生产的LinX大型高速铣床产品,采用高架桥式布局与直线电机坐标驱动,加工时间可减少50%。
德国用户采用LinX龙门加工中心(三轴均为直线电机驱动)加工模具,由于无效时间大为缩短等因素,加工效率比未采用直线电机的同类机床效率提高40%。
国内自1995年以来也开展了直线电机在机床上的应用研究,如广东工大研发的直线感应电机驱动的GD-3型高速数控机床进给单元,清华研究的长行程永磁直线伺服单元,北京机电院研发的直线电机驱动的加工中心,浙江大学研制的圆筒型直线电机驱动的并联机构坐标测量机和扁平永磁直线电机驱动的磨床,北京机床研究所研发的直线电机驱动的电火花成型机床,国防科大研发的活塞非圆切削中采用直线电机驱动刀具以及北航、南航与有关单位合作研发的机床等。