6、2静电场中的电介质、电场的能量详解

合集下载

电磁学02静电场中的导体与介质

电磁学02静电场中的导体与介质

A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:

大学物理下 第九章 静电场中的导体和电介质5

大学物理下 第九章 静电场中的导体和电介质5
0S
2
ε0S C= d
四,静电场的能量 (1)电容器的能量 )
1 Q2 W = CU 2 = 2 2C
(2)静电场的能量 有电场的地方就有能量 )
1 ωe = D E 2
W = ∫ ωe dV
(3)静电场的能量与功的关系 )
A 静 = W
已知 ε r1 : ε r 2 = 1 : 2 ,问 W1 : W2 = ?
λ o d a
λ λ U = ∫ + dr 2πε0r 2πε0 (d r ) a -λ λ λ d a λ d = Ln ≈ Ln πε0 a πε0 a
λ λ πε 0 ∴ C0 = = = d d λ U Ln Ln a a πε 0
r
d a
P79 99 讨论
1)通电后维持电压不变插入电介质 ) 2)通电后断开再插入电介质 ) 讨论插入前后的 E,D,U,Q. , , , 令插入前为E , , , (令插入前为 0,D0,U0,Q0) 2) Q = Q 0
4a
UBA = UB∞
场具有球对称性
a
3a
解(1)a < r < 3a
∫∫ D dS = ∫∫ DdS = D4πr = QA
2 S S
Q
4a
a
QA D= 2 4πr
D QA E= = 2 ε0εr 4πε0εr r
3a
r > 4a ∫∫ D dS = D 4 πr = Q + Q A
2 S
Q + QA D= 2 4 πr
∫∫ D dS = Q0
S
E = E0 + E'
9-6,8 ,
E0
讨论 p79

静电场中的导体和电解质

静电场中的导体和电解质

Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0

i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi

学院14-2静电场中的电介质

学院14-2静电场中的电介质
14.2
电场中的电介质
1. 电介质对电场的影响 2. 电介质的极化 3. 电介质的高斯定理 电位移矢量

电介质对电场的影响
电介质: 绝缘体(insulator) 电介质: 绝缘体(insulator)
(放在电场中的)电介 放在电场中的)
+Q
+
+ + + + +
-Q
-
+
电场 质 实验 结论: 结论: 介质充满电场或介质表面为等势面时
σ σ = d1 + d2 εoεr1 εoεr 2
ε1ε2S C = q / ∆V = ε1d2 + ε2d1
• 各电介质层中的场强不同 • 相当于电容器的串联
平板电容器中充介质的另一种情况 由极板内为等势体
∆V1 = ∆V2
σ
σ1 ∆S1 ε1 A ε2
−σ
∆V 1 E1 = d
∆V2 E2 = d
+
+ +
v v v v 令: D = ε0εr E = ε E ε —介电常数 D ---电位移矢量 ---电位移矢量 v v 则: --电介质的高斯定理 D⋅ dS = ∑q0i --电介质的高斯定理 ∫
S i
εr v v ε0εr E⋅ dS =σ0∆S = q0 ∫
S
E=
E0
+σ '
- - - - - - - - - - - - - - - - -
S1
A
ε1
S2 d1
ε2
B
D ∆S1 = σ∆S1 1
D =σ 1
同理, 同理,做一个圆柱形高斯面 S2
v v ∫ D⋅ dS = ∑qi (S2内) D2 = σ

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

第 三 章 静电场中的电介质

第 三 章 静电场中的电介质

第 三 章 静电场中的电介质 (6学时)一、目的要求1.掌握电介质极化机制,熟悉极化强度、极化率、介电常数等概念。

2.会求解极化强度和介质中的电场。

3.掌握有介质时的场方程。

4.理解电场能量、能量密度概念,会求电场的能量 。

二、教学内容与学时分配 1.电介质与偶极子( 1学时) 2.电介质的极化(1学时) 3.极化电荷( 1学时)4.有电介质时的高斯定理(1学时) 5.有介质的场方程(1学时) 6.电场的能量(1学时) 三、本章思路本章主要研究电介质在静电场中的特性,其基本思路是:电介质与偶极子→电介质的极化→电介质的极化规律 →有介质的静电场方程 →静电场的能量。

四、重点难点重点:有介质的静电场方程 难点:电介质的极化规律。

五、讲授要点§3.1 电介质与偶极子一、教学内容 1.电介质概述 2.电介质与偶极子3.偶极子在外电场中受到的力矩 4.偶极子激发的静电场 二、教学方式、 讲授三、讲课提纲 1.电介质概述电介质是绝缘材料,如橡胶、云母、玻璃、陶瓷等。

特点:分子中正负电荷结合紧密,处于束缚状态,几乎没有自由电荷。

当导体引入静电场中时,导体对静电场有很大的影响,因静电感应而出现的感应电荷产生的静电场在导体内部将原场处处抵消,其体内00='+=E E E ϖϖϖ,且表现出许多特性,如导体是等势体、表面是等分为面、电荷只能分布在表面等;如果将电介质引入电场中情况又如何呢?实验表明,电介质对电场也有影响,但不及导体的影响大。

它不能将介质内部的原场处处抵消,而只能削弱。

介质内的电场00≠'+=E E E ϖϖϖ。

2.电介质与偶极子 (1)电介质的电结构电介质原子的最外层电子不像金属导体外层电子那样自由,而是被束缚在原子分子上,处于事缚状态。

一般中性分子的正负电荷不止一个,且不集中于一点,但它们对远处一点的影响可以等效为一个点电荷的影响,这个等效点电荷的位置叫做电荷“重心”。

5第五讲静电场中的电介质,电位移、介质中的高斯定理


二、电介质的极化过程
电介质被引入电场中后,将产生极化现象,即:在外 电场的作用下,介质中或表面上将出现极化电荷。
3
1.无极分子的位移极化 分子的等效正、负电荷作用中心在外电场作用下沿 电场方向发生反向位移而产生极化电荷。
无外电场时
处于外电场中时
r E
r E0
r E
垂直于电场方向的表
r
面出现极化电荷(称 束缚电荷)。
录像片:“大气电场下——雷电及其防护”
1
§18-2 静电场中的介质、介质中的高斯定理
电介质—电阻率很大的物质,即绝缘体。 特点:分子中正负电荷束缚很紧,电荷代数和为零。 介质内几乎没有自由电子,因而导电能力很差。
一、电介质分类
根据分子的正、负电荷等效中心的位置关系划分。 无极分子—正、负电荷等效中心重合的分子。 有极分子—正、负电荷等效中心不重合的分子。
rr r E E0 E
Ñ r r E dS
1
S
0
S
(q0 q)
rr
ÑS P dS q
S
联立上两式得:
r
E0 S
r E
q0 q
r
rr r
ÑS (0 E P) dS q0 S
11
rr r
ÑS (0 E P) dS q0 S r rr
定义电位移矢量:D 0 E P 单位:库仑/米2
无极分子
有极分子 2
有极分子等效于一个电偶极子,其电偶极矩
rr
r l
q
Pe ql
q
实际上,所有分子均可等效为一电偶极子模型。区别 在于:无外电场时单个无极分子的电偶极矩为零。
无极分子电介质
有极分子电介质
r

《静电场能量》课件



D1 1
r1
h

2
D2

r
2
在分界面上无自由电荷时,电位移 的法向分量是连续的。界面两侧电 场强度的法向分量是不连续的。
二、切向分量

E dl 0
ABCDA

E dl E dl E dl E dl 0
AB
R1
R2
解:若电容器两极板上电荷的分布是均匀的, 则球壳间的电场是对称的。由高斯定理可求得 球壳间的电场强度的大小为
E=
Q
4
r
2
电场总能量为
电场的能量密度为
e

1 2
E
2=
Q2
32 2
r4
取半径为r、厚为dr的球壳,其体
积为dV=4πr2dr。所以此体积元内
Q R2
2
We R1 8 r 2 dr
E1t=E2t
D1t = D2t
1 2
9-8 压电效应 铁电体 驻极体
一、压电效应
•压电效应(正压电效应):某些固体电介质,当它们发生机械形 变时,会产生极化,在它们相对的两个面上将产生异号的极化 电荷。这种因机械形变而产生的电极化现象称为压电效应。 •电致伸缩(逆压电效应):在电场的作用下,晶体发生机械形变。 •应用:
热驻极法 电驻极法 •应用:电容传声器、拾音器、拾振器等。
小结
•静电场的能量 •能量密度
W Q2 1 CU 2 1 QU
2C 2
2
we

1 2

0
r
E
2

1 2
DE
作业:
思考题:

静电场的能量


4、当存在电介质时:
e
0 rE2
2
1 E 1 DE
22
各向同性均 匀电介质
5:
e
0 E2
2
e E 2
e不符合叠加原理
例如:
P
? p
6 :非均匀变化的电磁场中,求任意带电系统 在整个电场中储存的能量
微元分析法
We
V edv
V
1
2
0
r
E
2dv
特例:当介质均匀
We
V
1DE 2
dv
E :积分所在处 dv 的场强
点电荷间的相互作用能
1.2 多个点电荷
推广至由n个点电荷组成的系统,其相互作用能
(电势能)为
W
1 2
n
i 1
qiVi
Vi是除qi外的其它所有电荷在qi 所在处产生的电势。
1.3、 推广到电荷连续分布的带电体Q的电能
取体积元,有电荷 qi, v 很小,qi dq
其中:
W
1 2
n i1
q i U i
E
2dv
积分区域包括电场所在的整个空间,包括球内球外
在球内、球外分别取体积元 dV
We
球内
1
2
0
E
2dv
球外
1
2
0E
2dv
3Q2
20 0R
• 场是物质存在的一种形式。所以场具有能 量。由于带电球体在球内外都会产生电场, 所以电能应包括球内和球外能量的总和。
1 2
U dq
(1)U是由空间所有带电体在dq处共同产生的
电势的代数和。(关键就是写U)
(2)积分遍积电荷所在处。

第三章静电场中的电介质(10-10)


V
S
计算 q’ 与 ’
ˆ 在 S 上取 dS = dS n
附近 p = ql || P
l/ 2
P
ˆ n

l/ 2 dS 作斜柱体:l 为母线,dS 为底 (中心在斜柱体内的偶极子与 dS 相截) 体积: ldS |cos | (斜柱体) 偶极子数: n ldS |cos | (中心在斜柱体内) 电量: dq’ = -nqldS cos (下半柱体,即 V 内) dq’ = -npdS cos PdS cos P dS
ˆ n
01 (2) 0 0 01
01 ’
02
例题 2(p.104/[例2])(2)
01 U Ed d
q0 01S
(3) C q0 S
U d S 无介质(真空): C0 0 d C r C0
一. 极化电荷
极化电荷 —— 介质极化导致局部 V 内电 荷代数和不等于零
自由电荷:q0, ρ0, ϭ0 ( 包括导体感应电荷 ) 极化电荷: q ’, ρ’,ϭ’ ( 由于介质极化产生 )
E 未极化时 V 内 q= 0 极化后 V 内 q 0
二. ’ 与 P 的关系
整体位于 V 内的偶极子对 V 内的 q ’ 无贡献 只有与 V 的边界面 S 相截的偶极子才有贡献
ˆ ˆ ' P n 0 E n 0 E
0
ˆ ( E与n反向) 0 E 0 ' 0 0 E
’ -’ -0
解得 0 0 (1 ) E 0 r E
' 0 E 0 ( r 1) E
(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档