13静电场中的导体和电介质习题详解(精)
大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
习题课第2、3章静电场中的导体和电介质(精)

第2、3章静电场中的导体和电介质(习题课)一、本章内容提要要求:理解和掌握各种物理量(概念)的定义和物理含义,掌握各种物理定理(律)的成立条件和基本的运用方法。
1.导体—“微观带电结构”—自由电子q02.导体静电平衡条件和性质E=0E⊥表面内,表等势体、等势面,净电荷分布在导体表面上。
3.有导体存在时电场和电势分布的计算(A)电场的基本规律(第1章)(B)导体静电平衡条件和性质(C)电荷守恒定律处理“三种对称性”情况,可得到解析表达式。
4.用电场线概念讨论导体的静电平衡问题5.有导体时静电场的唯一性定理和电像法电场空间V,由若干边界面Si包围而成,每个Si都是导体表面(或S∞),若给定每个导体的:a)电势Ui,或者b) 总电量Qi,则空间V内的电场E唯一确定。
电像法处理“点电荷与导体板”和“点电荷与导体球”问题。
6.导体空腔内外的电场与静电屏蔽Q3腔内电场:由腔内带电体q1和S内(-q1)唯一决定。
腔外电场:由腔外带电体q3和S外(q2=q0+q1+q感-q感)唯一决定。
接地导体空腔可隔绝空腔内外电场之间的相互影响。
7.电介质—“分子等效电偶极子”—束缚电荷qs8.电介质的极化位移极化、取向极化,及伴存现象(电致伸缩,压电效应等)极化强度(宏观量)介质中的极化场: (P线:发自于负束缚电荷,终至于正束缚电荷)9.极化电荷(束缚电荷)(极化场P的高斯定理)ˆ:介质表面外法线方向的单位矢量)(n电介质极化产生附加电场Es10.介质的极化规律各向同性线性电介质(宏观电场力和微观束缚力相平衡的状态) 电极化率χe>0总场强 E=E0+Es各向异性线性电介质(普遍), 极化率张量[χei]j非线性电介质电滞现象11.电位移矢量定义电位移矢量场:(D线:发自于正自由电荷,终至于负自由电荷)各向同性线性电介质D=ε0E+P=ε0E+ε0χeE=ε0εrE=εE相对介电常数(电容率)介电常数12.电位移的高斯定理(普遍)εr=1+χe>1 ε=ε0εr(积分形式)(微分形式)13.有电介质存在时电场和电势分布的计算 D⋅dS=Q0⇒D⇒E⇒P⇒qs,σss处理特定问题,如“三种对称性”问题qq+∆q∆q14.孤立导体的电容C=U=U+∆U=∆U qC=15.电容器的电容 UAB三种简单电容器平行板 C0=d,ε0S2πε0LC=C=4πε0R 0圆柱形,球形lnR2R1极板间充满电介质时16.电荷在外电场中的静电势能(W是指q与场源电荷∑Qi之间的相互作用能)17. 带电体系的静电能⎛电能(静电能W)⎫⎛分散的、⎫⎪⎪⇑⎪相距无穷⎪⇒[带电体]⇐⎪⎪外力反抗电场力做功⎪远的状态⎝⎭⎝⎭18.电荷的相互作用能(点电荷组)Ui是qi所在点的电势(除qi以外电荷产生的)19.电荷的固有能(自能)20.计算带电体系静电能的一般公式U是dq所在点的电势(由所有电荷共同产生的)●带电面●带电等势面●电容器带电时21.电场的能量1 12w=εE⋅E=εE00真空中电场的能量 e1 22 (单纯电场能量密度)电介质中电场能量密度1 1 1we=2D⋅E=2ε0E⋅E+2P⋅E 极化分子增加的内能1 12w=P⋅E=(ε-1)εEr0 e22 2(电介质的极化能密度)各向同性线性电介质22.计算电场能量的一般公式23.静电场的基本方程Ls E⋅dl=0 , ∇⨯E=0 (静电场的环路定理) V D⋅dS=⎰⎰⎰ρcdV, ∇⋅D=ρ (D的高斯定理) c∂U∂U∂Uρc∆U=2+2+2=- (有介质的泊松方程)∂x∂y∂zεi222∂2U∂2U∂2U∆U=2+2+2=0 (拉普拉斯方程)∂x∂y∂z24.电介质分界面的边值关系E1t=E2t , D1n=D2n∂U∂UUi=Uj ,εi()i=εj()j ∂n∂n25.静电问题的唯一性定理电场空间V,划分为若干区域Vi,每个Vi中充满均匀电介质εi,若(1)给定各个区域Vi内的自由电荷分布;(常见情况是电荷处处为零)(2)在整个电场空间V的边界S上给定:(常见情况是以无限远处为边界)∂Ui)电势US,或者ii) 电势的法向导数∂n S(3)有导体时,给定每个导体的:i)电势Ui,或者ii) 总电量Qi。
《静电场中的导体与电介质》选择题解答与分析

5
给出参考解答,进入下一题: 4. C1 和 C2 两空气电容器, 把它们串联成一电容器组. 若在 C1 中插入一电介质板, 则 (A) C1 的电容增大,电容器组总电容减小. (B) C1 的电容增大,电容器组总电容增大. C1 C2 (C) C1 的电容减小,电容器组总电容减小. (D) C1 的电容减小,电容器组总电容增大. 答案:(B) 参考解答: 在 C1 中插入一电介质板,其电容 C1 r C1 (相对介电常数 r),所以 C1 的 电容增大; 把它们串联成一电容器组,总电容2
给出参考解答,进入下一题: 13.4 静电场的能量 1. 如果某带电体其电荷分布的体密度增大为原来的 2 倍,则其电场的能量变为 原来的 (A) 2 倍. (B) 1/2 倍. (C) 4 倍. (D) 1/4 倍. 答案:(C) 参考解答: 有电介质时电场空间能量密度计算的一般公式: D E 0 r E 2 , 电场的能量公式: WE V 0 r E 2 dV . 2 因为 2 E 2 E , 所以电场的能量变为原来的 4 倍。
2. 在静电场中,作闭合曲面 S,若有 D d S 0 (式中 D 为电位移矢量),则 S 面
S
内必定 (A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零. (D) 自由电荷的代数和为零. 答案:(D) 参考解答: 有介质时的高斯定理 S D d S q :通过任一闭合曲面的电位移通量,在数 值上等于该闭合曲面(也称高斯面)所包围的自由电荷的代数和,电位移通量与 束缚电荷无关。所以,若有 S D d S 0 (式中 D 为电位移矢量),则 S 面内必定自 由电荷的代数和为零。
题解-静电场中的导体和电介质

q1 '
R1
q2 ' R2
(2) :U q1 ' q2 '
40R1 40R2
q1'q2 ' q1 q2
C
q1'q2 U
'
4
0
(R1
R2 )
(3) 1 R2 ; E E1 R2
2 R1
0 E2 R1
15、
C
εrC0;W
q2 2C
q2
2 r C0
W0 εr
16、
C1
C
C1
C2
U2
U
q C
减小
E2
W2
1 2
0E2
减小
17、
W
1 2
0
r
E
2
1 2
ε
0εr
(
U12 d
)2
18、
W0
q2 2C0
d
20S
q2;
W
q2 2C'
d
20r S
q2;W
1 εr
W0
W0
1 2
C0U
2
0S
2d
U
2;
W
1 2
C'U 2
0r S
2d
U
2;W
εr W0
0 E02S
(d
y
y
r
)
r 1 W ' W0,且与x无关
22、C 23、B
24、A
W0
q2 2C0
d
20S
q2;
W q2 d q2;
2C' 20r S
W0
1 2
C0U
《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。
静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qaR a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aqV 0π4ε=据电势叠加原理,球心处的电势aqV V V 00π4ε='+=。
所以选(A )2. 已知厚度为d的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )0002 . D . C 2 . B 2 .A εdE=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))R d (q R d q11π4 D. 4πq C.π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D.r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rRq Q = Rrr q R Q r R ==22 4/4/ππσσ 所以选(D )o R d +q . 选择题3图选择题2图d5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。
故正确答案为(A)。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。
设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。
导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。
感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。
静电场中的导体与电介质习题课.ppt

S2
代入上面式子,可求得:
E1
1
r1 0
E2 2 r20
1 S2 E1
- S1 2 E2
D2
D、E 方向均向右。
D1
A d1
d2
B
静电场中的导体和介质习题课
(2)正负两极板A、B的电势差为:
U A U B E1d1 E2d2
d1
1
d2
2
q S
d1
1
d2
2
按电容的定义式:C
q UA UB
d1
S
d2
1 2
上面结果可推广到多层介质的情况。
静电场中的导体和介质习题课
【例题】平行板电容器的极板是边长为 a的正方形,间
距为 d,两板带电±Q。如图所示,把厚度为d、相对介
电常量为εr的电介质板插入一半。试求电介质板所受
电场力的大小及方向。
解:选取坐标系
OX,如图所示。 当介质极插入x 距离时,电容器 的电容为
功等于电容器储能的增量,有
F
W (x) x
( r 20a[a
1)Q2d
(r 1)x]2
静电场中的导体和介质习题课
插入一半时,x=a/2 ,则
F( a ) 2( r 1)Q2d 2 0a3 ( r 1)2
F(a/2)的方向沿图中X轴的正方向。
注释:由结果可知,εr>1,电场力F是指向电容器内 部的,这是由于在电场中电介质被极化,其表面上产 生束缚电荷。在平行极电容器的边缘,由于边缘效应 ,电场是不均匀的,场强E 对电介质中正负电荷的作 用力都有一个沿板面向右的分量,因此电介质将受到 一个向右的合力,所以电介质板是被吸入的。
E E0
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:导体球接地,球心处电势为零,即U0=球心的距离相等,均为R),由此解得q'=-
3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(OP=r)的场强和电位移的大小分别为[](A)E=(C)E=答案:C
解:由高斯定理得电位移D=
3.一空气平行板电容器,电容为C,两极板间距离为d。充电后,两极板间相互作用力为F,则两极板间的电势差为______________,极板上的电量为______________。
解:C=
4.一电容为C的空气平行板电容器,接上电源充电至端电压为V后与电源断开。若把电容器的两个极板的间距增大至原来的3倍,则外力所做的功为。答案:CV2解:因C=
12
;2。
W1W2
=Q
2
解:串联电容器的电量相等,所以所以
三、计算题
W1W2
=12C1V
2
Q
2
2C12C2
=
C2C1
=
12
;并联电容器的电压相等,
12
C2V
2
=2
。1.0⨯10-10C,球外有一个内外半径分别为
R2=3.0cm和R3=4.0cm的同心导体球壳,壳上带有电荷Q=11⨯10
(1)据题意,静电平衡时导体球带电q=1.0⨯10-10C,则
荷增加,C2极板上电荷不变。
二、填空题
1.一空心导体球壳带电q,当在球壳内偏离球心某处再放一电量为q的点电荷时,则导
体球壳内表面上所带的电量为;电荷均匀分布(填“是”或“不是”);外
表面上的电量为;电荷均匀分布(填“是”或“不是”)。
答案:-q;不是;2q;是。
解:由高斯定理及导体静电平衡条件,导体球壳内表面带有非均匀分布的电量-q;由电
-10
C,试计算:
(1)两球的电势U1和U2;
(2)用导线把球和球壳接在一起后,U1和U2分别是多少?
第4页共6页2静电场中的导体和电介质习题详解习题册-下-2
(3)若外球接地,U1和U2为多少?
(4)若内球接地,U1和U2为多少?
答案:(1)330V,270V;(2)270V,270V;(3)60V,0V;(4)0V,180V。解:本题可用电势叠加法求解,即根据均匀带电球面内任一点电势等于球面上电势,均匀带电球面外任一点电势等于将电荷集中于球心的点电荷在该点产生的电势。首先求出导体球表面和同心导体球壳内外表面的电荷分布。然后根据电荷分布和上述结论由电势叠加原理求得两球的电势。若两球用导线连接,则电荷将全部分布于外球壳的外表面,再求得其电势。
___________。
答案:
Q1+Q22SQ1-Q22SQ1-Q22SQ1+Q22S;;;。2
第3页共6页2静电场中的导体和电介质习题详解习题册-下-2
解:作高斯面,用高斯定理可得(或参考教材例题),σ2=-σ3,σ1=σ4。依题意得,
σ1+σ2=
Q1S
,σ3+σ4=
Q2S
,四式联立求解出上面结果。
荷守恒定律,球壳外表面带电量为2q,且根据静电屏蔽原理知,外表面电荷均匀分布。
2.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电荷分别为Q1和Q2。如不计边缘效应,则A、B、C、D四个表面上的
电荷面密度分别为______________;______________;_____________;
第1页共6页2静电场中的导体和电介质习题详解习题册-下-2
习题二
一、选择题
1.如图所示,一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1和
r2的金属球壳。设无穷远处为电势零点,则球壳内半径为r的P点处的场强和电势为[]
(A)E=
Q4πε0r
2
, U=Q4πε0r
Q4πε0r
;
(B)E=0, U=(D)E=0, U=
一电介质板,如图所示,则[]
(A)C1极板上电荷增加,C2极板上电荷减少;(B)C1极板上电荷减少,C2极板上电荷增加;(C)C1极板上电荷增加,C2极板上电荷不变;(D)C1极板上电荷减少,C2极板上电荷不变。
答案:C
解:在C1中插入电介质板,则电容C1增大,而电压保持不变,由q=CU知C1极板上电
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半
Q4πr
2
(B)
q2
;(C)-
q2
;(D)-q。
q4πε0dRd
+q2
q'4πε0R
=0(球面上所有感应电荷到
q=-
。
Q4πε0εrr
2
,D=
Q4πε0r
2
;(B)E=
Q4πεrr
2
,D=
Q4πr
2
;
Q4πε0r
2
,D=
Q4πr
2
;(D)E=
Q4πε0r
2
,D=
Q4πε0r
2
。
,而E=
D
ε0
=
Q4πε0r
2
。
第2页共6页2静电场中的导体和电介质习题详解习题册-下-2
为空气,如图所示。当两极板带上恒定的等量异号电荷时,有一个
质量为m、带电量为+q的质点,在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[]
(A)保持不动;(B)向上运动;
ε0S
d
ε0S
d
,F=qE1=q
σ
2ε0
=
q
2
2ε0S
=
q
2
2Cd
,故,q=
U=
qC
=
。
,所以当d'=3d,则C'=
2
C3
。电容器充电后与电源断开,极板上的电荷
1
不变,由W=
Q
2C
知,W'=3W。外力所做的功为A=W'-W=2W=2(CV2)=CV2
2
5.两个电容器的电容关系为C1=2C2,若将它们串联后接入电路,则电容器1储存的电场能量是电容器2储能的倍;若将它们并联后接入电路,则电容器1储存的电场能量是电容器2储能的倍。答案:
(C)向下运动;(D)是否运动不能确定。
答案:B
解:由C=ε0εrS
dQU知,把电介质抽去则电容C减少。因极板上电荷Q恒定,由C=知
电压U增大,场强E=U/d增大,质点受到的电场力F=qE增大,且方向向上,故质
点向上运动。
5.C1和C2两空气电容器并联以后接电源充电,在电源保持联接的情况下,在C1中插入
Q4πε0r1
Q4πε0r2
;(C)E=0, U=;
。
答案:D
解:由静电平衡条件得金属壳内E=0;外球壳内、外表面分别带电为-Q和+Q,根据电势叠加原理得
U=
Q4πε0r
+
-Q4πε0r
+
Q4πε0r2
=
Q4πε0r2
2.半径为R的金属球与地连接,在与球心O相距d=2R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上的感应电荷q'为[]