静电场中的电介质习题及答案

合集下载

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21s s。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。

上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

10静电场中的导体和电介质习题解答

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D ) o R d +q . 选择题3图 选择题2图5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

14静电场 静电场中电介质习题答案

14静电场   静电场中电介质习题答案
a a
x x
a a
4.(1025) 电荷面密度分别为+δ和 的两块“ 电荷面密度分别为 和-δ的两块“无限大”均匀带 的两块 无限大” 电平行平面,分别与x轴垂直相交于 轴垂直相交于x 电平行平面,分别与 轴垂直相交于 1=a,x2=- , =-a 两点.设坐标原点O处电势为零 处电势为零, 两点.设坐标原点 处电势为零,试求空间的电势分布 -σ +σ 表示式并画出其曲线. 表示式并画出其曲线. 解:由高斯定理可得场强分布为: 由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) - < < E=0 (a< |x|) < 由此可求电势分布: 由此可求电势分布:在-∞<x≤-a区间 < - 区间
3.(1047) ( )
如图所示, 的正三角形abc,在顶点 处有一电荷为 如图所示,边长为 0.3 m的正三角形 的正三角形 ,在顶点a处有一电荷为 10-8 C的正点电荷,顶点 处有一电荷为 -8 C的负点电荷,则顶点 的正点电荷, 处有一电荷为-10 的负点电荷, 的正点电荷 顶点b处有一电荷为 的负点电荷 1 c处的电场强度的大小 和电势 为: ( 处的电场强度的大小E和电势 =9×10-9 N m /C2) 处的电场强度的大小 和电势U为 × 4πε 0
一、选择题
静电场
y
1.(0388) ( ) 在坐标原点放一正电荷Q,它在P点 在坐标原点放一正电荷 ,它在 点(x=+1,y=0)产生的电 产生的电 r 现在,另外有一个负电荷-2Q,试问应将 场强度为 E .现在,另外有一个负电荷 , 它放在什么位置才能使P点的电场强度等于零 点的电场强度等于零? 它放在什么位置才能使 点的电场强度等于零? (A) x轴上 轴上x>1. (B) x轴上 轴上0<x<1. 轴上 . 轴上 . (C) x轴上 轴上x<0. (D) y轴上 轴上y>0. 轴上 . 轴上 . (E) y轴上 轴上y<0. 轴上 . [ C ]

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。

A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) S Q 01ε (D) SQ Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。

习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。

把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。

所以,应该选择答案(C)。

习题8—3 三个电容器联接如图。

已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。

则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

静电场中的电介质

静电场中的电介质

静电场中的电介质3.1 填空题3.1.1电介质的极化分为()和()。

3.1.2分⼦的正负电荷中⼼重合的电介质叫做()电介质;在外电场作⽤下,分⼦的正负电荷中⼼发⽣相对位移形成()。

3.1.3如果电介质中各点的()相同,这种介质为均匀电介质;满⾜()关系的电介质称为各向同性电介质。

3.1.4 平⾏板电容器两极板间相距为0.2 mm ,其间充满了相对介电常数r ε=5.0的玻璃⽚,当两极间电压为400 V 时,玻璃⾯上的束缚电荷⾯密度为()。

3.1.5 ⼀平⾏板电容器充电后断开电源,这时储存的能量为0w ,然后在两极板间充满相对介电常数为r ε的电介质,则电容器内储存的能量变为()。

3.1.6 ⼀平⾏板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为r ε的各向同性均匀电介质,这时两极板上的电量是原来的()倍;电场强度是原来的()倍;电场能量是原来的()倍。

3.1.7 两个电容器1和2,串联以后接上电动势恒定的电源充电。

在电源保持联接的情况下,若把电介质充⼊电容器2中,则电容器1上的电势差(),电容器1极板上的电量()(填增⼤、减⼩、不变)。

3.1.8⼀平⾏板电容器两板充满各向同性均匀电介质,已知相对介电常数为r ε,若极板上的⾃由电荷⾯密度为σ,则介质中电位移的⼤⼩D =(),电场强度的⼤⼩E =()。

3.2 选择题3.2.1两个相距很近⽽且等值异号的点电荷组成⼀个()。

A :重⼼模型; B :电偶极⼦; C :等效偶极⼦; D :束缚电荷。

3.2.2 可以认为电中性分⼦中所有正电荷和所有负电荷分别集中于两个⼏何点上,这称为分⼦的()A :电介质;B :电偶极⼦;C :重⼼模型;D :束缚电荷。

3.2.3电偶极⼦的电偶极矩定义为() A :E p M ?=; B :l q p =; C :l q p ?=; D :l q p ?=3.2.4 在电场E 的作⽤下,⽆极分⼦中正负电荷的重⼼向相反⽅向作微⼩位移,使得分⼦偶极矩的⽅向与场强E ⼀致,这种变化叫做()A :磁化;B :取向极化;C :位移极化;D :电磁感应。

大物电磁学第三章习题静电场中的电介质

大物电磁学第三章习题静电场中的电介质

第三章 练习题一、选择题1、[ C ]关于D r的高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D r为零.(B) 高斯面上D r 处处为零,则面内必不存在自由电荷. (C) 高斯面的D r通量仅与面内自由电荷有关.(D) 以上说法都不正确.2、[ D ]静电场中,关系式 0D E P ε=+r r r(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质. (D) 适用于任何电介质.3、[ B ]一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为:(A)0E ε. (B) E ε. (C) r E ε . (D) 0()E εε- .4、[ A ]一平行板电容器中充满相对介电常量为r ε的各向同性的线性电介质.已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为:(A)0σε'. (B) 0r σεε'. (C) 02σε'. (D) rσε'. 5、[ B ]一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E r ,电位移为0D r,而当两极板间充满相对介电常量为r ε的各向同性的线性电介质时,电场强度为E r ,电位移为D r,则(A) 00,r E E D D ε==r rr r . (B) 00,r E E D D ε==r r r r.(C) 00,r r E E D D εε==r r r r . (D) 00,E E D D ==r r r r.6、 [ C ]一空气平行板电容器,两极板间距为d ,充电后板间电压为U 。

然后将电源断开,在两板间平行地插入一厚度为d/3的与极板等面积的金属板,则板间电压变为(A )3U . (B)13U . (C) 23U . (D U .7、[ B ]一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓. (D) E ↑,C ↓,U ↓,W ↑.8、[ B ]真空中有“孤立的”均匀带电球体和一“孤立的”的均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. 9、[ B ]如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.10、[ D ]图示为一均匀极化的各向同性电介质圆柱体,已知电极化强度为P ϖ,圆柱体表面上束缚电荷面密度0σ'=的地点是图中的(A) a 点. (B) b 点. (C) c 点. (D) d 点.二、填空题1、分子的正负电荷中心重合的电介质叫做无极分子电介质,在外电场作用下,分子的正负电荷中心发生相对位移,电介质的这种极化形式叫:____ __极化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)
(B)
(C)
(D)
D
11.把一相对介电常数为 的均匀电介质球壳套在一半径为a的金属球外,金属球带有电量q,设介质球壳的内半径为a,外半径为b,则系统的静电能为:
(A)
(B)
(C)
(D)
B
三、填空题
1、如图,有一均匀极化的介质球,半径为R,极
化强度为P,则极化电荷在球心处产生的场强
是()在球外Z轴上任一点产生
9、平行板电容器的极板面积为s,极板间距为d中间有两层厚度各为 的均匀介质( ), 它们的相对介电常数分别为 。(1)当金属板上自由电荷的面密度为 时,两层介质分界面上极化电荷的面密度 = ( )。(2)两极板间的电势差 ( )。(3)电容C=()。
10、如图所示一平行板电容器充满三种不同的电
介质,相对介电常数分别为 。极

6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。

7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。

8、在均匀电介质中,只有 为恒矢量时,才没有体分布的极化电荷。
=恒矢量
×
9、电介质可以带上自由电荷,但导体不能带上极化电荷。

10、电位移矢量 仅决定于自由电荷。
的场强是()
2、带电棒能吸引轻小物体的原因是()。
轻小物体由于极化在靠近带电棒一端出现与带电棒异号的极化电荷
3、附图给出了A、B两种介质的分界面,设两种介质
A、B中的极化强度都是与界面垂直,且 ,当
取 由A指向B时,界面上极化电荷为()号。
当 由B指向A时,界面上极化电荷为()号。
正负
4、如果电介质中各的()相同,这种介质为均匀电介质。如果电介质的总体或某区域内各点的()相同,这个总体或某区域内是均匀极化的。
(A) (B)
(C) (D)
B
9.半径为R相对介电常数为 的均匀电介质球的中心放置一点电荷q,则球内电势 的分布规律是:
(A)
(B)
(C)
(D)
C
10.球形电容器由半径为 的导体球和与它同心的导体球壳所构成,球壳的内半径为 ,其间一半充满相对介电常数为 的均匀电介质,另一半为空气,如图所示,该电容器的电容为:
A
3. 在图中,A是电量 的点电荷,B是一小块均匀的电介质, 都是封闭曲面,下列说法中不正确的是:
(A)
(B)
(C)
(D)
D
4.在均匀极化的电介质中,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极化强度 垂直,当h»r时,则空腔中心 的关系为:
(A)
(B)
(C)
(D)
C
5.在均匀极化的,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极化强度 垂直,当h«r时,则空腔中心 的关系为:
(A)介质中的场强为真空中场强的 倍。
(B)介质中的场强为自由电荷单独产生的场强的 倍。
(C)介质中的场强为原来场强的 倍。
(D)介质中的场强等于真空中的场强。
D
2.如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与没有电介质(即真空)时所储存的电荷相比
(A)增多(B)减少(C)相同(D)不能比较
(A)
(B)
(C)
(D)
B
6.一个介质球其内半径为R,外半径为R+a,在球心有一电量为 的点电荷,对于R<r<R+a电场强度为:
(A) (B) (C) (D)
A
7.一内半径为a,外半径为b的驻体半球壳,如图所示,被沿+Z轴方向均匀极化,设极化强度为 ,球心O处的场强是:
(A)
(B)
(C)
(D)
D
8.内外半径为 的驻极体球壳被均匀极化,极化强度为 的方向平行于球壳直径,壳内空腔中任一点的电场强度是:
×
11、电位移线仅从正自由电荷发出,终止于负自由电荷。

12、在无自由电荷的两种介质交界面上, 线不连续。(其中, 为自由电荷产生的电场, 为极化电荷产生的电场)

13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。

14、在两种介质的交界面上,电场强度的法向分量是连续的。
板面积为A,两极板的间距为2d,略去边缘效
应,此电容器的电容是()。
11、无限长的圆柱形导体,半径为R,沿轴线单位长度上带电量λ,将此圆柱形导体放在无限大的均匀电介质 中,则电介质表面的束缚电荷面密度是()。
12\半径为a的长直导线,外面套有共轴导体圆筒,筒的内半径为b,导线与圆筒间充满介电常数为 的均匀介质,沿轴线单位长度上导线带电为λ,圆筒带电为-λ,略去边缘效应,则沿轴线单位长度的电场能量是()。
1、电介质的极化和导体的静电感应,两者的微观过程有何不同?
答:从微观看,金属中有大量自由电子,在电场的作用下可以在导体内位移,使导体中的电荷重新分布。结果在导体表面出感应电荷。达到静电平衡时感应电荷所产生的电场与外加电场相抵消,导体中的合场强为零。导体中自由电子的宏观移动停止。在介质中,电子与原子核的结合相当紧密。电子处于束缚状态,在电场的作用下,只能作一微观的相对位移或者它们之间连线稍微改变方向。结果出现束缚电荷。束缚电荷所产生的电场只能部分地抵消外场,达到稳定时,电介质内部的电场不为零。
5、 成立的条件是()。
介质为均匀介质
6、在两种不同的电介质交界面上,如果交界面上无自由电荷,则 = ( )。
7、介质中电场能量密度表示为 只适用于()介质。 适用于( )介质。
各向同性的均匀线性线性
8、若先把均匀介质充满平行板电容器,(极板面积为S,极反间距为L,板间介电常数为 )然后使电容器充电至电压U。在这个过程中,电场能量的增量是()。
13、一圆柱形的电介质截面积为S,长为L,被沿着轴线方向极化,已知极化强度 沿X方向,且P=KX(K为比例常数)
坐标原点取在圆柱的一个端面上,如图所示
则极化电荷的体密度()
在X=L的端面上极化电荷面密度为()
极化电荷的总电量为()。
14、在如图所示的电荷系中相对其位形中心的偶极矩为()。
0
四、问答题
第三章静电场中的电介质
一、判断题
1、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的 倍。
×
2、对有极分子组成的介质,它的介电常数将随温度而改变。

3、在均匀介质中一定没有体分布的极化电荷。(内有自由电荷时,有体分布)
×
4、均匀介质的极化与均匀极化的介质是等效的。
×
5、在无限大电介质中一定有自由电荷存在。
×
15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力整个空间时,介质中的场强为自由电荷单独产生的场强的 分之一。

二、选择题
1.一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为 的均匀电介质充满电容器。则下列说法中不正确的是:
相关文档
最新文档