第十章 静电场中的电介质

合集下载

静电场中的电介质

静电场中的电介质
r0
在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质

10静电场中的导体和电介质习题解答

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D ) o R d +q . 选择题3图 选择题2图5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

第十章静电场中的导体和电介质

第十章静电场中的导体和电介质

第⼗章静电场中的导体和电介质第⼗章静电场中的导体和电介质在上⼀章中,我们讨论了真空中的静电场。

实际上,在静电场中总有导体或电介质存在,⽽且在静电的应⽤中也都要涉及导体和电介质的影响,因此,本章主要讨论静电场中的导体和电介质。

本章所讨论的问题,不仅在理论上有重⼤意义,使我们对静电场的认识更加深⼊,⽽且在应⽤上也有重⼤作⽤。

§10-1 静电场中的导体⼀、静电平衡条件1、导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很⼤(相差10多个数量级,⽽不同导体间电导率数量级最多就相差⼏个数量级)。

(2)微观上导体内部存在⼤量的⾃由电⼦,在外电场下会发⽣定向移动,产⽣宏观上的电流⽽电介质内部的电⼦处于束缚状态,在外场下不会发⽣定向移动(电介质被击穿除外)。

2、导体的静电平衡条件(1)导体内部任何⼀点处的电场强度为零;(2)导体表⾯处的电场强度的⽅向,都与导体表⾯垂直.导体处于静电平衡状态的必要条件:0=i E(当导体处于静电平衡状态时,导体内部不再有⾃由电⼦定向移动,导体内电荷宏观分布不再随时间变化,⾃然其内部电场(指外场与感应电荷产⽣的电场相叠加的总电场)必为0。

⼆、静电平衡时导体上的电荷分布1、导体内部没有净电荷,电荷(包括感应电荷和导体本⾝带的电荷)只分布在导体表⾯。

这个可以由⾼斯定理推得:ii sq E ds ε?=,S 是导体内“紧贴”表⾯的⾼斯⾯,所以0i q =。

2、导体是等势体,导体表⾯是等势⾯。

显然()()0b a b i a V V E dl -=?=?,a,b 为导体内或导体表⾯的任意两点,只需将积分路径取在导体内部即可。

3、导体表⾯以处附近空间的场强为:0E n δε=,δ为邻近场点的导体表⾯⾯元处的电荷密度,?n 为该⾯元的处法向。

简单的证明下:以导体表⾯⾯元为中截⾯作⼀穿过导体的⾼斯柱⾯,柱⾯的处底⾯过场点,下底⾯处于导体内部。

由⾼斯定理可得:12i s s dsE ds E ds δε?+?=,1s ,2s 分别为⾼斯柱⾯的上、下底⾯。

川师大学物理第十章 静电场中的导体和电介质习题解

川师大学物理第十章 静电场中的导体和电介质习题解

第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。

解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。

由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。

10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。

解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。

P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。

因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。

10-2静电场中的电介质-有电介质时的高斯定理解析

10-2静电场中的电介质-有电介质时的高斯定理解析

若为不均匀极化,介质内有极化电荷的积累。
4. 电介质极化的定量描述
(1)电极化强度 P
用来量度电介质极化状态(极化的程度和方向)
P
单位:C/m²
pi V
物理意义:大量分子电偶极矩的统计平均值. 外场越强,极化越厉害,所产生的分子电矩的 矢量和也越大。 P E 如果电介质中各点的极化强度矢量大小和方向都 相同,则该极化是均匀的,否则极化是不均匀的.
Q
+++++++
U
Q
+++++++
-------
Q
U
-------
Q
r
U0
说明:
E0
E
r E0
ห้องสมุดไป่ตู้U0
(1)相对电容率 r 1 (2)电介质内附加电场方向与原电场相反(退极化场)。
r
E0
2.电介质对电场的影响
极化电荷 (产生附加电场 E ) ↑ 相互 电介质(绝缘体) 静电场(E0) 作用 ↓ 静电场重新分布 E E0 E

n
( ) PP ( (r 1) E QQ P E Q 1) 1) E 0 r 00 r
选-1 根据电介质中的高斯定理,在电介质中电位移 矢量沿任意一个闭合曲面的积分等于这个曲面 所包围自由电荷的代数和。下列推论正确的是
A. 若通过该曲面的电位移通量为零,曲面内一
E E0 E ' 0 E0 0
q ' 和 q 的关系。 2. D 、E、 P、 P 0 E P E

静电场中的导体和电介质

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体一、导体的静电平衡1、金属导体的电结构及静电感应(1)金属导体:由带正电的晶格和带负电的自由电子组成.带电导体:总电量不为零的导体;中性导体:总电量为零的导体;孤立导体:与其他物体距离足够远的导体.“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.(3)静电平衡状态:导体中自由电荷没有定向移动的状态.2、导体静电平衡条件(1)从场强角度看:①导体内任一点,场强;②导体表面上任一点与表面垂直.证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.说明:①静电平衡与导体的形状和类别无关.②“表面”包括内、外表面;(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.①导体内各点电势相等;②导体表面为等势面.证明:在导体上任取两点A,B,.由于=0,所以.(插话:空间电场线的画法.由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)二、静电平衡时导体上的电荷分布1、导体内无空腔时电荷分布如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:导体静电平衡时其内,, 即.S面是任意的,导体内无净电荷存在.结论:静电平衡时,净电荷都分布在导体外表面上.2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:由于静电平衡时,导体内因此,即S内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷空腔内表面上的净电荷为0.讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).(2)空腔内有点电荷情况如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为静电平衡时 , .又因为此时导体内部无净电荷,而腔内有电荷+q,腔内表面必有感应电荷-q.结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q. 3、导体表面附近的电场强度和电荷面密度的关系(1)导体表面上电荷分布设在导体表面上某一面积元(很小)上,电荷分布如图所示 ,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为(注意与无限大带电平面的区别).结论:导体表面附近,.(2)导体表面曲率对电荷分布影响理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强, 必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.(3)、尖端放电尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电现象.如图,BC相对AC更容易放电.“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.4、静电屏蔽(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等.例10-1:在电荷+q的电场中,放一不带电的金属球,从球心 到点电荷所在距离处的矢径为,试问(1)金属球上净感应电荷?(2)这些感应电荷在球心处产生的场强?解:(1)0(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.方向指向+q.(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)P49.课本例题例10.1;10.2§10-2 电介质的电极化和有介质时的高斯定理一、电介质的电结构1、结构电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω•m范围内.主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.2、电介质分类(2类)(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).其固有电矩为零,对外不显电性.(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).分子正负电荷中心不重合时相当于一电偶极子.二、电介质的极化1、电极化现象实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.2、两类电介质的极化(1)无极分子的位移极化无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.(2)有极分子的取向极化有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.(3)附加电场由于电介质极化后出现极化电荷,介质内空间一点的场强:.:介质外的电荷产生的电场,即外电场;:介质上的极化电荷产生的电场.对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大小||<||.作用是减小介质内电场的,..(插话:1、对电介质的要求对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.2、极化电荷与自由电荷极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;(2)极化电荷不能转移,自由电荷可以转移;可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.3、静电场中的电介质与静电场中的导体(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)3、电偶极子在外场受到的力和力矩均匀外场下,电偶极子所受总静电力:;总力矩: (10.3)虽然=0,但不为0. 的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.三、电极化强度、极化电荷与极化强度的关系1、定义.电极化强度矢量定义为(10.4)即电极化强度矢量是单位体积内分子电矩的矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).2、电极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处dS是电介质的表面,由于电介质极化(10.5)是其外法向单位矢.讨论:(2)封闭曲面处由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为(10.6)(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,即:.对非均匀电介质,电介质内部也有束缚电荷分布.四、电极化强度与场强的关系电介质的极化状态通过极化强度来描述,由于电介质的极化是电场对电介质作用的结果,因此,电介质内任意一点的极化强度应由该点总电场()决定.与的关系与电介质的性质有关,对各向同性电介质:. (10.7):各向同性均匀电介质的电极化率.电场不太强时,由电介质性质决定,是无量纲量.该式是一个经验定律.课程中讨论的都是各向同性的均匀电介质.五、有介质时的高斯定理1、有介质时的高斯定理(1)定理推导根据真空中的高斯定理,通过闭合曲面S的电场强度通量为所给面包围的电荷除以,即此处, 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,;在有介质存在时,S内既有自由电荷,又有极化电荷,应是S内一切自由电荷与极化电荷的代数和,即、分别表示自由电荷和极化电荷.由于难以测量和计算,应消除.根据.上式变换为令.得(2)定理形式(10.8)其中,称为电位移矢量.利用经验规律(10.9)其中,称为相对介电常数,称为绝对介电常数(也叫电容率).(10.9)式称为各向同性经验电介质的性能方程.(10.8)式称为“高斯定理的普遍形式”——“有介质时的高斯定理”.表明通过任意曲面的电位移通量,等于该封闭曲面内包围的自由电荷的代数和.说明:(1)上式为电介质中的高斯定理,是高斯定理的普遍形式.(2)是辅助量,无真正的物理意义,是为了回避难以量化的极化电荷而引入的辅助量.算出后,可求.(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切线方向即为的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电位移线条数)等于该处的大小.所以,通过任一曲面上电位移线条数为,称此为通过S的电位移通量;对闭合曲面,此通量为.(4)根据,以平行板电容器产生的线、线和线说明其区别.①电位移线总是始于正的自由电荷,止于负的自由电荷,与极化电荷无关.因而线在电介质和真空中一致;②电力线是可始于一切正电荷和止于一切负电荷(包括自由电荷与极化电荷).真空中,线与线一致,而在极化电荷内部,由于与反向,减弱了,如图.③电极化强度线起于极化负电荷,终于极化正电荷,只存在于极化电介质内,真空中=0,电介质内,.2、定理的应用例10-2:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数分别为、,厚度为、,自由电荷面密度为.求(1)、=?(2)电容C=?解:(1) 设二种介质中电位移矢量分别为、,在左极板处做高斯面S,一对面平行板面,面积均为A,侧面垂直板面,由高斯定理有其中,左底面=0,侧面上.又,,即 ,方向垂直板面向右.同样在右极板处做高斯面,一对面平行极板面,面积均为,侧面与板面垂直,由高斯定理有:,即,方向向右.可见,,即两种介质中法向不变.方向向右.(2)例10-3:在半径为R的金属球外,有一外半径为的同心均匀电介质层,其相对介电常数为,金属球电量为Q,试求:(1)场强空间分布;(2)电势空间分布.解:(1)由题意知,均是球对称的,取球形高斯面S,由有Q>0:沿半径向外;Q<0:沿半径向内.(2)介质外任一点P电势介质内任一点Q电势球为等势体,电势为例10-4:有一个带电为+q半径为的导体球,与内外半径分别为、 带电量为-q的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介质的介电常数分别为、,且二电介质分界面也是与导体球同心的半径为的球面.试求:(1)电位移矢量分布;(2)场强分布;(3)导体球与导体空间电势差;(4)导体球壳构成电容器的电容.解:(1)由题意知,场是球对称的,选球形高斯面S, 由有得 ,沿半径向外.(2)与同向,即沿半径向外.(3)(4)根据自由电荷分布利用高斯定理求解,和前面一样,必须满足对称性:第一,自由电荷的分布和电介质的分布同时满足三种对称性之一,即平面对称、轴对称、球对称,概括为“电介质的表面为等势面”;第二,电介质充满整个电场.在满足上述对称性后,可以利用高斯定理唯一地求解电场问题,此时电位移矢量与极化电荷无关.§10-3 电容 电容器一、孤立导体的电容在真空中设有一半径为R的孤立的球形导体,它的电量为q,那么它的电势为(取无限远处电势=0)对于给定的导体球,即R一定,当变大时,V也变大;变小时,V也变小,但是却不变.此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,仅与导体大小和形状等有关,因而有下面定义.定义:孤立导体的电量q与其电势V之比称为孤立导体电容,用C表示,记作:(10.11)对于孤立导体球,其电容为.C的单位为:F(法),1F=1C/1V.在实用中F太大,常用或,他们之间换算关系:.(电容与电量的存在与否无关)二、电容器及其电容实际上,孤立的导体是不存在的,周围总会有别的导体.当有其它导体存在时,则必然因静电感应而改变原来的电场分布,进而影响导体电容.下面我们具体讨论电容器的电容.1、电容器:两个带有等值而异号电荷的导体所组成的带电系统称为电容器.电容器可以储存电荷,也可以储存能量.2、电容器电容:如图所示,两个导体A、B放在真空中,它们所带的电量分别为+q,-q,如果A、B电势分别为、,那么A、B电势差为,电容器的电容定义为:(10.12)由上可知,如将B移至无限远处,=0.所以,上式就是孤立导体的电容.所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差.所以,孤立导体电容是B放在无限远处时的特例.导体A、B常称电容器的两个电极.3、电容器电容的计算①极间分别带有+Q,-Q电量,利用高斯定理,计算极间电场强度分布;②根据电场去分布,求出极间电势差;③将极板电量和极间电势差代入电容器电容定义式,计算出电容.(1)、平行板电容器的电容设A、B二极板平行,面积均为S,相距为d,电量为+q,-q,极板线度比d大得多,且不计边缘效应.所以A、B间为均匀电场.板间充满电介质,介电常数为ε.由高斯定理知,A、B间场强大小为.则 (10.13)为该电容器极板间真空时的电容值.(2)、球形电容器设二均匀带电同心球面A、B,半径、,电荷为+q,-q. 板间充满电介质,介电常数为ε.A、B间任一点场强大小为:,.为该电容器极板间真空时的电容值.讨论:①当时,有,令,为平行板电容器电容.②当为孤立球形电容器电容.A为导体球或A、B均为导体球壳结果如何?(3)、圆柱形电容器圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A、B半径为、,电荷为+q,-q,板间充满电介质,介电常数为ε.除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量,是柱高.由高斯定理知,A、B内任一点P处的大小为则 (10.15)(可知:在计算电容器时主要是计算两极间的电势差).(插话:4、电介质对电容器电容的影响以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C要比真空情况电容大,可表示,或.与介质有关,称为相对介电系数 .以上各情况若充满电介质(极间),有:球形: ;平板:;柱形:.称为介质的介电常数.())下面以平行板电容器为例求:(1)电介质中场强 E由电容器定义,有(无介质) 为电压,为电量.(有介质) 为电压,为电量.(2)极化电荷面密度介质内电场:.即: (极化电荷面密度)三、电容器的串联与并联在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因.因此有必要根据需要把若干电容器适当地连接起来.若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容.1、 串联:几个电容器的极板首尾相接(特点:各电容的电量相同).设A、B间的电压为,两端极板电荷分别为+q,-q,由于静电感应,其它极板电量情况如图,.由电容定义有(10.16a)2、并联:每个电容器的一端接在一起,另一端也接在一起.(特点:每个电容器两端的电压相同,均为,但每个电容器上电量不一定相等)等效电量为:,由电容定义有:(10.16b)例10-5:平行板电容器,极板宽、长分别为a和b,间距为d,今将厚度t,宽为a的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板插入深度x的关系(板宽方向垂直底面).解:由题意知,等效电容如左下图所示,电容为:说明:C大小与金属板插入位置(距极板距离)无关;注意:(1)掌握串并联公式;(2)掌握平行板电容器电容公式.例8-3:半径为a的二平行长直导线相距为d(d>>a),二者电荷线密度为,,试求(1)二导线间电势差;(2)此导线组单位长度的电容.解:(1)如图所取坐标,P点场强大小为:(2)注意:(1)公式.(2)此题的积分限,即明确导体静电平衡的条件.§10.4 电场的能量一、电容器储存的静电能一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场.所以,通过外力做功可以把其它形式能量转变为电能,贮藏在电场中.。

第10章 静电场中的电介质

第10章 静电场中的电介质

R2
解:1.场的分布 R1
r <R 0
导体内部
E1 ? 0
P? 0
?0
?r1
?r2
R0
? ? R0< r< R1
?r1 内
? E2 ?
Q
4??0?r1r 2
r^
? P2 ?
?0
?r1 ? 1
Q
4??0?r1r 2
^r
R1< r< R2
?r2 内
? E3
?
Q
4??0?r2r 2
^r
? P3 ?
?0
??r
分子中的正负电荷束缚的很紧,介质内部 几乎没有自由电荷。
电介质对电场的影响
实验表明 ,当在真空电场中放入电介质时 ,电场将 会发生变化 .
例: 在已达到静电平衡的两平行带电金属板引 入电介质
?Q
? Q 相对介电常数 ? Q
?Q
U ? U0 /?r ,?r ? 1 E ? E0 / ?r
10.2 电介质及其极化
极化电荷带负电
电极化强度通过任意封闭曲面的通量:
??
?SP ?d S ? ?SP cos? d S ? ?S? ??d S
??
? ? P S
?d
S
?
? qi?
(S内)
例1. 平行板电容器自由电荷面密度为 ó0
? 充满相对介电常数为 r 的均匀各向同
性线性电介质 , 求:板内的电场强度。
解:介质将均匀极化 ,其表面出现束缚电荷
-+
Eo
? p
+
F
F
-
Eo
?
外电场: E0
?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 32rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)q B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10³10-6 F ,C 2 = 5³10-6 F ,C 3 = 4³10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16³10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111³10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷. (C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。

(k 为已知常量),试求球体内、外的电位移和场强分布.解:取半径为r '→r '+d r '的薄壳层,其中包含电荷 ()r r r k V q '''==d 4/d d 2πρr r k ''=d π4应用D 的高斯定理,取半径为r 的球形高斯面.球内: 2012π2π4π4kr r d r kD r r=''=⎰ D 1 = k / 2 , r D D ˆ11=(r ˆ 为径向单位矢量) E 1 = D 1 / (ε0εr ) = k / (2ε 0εr ), r E E ˆ11=球外: 222π2π4π4kR r d r kD r R=''=⎰ ()2222/r kR D = , r D D ˆ22= ()2020222//r kR D E εε==, rE E ˆ22=10.9半径为R 的介质球,相对介电常量为εr 、其体电荷密度ρ=ρ0(1-r / R ),式中ρ0为常量,r 是球心到球内某点的距离.试求:(1) 介质球内的电位移和场强分布. (2) 在半径r 多大处场强最大?解:(1) 取半径为r '→r '+d r '的薄壳层,其中包含电荷()r r R r V q ''π'-==d 4/1d d 20ρρ()r R r r ''-'π=d /4320ρ应用D的高斯定理,取半径为r 的球形高斯面.⎰'⎪⎪⎭⎫ ⎝⎛'-'π=πrr R r r D r 03202d 44ρ⎪⎪⎭⎫⎝⎛-π=R r r 434430ρ则:⎪⎪⎭⎫ ⎝⎛-=R r r D 4320ρ, r D D ˆ= ()r D E εε0/=⎪⎪⎭⎫ ⎝⎛-=R r r r 43200εερ,r E E ˆ=,r ˆ 为径向单位矢量 (2) 对E (r )求极值0231d d 00=⎪⎭⎫ ⎝⎛-=R r r Erεερ 得 r = 2R / 3 且因d 2E / d r 2 <0, ∴ r = 2R / 3 处E 最大.10.10一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85³10-12 C 2²N -1²m -2)解:设空气中和介质中的电位移矢量和电场强度矢量分别为1D 、2D 和1E 、2E,则 U = E 1d = E 2d (1) D 1 = ε0E 1 (2)D 2 = ε0εrE 2 (3)联立解得 100021===dUE E V/m 29101C/m 1085.8-⨯==E D ε28202C/m 1085.8-⨯==E D r εε方向均相同,由正极板垂直指向负极板.10.11 一平行板空气电容器充电后,极板上的自由电荷面密度σ=1.77³10-6 C/m 2.将极板与电源断开,并平行于极板插入一块相对介电常量为εr =8 的各向同性均匀电介质板.计算电介质中的电位移D .场强E 和电极化强度P的大小.(真空介电常量ε0=8.85³10-12 C 2 / N ²m 2)解:由D的高斯定理求得电位移的大小为D = σ =1.77³10-6 C/m 2由D =ε0εr E 的关系式得到场强E的大小为rDE εε0==2.5³104 V/m介质中的电极化强度的大小为P = ε0χe E = ε0 ( εr -1 )E =1.55³10-6 C/m 210.12 一导体球带电荷Q =1.0 C ,放在相对介电常量为εr =5 的无限大各向同性均匀电介质中.求介质与导体球的分界面上的束缚电荷Q'.解:导体球处于静电平衡时,其电荷均匀分布在球面上.在球表面外附近,以球半径R 作一同心高斯球面.按D的高斯定理有 4πR 2D = Q 。

相关文档
最新文档