2013-2014电介质习题解答
大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
大学物理-电介质习题思考题及答案

习题13-1. 如图为半径为的介质球,试分别计算下列两种情况下球表面上的极化面电荷密度和极化电荷的总和.已知极化强度为P (沿x 轴).(1);(2).解:(1)由于介质被均匀极化,所以(2)在球面上任取一个球带2043P R π= 13-2. 平行板电容器,板面积为,带电量,在两板间充满电介质后,其场强为,试求 :(1)介质的相对介电常数 (2)介质表面上的极化电荷密度.解:(1)(2)13-3. 面积为S 的平行板电容器,两板间距为,求:(1)插入厚度为,相对介电常数为的电介质,其电容量变为原来的多少倍?(2)插入厚度为的导电板,其电容量又变为原来的多少倍?解:(1)(2)插入厚度为的导电板,可看成是两个电容的串联13-4. 在两个带等量异号电荷的平行金属板间充满均匀介质后,若已知自由电荷与极化电荷的面电荷密度分别为与(绝对值),试求:(1)电介质内的场强;(2)相对介电常数.解:(1)(2)13-5. 电学理论证明:一球形均匀电介质放在均匀外电场中会发生均匀极化.若已知此极化介质球的半径为,极化强度为.求极化电荷在球心处产生的场强.解:球面上极化电荷的面密度球面上极化电荷元在球心处产生的场强由对称性可知只有场强的分量对球心处的电场有贡献把球面分割成许多球带,它在球心处产生的场强13-6. 一圆柱形电容器,外柱的直径为,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度大小为.试求该电容器可能承受的最高电压.解:0=drdU13-7. 一平行板电容器,中间有两层厚度分别为和的电介质,它们的相对介电常数为.和,极板面积为S ,求电容量.解:21210r r d d S U Q C εεε+== 13-8. 计算均匀带电球体的静电能,设球体半径为, 带电量为.解:13-9. 半径为的导体外套有一个与它同心的导体球壳,球壳的内外半径分别为和.当内球带电量为时,求:(1)系统储存了多少电能?(2)用导线把壳与球连在一起后电能变化了多少?解:(1)球与球壳之间的电能球壳外部空间的电能系统储存的电能 51218.210W W W J -=+=⨯(2)球与球壳内表面所带电荷为0外表面所带电荷不变13-10. 球形电容器内外半径分别为和,充有电量.(1)求电容器内电场的总能量;(2)证明此结果与按算得的电容器所储电能值相等。
电介质物理基础--孙目珍版-最完整的课后习

第一章 电介质的极化1.什么是电介质的极化?表征介质极化的宏观参数是什么? 若两平行板之间充满均匀的电介质,在外电场作用下,电介质的内部将感应出偶极矩,在与外电场垂直的电介质表面上出现与极板上电荷反号的极化电荷,即束缚电荷σˊ。
这种在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质极化。
为了计及电介质极化对电容器容量变化的影响,我们定义电容器充以电介质时的电容量C 与真空时的电容量C0的比值为该电介质的介电系数,即0rC C=ε,它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。
2.什么叫退极化电场?如何用一个极化强度P 表示一个相对介电常数为r ε的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷产生的电场。
电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以,由极化电荷产生的场强被称为退极化电场。
退极化电场:00εεσPE d -='-= 平行宏观电场:)1(0-=r PE εε充电电荷产生的电场:)1()1(0000000-=+-=+===+=r r r d PP P P E D E E E εεεεεεεεεεσ 3.氧离子的半径为m 101032.1-⨯,计算氧原子的电子位移极化率 按式304r πεα=代入相应的数据进行计算。
240310121056.2)1032.1()1085.8(14.34m F •⨯≈⨯⨯⨯⨯⨯=---α4.在标准状态下,氖的电子位移极化率为2101043.0m F •⨯-。
试求出氖的相对介电常数。
单位体积粒子数253231073.24.221010023.6⨯=⨯⨯=N e r N αεε=-)1(0 12402501085.81043.01073.211--⨯⨯⨯⨯+=+=∴εαεer N5.试写出洛伦兹有效电场的表达式。
适合洛伦兹有效电场时,电介质的介电系数r ε和极化率α有什么关系?其介电系数的温度系数的关系式又如何表示。
第三章--静电场中的电介质习题及答案

第三章 静电场中的电介质 一、判断题1、当同一电容器部充满同一种均匀电介质后,介质电容器的电容为真空电容器的r ε1倍。
×2、对有极分子组成的介质,它的介电常数将随温度而改变。
√3、在均匀介质中一定没有体分布的极化电荷。
(有自由电荷时,有体分布) ×4、均匀介质的极化与均匀极化的介质是等效的。
×5、在无限大电介质中一定有自由电荷存在。
√6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。
√7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
√8、在均匀电介质中,只有P为恒矢量时,才没有体分布的极化电荷。
P =恒矢量 0=∂∂+∂∂+∂∂z P y P x P zy x⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=zP y P x P z y x p ρ×9、电介质可以带上自由电荷,但导体不能带上极化电荷。
√10、电位移矢量D 仅决定于自由电荷。
×11、电位移线仅从正自由电荷发出,终止于负自由电荷。
√12、在无自由电荷的两种介质交界面上,Pf E E 线连续,线不连续。
(其中,fE 为自由电荷产生的电场,pE为极化电荷产生的电场) √13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。
√14、在两种介质的交界面上,电场强度的法向分量是连续的。
× 15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。
× 16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的r ε分之一。
√二、选择题1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。
则下列说法中不正确的是:(A ) 介质中的场强为真空中场强的r ε1倍。
10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。
所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题2图荷为零,所以有)π4π4000Rq d qV εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
第三章静电场中的电介质习题及答案解析

r 分之一。 √
二、选择题
1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为 介质充满电容器。则下列说法中不正确的是:
r 的均匀电
( A ) 介质中的场强为真空中场强的
1
r 倍。
( B) 介质中的场强为自由电荷单独产生的场强的
1
r 倍。
1
( C) 介质中的场强为原来场强的
r 倍。
P;P 的方向平行于球壳直
径,壳内空腔中任一点的电场强度是:
P
E
(A )
30
(B) E 0
E
P
(C)
30
B
E 2P
(D)
30
9. 半径为 R 相对介电常数为 r 的均匀电介质球的中心放置一点电荷
q,则球内电势 的
分布规律是:
q
(A )
4 0r
q
(B)
4 0 rr
q (1 1) q
(C)
4 0 r r R 4 0R
6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中 场强相等。
√
7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。 √
1 r 倍。
8、在均匀电介质中,只有 P 为恒矢量时,才没有体分布的极化电荷。
P =恒矢量
×
Px
Py
Pz 0
p
xy z
Px
Py
Pz
W
(C)
q2 (1 8 0r a
r 1) b 1) b
W
(D)
q2 1 r( 1 1) 80 r ab
B
三、填空题
1、如图,有一均匀极化的介质球,半径为
电介质物理基础习题答案

参考答案第一章1、电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷得现象称为电介质得极化。
其宏观参数就是介电系数ε。
2、在电场作用下平板介质电容器得介质表面上得束缚电荷所产生得、与外电场方向相反得电场,起削弱外电场得作用,所以称为退极化电场。
退极化电场:平均宏观电场:充电电荷产生得电场:3、计算氧得电子位移极化率:按式代入相应得数据进行计算。
4.氖得相对介电系数:单位体积得粒子数:,而所以:5.洛伦兹有效电场:εr与α得关系为:介电系数得温度系数为:6.时,洛伦兹有效电场可表示为:7、克莫方程赖以成立得条件:E”=0。
其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构得晶体;非极性及弱极性液体介质。
8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9、温度变化1度时, 介电系数得相对变化率称为介电系数得温度系数、10、如高铝瓷, 其主要存在电子与离子得位移极化, 而掺杂得金红石与钛酸钙瓷除了含有电子与离子得位移极化以外, 还存在电子与离子得松弛极化。
极性介质在光频区将会出现电子与离子得位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化与空间电荷极化。
11、极化完成得时间在光频范围内得电子、离子位移极化都称为瞬间极化。
而在无线电频率范围内得松弛极化、自发式极化都称为缓慢式极化。
电子、离子得位移极化得极化完成得时间非常短,在秒得范围内,当外电场得频率在光频范围内时,极化能跟得上外电场交变频率得变化,不会产生极化损耗;而松弛极化得完成所需时间比较长,当外电场得频率比较高时,极化将跟不上交变电场得频率变化,产生极化滞后得现象,出现松弛极化损耗。
12.参照书中简原子结构模型中关于电子位移极化率得推导方法。
13.“”表示了E ji得方向性。
14.参考有效电场一节。
15. 求温度对介电系数得影响,可利用,对温度求导得出:。
由上式可知,由于电介质得密度减小,使得电子位移极化率及离子位移极化率所贡献得极化强度都减小,第一项为负值;但温度升高又使离子晶体得弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。
电介质物理基础答案

参考答案第一章1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称为电介质的极化。
其宏观参数是介电系数ε。
2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。
退极化电场:平均宏观电场:充电电荷产生的电场:3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。
4.氖的相对介电系数:单位体积的粒子数:,而所以:5.洛伦兹有效电场:εr与α的关系为:介电系数的温度系数为:6.时,洛伦兹有效电场可表示为:7. 克----莫方程赖以成立的条件:E”=0。
其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。
8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。
极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。
11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。
而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。
电子、离子的位移极化的极化完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。
12.参照书中简原子结构模型中关于电子位移极化率的推导方法。
13.“-”表示了E ji的方向性。
14.参考有效电场一节。
15.求温度对介电系数的影响,可利用,对温度求导得出:。
由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.因为电子元器件的参数,如ε 、tanδ 、ρ 等都与外场频率、环境温度条件有关。所以在检测时要说明一定 的检测条件。 第三章习题:
2.
(为电离系数) 假设 n 个在行程 dx 上碰撞电离产生的电子数为: dn=ndx x 将上式积分得到:n=Ae (A 为积分常数) n= n0ex 应用边界条件:当 x=0 时,n=n0,因此 A=n0,则 到达阳极的电子数为:na= n0ed (J0 为外界电离因素引起的起始电流密度) 因此到达阳极的电流密度为: J=ena=en0ed=J0ed 3. 电晕放电:在不均匀电场中,当器件某一区域的电压达到起始游离电压时,首先在这一区域出现淡紫 色的辉光——电晕,形成一稳定的区域放电。 刷形放电:电压进一步升高,电晕变成刷形放电,形成几道明亮的光束,呈现出来的是树枝状的火花 放电,但这时放电还未达到对面电极,只是光束的形状不断改变。 飞弧:电压再升高,树枝状的火花闪电般地到达对面电极,形成了贯穿电极间的飞弧,这样就导致了 气体电介质最后被击穿。 在均匀电场中, 电晕、 刷形放电、 飞弧几乎同时发生, 所以一出现电晕, 气体电介质很快就被击穿了。 在不均匀电场中,当极间距离很小时,放电的最后两阶段也区分不出来,只是在大距离的情况下才能 区别出来。 4. 当针尖为正时,正的空间电荷削弱了针尖附近的电场,加强了正空间电荷到负极板之间的弱电场。这 种情况相当于高电场区由针尖移向板极, 像是正电极向负极板延伸了一段距离,因此击穿电压比针尖 为负时低。 当针尖为负时,针电极虽然加强了针尖附近的电场,但却削弱了板极附近本来就相对弱的电场。这使 得电子崩的崩头附近虽然得到加强使崩头扩张速度增大,但在崩尾处因电场削弱,使得崩尾的扩张速 度缓慢甚至停止(由飞弧变成刷形放电) 。因此负针极-板电极的击穿电压高于正针极-板极的击穿电 压。 8.
条件: 的距离。 。I------气体分子的电离电位; -----气体分子的电离电能; -------电子在电场作用下移动
9. 当存在正离子碰撞阴极产生表面电离时,到达阳极的电流密度为:
J
当ቤተ መጻሕፍቲ ባይዱ
J 0e d 1 (e d 1)
(e d 1) 1
时,即使取消了外界的电离因素,放电强度仍能维持不变,这就是气体的自持放电条件。 再考虑气体分子碰撞电离的条件:eEx1≥eU U------气体分子的电离电位;eU-----气体分子的电离电能; 当
9. 温度变化 1 度时, 介电系数的相对变化率称为介电系数的温度系数.
13.真空时:
插入介质后:
“-”表示了 Eji 的方向性。
无论哪一种电介质,其组成粒子在电场作用下产生的偶极矩不仅与外电场有关,还将受到电介 质内部感应偶极矩形成的场强的影响。 通常把作用在某一电介质极化粒子上, 使极化粒子产生感应偶极矩的局部电场称为有效电场或者真实 电场,用 Ee 表示。 它应为极板上的自由电荷以及除这一被考察的极化粒子以外其他所有的极化粒子形成的偶极矩在该 点产生的电场的矢量和。 对于符合洛伦兹模型的电介质,其有效电场由三部分组成: Ee =E0+E’+E” E0 为极板上的自由电荷在被考察粒子处形成的场强且等于ζ /ε 0。 E’为球外粒子极化以后形成 式中, 的偶极矩在在被考察粒子处形成的场强,E”为球内粒子子被考察粒子处形成的场强。
2.
在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的
作用,所以称为退极化电场。
退极化电场:
平均宏观电场:
充电电荷产生的电场:E0=E-Ed
4.氖的相对介电系数:e=0.43×10-40 单位体积的粒子数: ,而
所以:
7. 克----莫方程赖以成立的条件:E”=0。其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体; 非极性及弱极性液体介质。 8.按洛伦兹有效电场计算模型可得: E”=0 时, 所以
6.对 A 点 tan A
2 s s s 2
s
对 B 点,|OB|长度为 ������������ ������∞ 。因而 B 点其坐标为(
2 ������ ������ ������ ∞ ������ ������ −������ ∞ , ������ +������ )因此 tan B ������ ∞ ������ ������ +������ ∞
21.
1.
西/米
西
西 2. 西
3.
22 略 23 略 24 略
2 s
s
7.
ε ”的峰值位于ω η =1 处,即 lgω =8 处。峰值大小为 4。曲线下的面积为
s " d (lg ) " d (ln ) / ln10 2
0 0
( s ) ln10
4 ln10
13.因为 tan是材料的本征特性,而损耗功率 W 与材料的形状、大小和外加电压都密切相关,且损耗功率可利用
x1
(1)
-----电子在电场作用下移动的距离。
U 时,气体分子才能电离 E 1/则表示电子行程 1cm 时 由气体分子运动理论得知, 平均自由程是连续两次碰撞之间经过的距离,
所发生的碰撞次数。而电子的行程大于等于 x1 的几率,根据玻尔兹曼的统计分布为 e 。所以在 1cm
x1
行程的 1/次碰撞中,能产生碰撞电离的次数为 (e ) / ,也就是:
D 与 E 之间存在相位差时,D 滞后于 E,存在一相角δ ,用复数来描述 D 与 E 的关系:
其中’与原本静电场下的r 对应, 描述介质在电场下的极化效应; 而”则描述介质在交流电场下的损耗与 介质的交流电导率相关。’与”是松弛介质在交流电场下极化的一个物理过程密不可分的两个方面。因此可用复 介电系数来描述. 3. ①
x1
1
e
x1
1
e
U E
当温度一定时,平均自由程与气压 P 成反比:1/ =AP 因此,令 AU=B,则有:
APe E APe 对自持放电条件(1)式两边取对数,并将代入得到:
APde
BP E
APU
BP E
1 ln(1 )
对上式取对数整理得到气体电介质的击穿电压为:
Vm
BPd APd ln[ ] 1 ln(1 )
Vm=F(P·d) 简记为 式中系数 A、B 可由实验求得。此式即为巴申定律的数学表达式。 巴申定律用来指导预防气体电介质的击穿,或优化气体电介质中的飞弧放电。 由巴申定律, 当 Pd 很小或很大时, 气体的击穿电压会提高, 由此结论可用于预防气体电介质的击穿, 即:利用高气压或高真空来提高气体的击穿电压。另从公式中还可以看出和 U 对 Vm 影响也很大, 若要避免气体击穿,应选择 U 很大的气体,并选择很小的阴极材料。 优化气体电介质的放电与预防击穿的过程正好相反,要在适当的气压下,选择很大的阴极材料和 U 很小的气体介质。 10. 固体介质中导电载流子有:本征离子电导、弱系离子电导、电子电导。在高温时主要以本征离 子电导为主,低温时以弱系离子电导为主,而电子电导主要发生在过渡金属氧化物陶瓷中。 12. 离子位移极化是离子晶体中正负本征离子在电场作用下沿相反方向位移形成, 离子不能脱离格点的位 置。离子位移极化响应速度快,与温度无关。 热离子松弛极化是固体电介质中弱系离子被热运动激发, 并在电场作用下脱离平衡位置沿电场方向过 剩跃迁,形成电矩而成。这种极化依赖于温度对离子的激发,完成的时间长、且当外场频率较高时, 极化方向的改变往往滞后于外电场的变化,产生“松弛” 。 离子电导分为本征离子电导和弱系离子电导,是本征离子或弱系离子在热运动的激发下,离开平衡位 置成为导电载流子, 构成离子电导。 它与离子位移极化的区别在于离子需要热运动激发且离开格点位 置运动。它与热离子松弛极化的区别在于:松弛极化只有弱系离子参数,强调的是电场作用下弱系离 子重新分布产生的电矩;而离子电导不仅有弱系离子,还有本征离子参与,侧重于研究所有离子被热 激发的几率和在电场作用下的定向迁移速度。 13.略 14.略 16 略 17 略 18 略
②”最大值位置:
tan的最大值位置
③ 有关曲线图参考书上有关章节。 ”的曲线不同于 tan,当温度身高时,因为趋于 0,因而”也趋于 0。而 tan因为直流电导的上升却越来越大
5.在交变电场下,介质会出现极化滞后于电场的变化,在某个频率附件出现 e、W(P)随 w 迅速变化,以及 tand 出现最大值的情况,这是具有松弛极化的介质的明星特征,可以作为具有松弛极化的电介质的判断依据。
2 tan结合材料的介电系数计算出来: W 0 ' tan V
A 。因此工程上都用 tan而不用 W。 d
在许多介质中,特别是在组合绝缘的介质中,由于介质中有不同类的质点,tan将出现多个峰值。如果介质有一组 互相很接近的松弛时间,那么 tan峰值的包络线占据很宽的频率范围,变得平缓(如图所示)。这就是多个松弛时 间的介质中观察到的反常弥散区变宽,tan峰值不明确的原因。
14.
18.真空时:
介质中:
伏/米
伏/米)
19.解:
库
库/米
伏/米
若 V=1.5V 则 C=1.77×10-12F; Q=2.655×10-12C; Q’=1.327×10-12C P=1.327×10-9C/m2 μ =1.327×10-14C.m E0=150V/m
Ee=200V/m 第二章习题: 2.当介质中存在松弛极化时,介质中的电感应强度 D 与电场强度 E 在时间上有一个显著的相位差,D 将滞后于 E, 的简单表示式就不再适用了。 且电容器两极板上的电位与真实电荷之间产生相位差, 对正弦交变电场来说, 电容器的充电电流超前电压的相位角小于 。电容器的计算不能用 的简单公式了。