概率(文科)讲解

合集下载

高考概率统计文科知识点

高考概率统计文科知识点

高考概率统计文科知识点在文科高考中,概率统计是一个重要的考试内容。

理解和掌握概率统计的知识点对于应对考试至关重要。

下面将介绍一些高考概率统计的文科知识点。

一、概率的基本概念概率是指在某个事物中某个事件发生的可能性大小。

在高考文科中,概率的基本概念主要包括样本空间、随机事件、事件的概率等。

1.1 样本空间样本空间是指一个试验所有可能结果的集合。

例如,一次掷骰子的样本空间为S={1,2,3,4,5,6}。

1.2 随机事件随机事件是指在试验中可能发生的事件。

在样本空间中取一个子集,就表示一个随机事件。

例如,掷骰子出现奇数点数可以表示为A={1,3,5}。

1.3 事件的概率事件的概率是指事件发生的可能性大小。

事件A的概率可以用P(A)表示。

例如,在掷骰子实验中,掷出1的概率为P(A)=1/6。

二、基本概率公式高考文科中,基本概率公式主要包括加法公式和乘法公式。

2.1 加法公式加法公式是指对于两个不相容事件A和B,它们的概率之和等于事件A或B发生的概率。

公式如下:P(A∪B) = P(A) + P(B),其中∪表示并集。

2.2 乘法公式乘法公式是指对于两个独立事件A和B,它们同时发生的概率等于事件A发生的概率乘事件B发生的概率。

公式如下:P(A∩B) = P(A) * P(B),其中∩表示交集。

三、条件概率和独立性在概率统计中,条件概率和独立性是两个重要的概念。

3.1 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

设A和B是两个事件,且P(A)>0,那么B在A发生的条件下的概率记作P(B|A),计算公式为:P(B|A) = P(A∩B) / P(A)。

3.2 独立性两个事件A和B相互独立,是指事件A的发生与否不影响事件B的发生与否。

具体而言,如果满足以下条件,则称事件A和B是独立事件:P(A∩B) = P(A) * P(B)。

四、排列组合在高考概率统计中,排列组合是非常重要的知识点。

文科统计概率知识点总结

文科统计概率知识点总结

文科统计概率知识点总结统计学是一门研究数据的收集、分析、解释和展示的学科。

统计学是一种通过数学方法来分析数据的学科,它有着广泛的应用领域,包括经济学、心理学、社会学和政治学等。

统计学的应用范围也非常广泛,涵盖从商业到医学的各个领域。

而概率是统计学中一个非常重要的概念,它可以帮助我们预测和理解各种现象发生的可能性。

本文将对文科统计学中的概率知识点进行总结和分析。

一、概率的概念概率是一个用来描述事件发生可能性的数学概念。

在统计学中,概率通常用来描述随机事件发生的可能性大小。

概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。

在现实生活中,我们经常会面临各种不确定性,比如天气预报、投资风险、疾病传播等。

概率可以帮助我们对这些不确定性进行量化和分析。

二、概率的性质概率有一些基本的性质,这些性质对于理解和计算概率都非常重要。

其中包括:1. 互斥事件的概率:两个事件互斥指的是它们不能同时发生。

如果A和B是互斥事件,那么它们的概率满足P(A∪B) = P(A) + P(B)。

2. 独立事件的概率:两个事件独立指的是它们的发生不会相互影响。

如果A和B是独立事件,那么它们的概率满足P(A∩B) = P(A) × P(B)。

3. 补事件的概率:对于一个事件A,它的补事件指的是A不发生的情况。

补事件的概率满足P(A') = 1 - P(A)。

4. 加法法则:对于两个事件A和B,它们的概率和满足P(A∪B) = P(A) + P(B) - P(A∩B)。

5. 乘法法则:对于两个独立事件A和B,它们的概率乘积等于它们各自的概率。

这些性质可以帮助我们在实际问题中计算概率,而理解这些性质也对于我们理解概率的本质有很大帮助。

三、离散型随机变量的概率分布在统计学中,随机变量是一个可以随机取不同值的变量。

离散型随机变量是指其可能取值是有限的或者可数的,而不是连续的。

1. 离散型随机变量的概率质量函数:对于一个离散型随机变量X,其概率质量函数P(X=x)描述了X取各个可能值的概率。

概率统计文科知识点总结

概率统计文科知识点总结

概率统计文科知识点总结概率统计的知识点涉及很多,包括基本概率论、统计学基础、抽样调查、推断统计、多元统计分析等等。

同时,概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。

下面我们来具体总结一下文科领域中概率统计的知识点。

1.基本概率论概率论是概率统计的基础,在文科领域中,基本概率论的内容包括了概率的定义、事件的概率、条件概率、独立事件、概率分布等内容。

了解基本概率论可以让文科学生更好地理解概率统计的相关知识,对于后续的学习具有重要的作用。

2.统计学基础统计学基础是概率统计的另一个重要内容,包括了统计量、样本集中趋势、样本离散程度、概率分布等内容。

统计学基础是文科领域中概率统计的重要组成部分,它主要用来描述和分析文科数据的规律和特征。

3.抽样调查抽样调查是文科领域中概率统计的一个重要应用,它主要用来获取文科数据样本。

在实际的文科研究中,抽样调查是获取数据的常用方法,通过对抽样调查的了解可以帮助文科学生更好地进行文科研究和分析。

4.推断统计推断统计是文科领域中概率统计的一个重要内容,它主要用来从样本数据中推断总体数据的特征和规律。

推断统计包括了点估计、区间估计、假设检验等内容,通过推断统计可以帮助文科学生更好地分析文科数据。

5.多元统计分析多元统计分析是文科领域中概率统计的一个拓展内容,它主要用来分析多个变量之间的关系。

在文科研究中,多元统计分析可以帮助文科学生更好地理解文科数据之间的关系,对于文科研究具有重要的意义。

除了上述内容之外,文科领域中概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。

这些内容都是文科学生在概率统计学习中需要重点掌握的知识点。

总的来说,概率统计在文科领域中有着重要的地位,它不仅可以帮助文科学生更好地理解文科数据的规律和特征,还可以帮助文科学生更好地进行文科研究和分析。

因此,文科学生在学习概率统计的过程中需要重点掌握上述知识点,通过理论学习和实际应用,不断提高自己的概率统计分析能力。

高考文科概率统计大题

高考文科概率统计大题

高考文科概率统计大题高考文科概率统计大题一、引言高考作为中国教育体系的重要组成部分,对于学生来说意义重大。

其中,文科概率统计是一道常见的考题,对学生的数学思维能力和概率统计知识的掌握程度提出了挑战。

本文将从基本概念、计算方法和实际应用三个方面来探讨高考文科概率统计大题。

二、基本概念在开始解答概率统计大题之前,首先需要了解一些基本概念。

概率是指某一事件发生的可能性或者程度大小,而统计学则是利用样本数据推断总体的特征。

在解答概率题时,常见的概念包括样本空间、事件、频率和概率等。

理解这些基本概念,能够为我们后续的计算和分析打下基础。

三、计算方法在文科概率统计大题中,计算方法是解决问题的关键。

常见的计算方法包括排列、组合、加法原理、乘法原理等。

通过正确运用这些方法,我们可以快速准确地计算出答案。

此外,还需要掌握条件概率、贝叶斯定理等进阶计算方法,以应对更复杂的问题。

不同的计算方法适用于不同的场景,学生们需要掌握并善于选择合适的方法。

四、实际应用概率统计在实际生活中有着广泛的应用。

在文科概率统计大题中,常涉及到投资、风险评估、信用评分、调查统计等实际问题。

学生们需要通过解答这些实际应用题,了解并应用概率统计在现实生活中的重要性和实用性。

此外,还需要培养对问题分析和解决的能力,将概率统计知识与实际应用相结合。

五、答题技巧解答概率统计大题不仅要掌握基本概念和计算方法,还需要具备一定的答题技巧。

首先,学生们要仔细审题,理解问题要求和限制条件;其次,要对题目进行归类,将抽象问题具象化;还要善于利用已知条件,简化计算过程。

另外,还要注意答题过程中的合理化推测和合理性判断,确保答案的准确性。

六、总结综上所述,高考文科概率统计大题是一道考察学生数学思维和概率统计知识的重要题目。

通过理解基本概念、熟练掌握计算方法、应用实际问题和灵活应用答题技巧,学生们便能够在高考中应对这一考题。

希望本文的内容能够对广大考生在备战高考中有所帮助,实现更好的成绩。

高三文科数学概率知识点

高三文科数学概率知识点

高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。

在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。

本文将针对高三文科数学中的概率知识点进行详细论述。

一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。

基本概率规则包括等可能概型、互斥事件与对立事件等概念。

等可能概型指的是实验中每个基本结果发生的概率相等的情况。

例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。

互斥事件指的是两个事件不能同时发生的情况。

例如,投篮比赛中不同队员投进的概率是互斥事件。

对立事件指的是两个事件至少有一个发生的情况。

例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。

二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。

频率法是通过重复实验的统计结果来估计概率。

例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。

古典概型法适用于每个基本结果发生的概率相等的情况。

例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。

几何概型法适用于几何空间问题。

例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。

三、条件概率条件概率是指在某个条件下事件发生的概率。

例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。

条件概率的计算方法可以通过乘法定理来实现。

乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。

四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。

例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。

独立事件的概率计算方法可以通过乘法定理来实现。

乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

[数学]高三文科数学概率复习课

[数学]高三文科数学概率复习课

1. “一个骰子掷一次得到6的概率是
1 6
,这说明一个骰子掷6次会出现一
1
次6”,这种说法对吗?请说明你的理由. 解析:这种说法是不对的.虽然每次掷骰子出现6点的概率是 6,但连续
掷6次骰子不一定会1,2,3,4,5,6各出现一次,可能出现某个数的次数多
一些,其他的数少一些,这正好体现了随机事件发生的随机性.但随着试 验次数的增加,出现1,2,3,4,5,6各数的频率大约相等,即都为试验次数 的
1
女孩 P
2
2002
2003 2004 2005 2006 5年总计
0.516
0.518 0.515 0.518 0.516 0.517
0.484
0.482 0.485 0.482 0.484 0.483
2. 某批乒乓球产品质量检查结果如下表所示: 抽取球数n 50 100 200 500 1000 2000
题型二
随机事件的概率问题
例2某地区近5年出生婴儿的调查表如下:
出生数 出生年份 2002 男孩 m
1
共计n=
2
出生频率 男孩 P
1
女孩 m
m m
1
2
女孩 P
2
52807
49473
102280
2003
2004 2005 2006 5年总计
51365
49698 49654 48243 251767
47733
概率复习课
第三章
第1课时
基础梳理
1. 事件 (1)必然事件:
概率
随机事件的概率
在条件S下, 一定会发生的事件,叫做相对于条件S的必然事件. (2) 不可能事件: 在条件S下, 一定不会发生 的事件,叫做相对于条件S的不可能事件. (3) 确定事件: 必然事件与不可能事件 统称为相对于条件S的确定事件. (4) 随机事件 在条件S下, 可能发生也可能不发生 的事件,叫做相对于条件S的随机事件.

文科数学概率知识点总结

文科数学概率知识点总结

文科数学概率知识点总结概率是数学中一个非常重要的概念,它在实际生活中的运用非常广泛,涉及到诸如赌博、保险、风险管理等方面。

而在文科中,概率理论也是一个非常重要的知识点,尤其在统计学、经济学、社会学等领域中有着广泛的应用。

本文将对文科数学中的概率知识点进行总结,从基础概念到应用技巧,帮助读者更好地理解和掌握这一知识点。

一、概率的基本概念1.样本空间概率理论的起点是建立在试验的基础上的。

试验是一个具有确定结果的过程,如掷骰子、抽卡片、抛硬币等。

样本空间是所有可能结果的集合,通常用S表示。

2.事件在样本空间中,可以定义各种事件,事件是样本空间的子集,表示某种特定的结果。

当试验进行时,实际发生了事件E,称为事件E发生,否则称为事件E不发生。

通常用大写字母A、B、C表示。

3.概率概率表示某一事件发生的可能性大小。

通常用P(A)表示事件A发生的概率。

概率的取值范围是[0, 1],概率为0表示事件不可能发生,概率为1表示事件一定会发生,其他情况表示事件可能发生的程度。

二、概率的计算方法1.古典概率对于样本空间中的每一个事件,如果这些事件的发生是等可能的,那么可以直接用不变等可能性的公式计算概率。

对于均匀分布的样本空间,概率P(A)计算公式为P(A) =n(A)/n(S),其中n(A)表示事件A的基数,n(S)表示样本空间的基数。

2.几何概率对于连续变量的样本空间,如果事件的发生与其所占的面积(长度、体积)成正比,那么可以用几何概率的方法计算。

其计算公式为P(A) = S(A)/S(S),其中S(A)表示事件A的面积(长度、体积),S(S)表示样本空间的面积(长度、体积)。

3.频率概率频率概率是由实验统计出的大量实验结果的频率来计算概率。

通常用频率来估计概率。

频率概率是概率的初步估计值,通常可以用大数定理来证明其与理论概率的接近程度。

当已知事件B发生的条件下事件A发生的概率叫做条件概率,记作P(A|B)。

条件概率表示A事件在B事件发生的情况下的发生概率。

概率统计(文科)

概率统计(文科)

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率第一节随机事件的概率1.从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.①B.②④C.③D.①③答案:C2.设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案:A4.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? [听前试做] (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 5.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.6.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [听前试做] (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A 、B 、C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B ) =1-⎝⎛⎭⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.第二节 古 典 概 型1.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120 答案:C2.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:①所取的2道题都是甲类题的概率; ②所取的2道题不是同一类题的概率.解:①将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.②基本事件同①.用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.3.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个. 因此A 1被选中且B 1未被选中的概率为P =215.4.一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.解:(1)2个红球记为a 1,a 2,3个白球记为b 1,b 2,b 3,从袋中随机取两个球,其一切可能的结果组成的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共10个.记事件A =“取出的两个球颜色不同”,A 中的基本事件有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共6个.所以P (A )=610=35,即取出的两个球颜色不同的概率为35.(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,其一切可能的结果组成的基本事件有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,a 1),(a 2,a 2),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,a 1),(b 1,a 2),(b 1,b 1),(b 1,b 2),(b 1,b 3),(b 2,a 1),(b 2,a 2),(b 2,b 1),(b 2,b 2),(b 2,b 3),(b 3,a 1),(b 3,a 2),(b 3,b 1),(b 3,b 2),(b 3,b 3),共25个.设事件B =“两次取出的球中至少有一个红球”,B 中的基本事件有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,a 1),(a 2,a 2),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,a 1),(b 1,a 2),(b 2,a 1),(b 2,a 2),(b 3,a 1),(b 3,a 2),共16个.所以P (B )=1625,即两次取出的球中至少有一个红球的概率为1625.5.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. [听前试做] (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006. (2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.6.某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评[50,60) [60,70) [70,80) [80,90) [90,100] 分分组频数281410 6(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意[听前试做](1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A 地区用户的满意度等级为不满意的概率大.记C A 表示事件:“A 地区用户的满意度等级为不满意”;C B 表示事件:“B 地区用户的满意度等级为不满意”.由直方图得P (C A )的估计值为(0.01+0.02+0.03)×10=0.6,P (C B )的估计值为(0.005+0.02)×10=0.25.所以A 地区用户的满意度等级为不满意的概率大.7.如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数.乙组记录中有一个数据模糊,无法确认,在图中以x 表示.(1)如果乙组同学投篮命中次数的平均数为354,求x 及乙组同学投篮命中次数的方差;(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为17的概率.解:(1)依题意得:x =x +8+9+104=354,得x =8,应用方差计算公式可得:s 2=(2)设甲组投篮命中次数低于10次的同学为A 1,A 2,它们的命中次数分别为9,7.乙组投篮命中次数低于10次的同学为B 1,B 2,B 3,它们的命中次数分别为8,8,9.依题意,不同的选取方法有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 1,B 3),(A 2,B 3).设“这两名同学的投篮命中次数之和为17”的事件为C ,则C 恰含有(A 1,B 1),(A 1,B 2)两种,所以P (C )=26=13.第三节几 何 概 型1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式 P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[自我查验]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形或空间几何体.( ) (3)与面积有关的几何概型的概率与几何图形的形状有关.( )(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.( )答案:(1)√ (2)√ (3)× (4)×2.设A (0,0),B (4,0),在线段AB 上任投一点P ,则|P A |<1的概率为________. 解析:由题意知|AB |=4,所以|P A |<1的概率为14.答案:143.如图所示,向圆内投镖,如果每次都投入圆内,那么投中正方形区域的概率为________.解析:此试验属几何概型,设圆的半径为1,则圆的面积为π,正方形的面积为2,所以投中正方形区域的概率为2π.答案:2π4.有一杯1 L 的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1 L ,则小杯水中含有这个细菌的概率为________.解析:小杯水中含有这个细菌的概率为P =0.11=0.1.答案:0.15.如图,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60°360°=16.答案:16[典题1] (1)(2015·山东高考)在区间[0,2]上随机地取一个数x ,则事件“-1≤≤1”发生的概率为( )A.34B.23C.13D.14(2)(2016·丽江模拟)设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径 2 倍的概率是( )A.34B.12C.13D.35(3)在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.[听前试做] (1)由不等式-1≤log 12⎝⎛⎭⎫x +12≤1得12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.(2)作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB |>2R ,∴=12.(3)如图,过点C 作CN 交AB 于点N ,使AN =AC .显然当射线CM 处在∠ACN 内时,AM <AC .又∠A =45°,所以∠ACN =67.5°,故所求概率为P =67.5°90°=34.答案:(1)A (2)B (3)34[典题2] (1)(2015·福建高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上. 若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14 C.38 D.12(2)(2015·陕西高考)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.12+1π C.14-12π D.12-1π(3)(2016·广东七校联考)如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为( )A.3+316πB.3+34πC.4π3+3D.16π3+3(4)(2016·广州调研)在边长为2的正方形ABCD内部任取一点M,则满足∠AMB>90°的概率为________.[听前试做](1)因为f(x)=⎩⎪⎨⎪⎧x+1,x≥0,-12x+1,x<0,B点坐标为(1,0),所以C点坐标为(1,2),D点坐标为(-2,2),A点坐标为(-2,0),故矩形ABCD的面积为2×3=6,阴影部分的面积为12×3×1=32,故P=326=14.(2)|z|=(x-1)2+y2≤1,即(x-1)2+y2≤1,表示的是圆及其内部,如图所示.当|z|≤1时,y≥x表示的是图中阴影部分,其面积为S=14π×12-12×1×1=π-24.又圆的面积为π,根据几何概型公式得概率P=π-24π=14-12π.(3)由正弦定理BCsin A=ACsin B=2R(R为圆的半径)⇒⎩⎪⎨⎪⎧BC=20sin 60°,AC=20sin 45°⇒⎩⎪⎨⎪⎧BC=103,AC=10 2.那么S△ABC=12×103×102sin 75°=12×103×102×6+24=25(3+3).于是,豆子落在三角形ABC内的概率为S△ABC圆的面积=25(3+3)102π=3+34π.(4)如图,如果点M位于以AB为直径的半圆内部,则∠AMB>90°,否则,M点位于半圆上及空白部分,则∠AMB ≤90°,所以∠AMB >90°的概率P =12×π×1222=π8. 答案:(1)B (2)C (3)B (4)π8[典题3] (1)(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1C.12<p 2<p 1 D .p 1<12<p 2 (2)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________(用数字作答).[听前试做] (1)如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12;事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.(2)设小张与小王的到校时间分别为7:00后第x 分钟,第y 分钟.根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A ={(x ,y )|y -x ≥5,30≤x ≤50,30≤y ≤50},如图中阴影部分所示,阴影部分所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P (A )=2252400=932.答案:(1)D (2)932[典题4] (1)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.(2)(2016·黑龙江五校联考)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V 3的概率是________.[听前试做] (1)正方体的体积为:2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为:12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为:1-23π8=1-π12. (2)由题意可知V S -APC V S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM ,BN 分别为△APC 与△ABC 的高,所以V S -APCV S -ABC =S △APC S △ABC =PM BN >13,又PM BN =AP AB ,所以AP AB >13,故所求的概率为23(即为长度之比).答案:(1)1-π12 (2)23。

相关文档
最新文档