高中文科数学(统计与概率)综合练习
高中数学概率统计题库及答案解析

高中数学概率统计题库及答案解析随着高中数学概率统计的教学深入,学生们需要更多的练习来巩固所学知识。
因此,一个全面且有针对性的概率统计题库及答案解析就显得尤为重要。
本文将介绍一个高中数学概率统计题库,并提供详细的答案解析,帮助学生更好地掌握该领域的知识。
一、选择题1. 已知事件A和事件B是互不相容的,且P(A)= 0.3,P(AUB) = 0.7,求P(B)的值。
解析:由题意可知 P(AUB) = P(A) + P(B) - P(AB),代入已知条件可得 0.7 = 0.3 + P(B) - 0,从而得到 P(B) = 0.4。
2. 设事件A和事件B相互独立,且P(A) = 1/4,P(B) = 1/3,求P(AB)的值。
解析:由于事件A和事件B相互独立,所以 P(AB) = P(A)P(B),代入已知条件可得 P(AB) = (1/4)(1/3) = 1/12。
二、计算题1. 从1到20中随机选取一个数,求选取的数被3整除的概率。
解析:在1到20中可以被3整除的数有3, 6, 9, 12, 15, 18共6个。
而总的样本空间为20,所以选取的数被3整除的概率为6/20 = 3/10。
2. 甲、乙、丙共参加了一次考试,甲过的概率为0.7,乙过的概率为0.8,丙过的概率为0.9。
已知甲、乙、丙三人中至少有两人过的概率是0.97,求三人中全部过的概率。
解析:设甲、乙、丙三人全部过的概率为 P(甲)P(乙)P(丙),根据题意可得到以下等式:1 - [P(甲) + P(乙) + P(丙) - P(甲)P(乙) - P(甲)P(丙) - P(乙)P(丙)] = 0.97代入已知概率可解得 P(甲)P(乙)P(丙) = 0.51,即三人全部过的概率为0.51。
三、证明题已知事件A和事件B是相互独立的,证明事件A的补事件与事件B的补事件也是相互独立的。
证明:设事件A的补事件为A',事件B的补事件为B'。
数学必修三文科练习题

数学必修三文科练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等,并说明理由。
(1)A={x|x²3x+2=0},B={1, 2}(2)A={x|0<x<3},B={x|x²<9}(1)A={x|x属于M,且x为偶数}(2)B={x|x属于M,且x²3x+2=0}3. 已知函数f(x)=2x+1,求f(3)、f(1)和f(0)的值。
二、基本初等函数1. 判断下列函数的奇偶性:(1)f(x)=x³4x(2)g(x)=|x|x2. 求下列函数的定义域:(1)f(x)=√(4x²)(2)g(x)=1/(x²9)3. 已知函数f(x)=3x²2x+1,求f(x)在区间[1, 2]上的最大值和最小值。
三、函数的性质1. 已知函数f(x)=x²4x+3,求f(x)的单调递增区间。
2. 设函数g(x)=1/x,判断g(x)在区间(0, +∞)上的单调性。
3. 已知函数h(x)=2x+3,求h(x)的周期性。
四、函数的应用1. 某企业的年产量Q(单位:万件)与年销售额P(单位:万元)之间的关系为P=5Q10,求企业的盈亏平衡点。
2. 已知某商品的成本函数C(x)=3x+20,其中x为生产数量(单位:件),销售价格为50元/件,求该商品的利润函数。
3. 一辆汽车以60km/h的速度行驶,行驶距离S(单位:km)与时间t(单位:h)之间的关系为S=60t。
求汽车行驶200km所需的时间。
五、数列的概念与性质(1)an=2n+1(2)bn=n²(1)an=1/n(2)bn=(1)^(n+1)/n3. 已知数列{an}的通项公式为an=3n2,求该数列的前n项和。
六、平面向量1. 已知向量a=(2, 3),求向量a的模。
2. 已知向量b=(3, 4),求向量b的单位向量。
3. 已知向量a=(4, 5)和向量b=(2, 3),求向量a与向量b的夹角。
2019_2020学年新教材高中数学章末综合检测(二)统计与概率新人教B版必修第二册

章末综合检测(二) 统计与概率A 卷——学业水平考试达标练 (时间:60分钟 满分:100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A .10组B .9组C .8组D .7组解析:选B 根据列频率分布表的步骤,140-5110=8.9,所以分为9组较为恰当.2.下列事件是随机事件的个数是( )①同性电荷,互相排斥;②明天天晴;③自由下落的物体做匀速直线运动;④函数y =log a x (a >0,且a ≠1)在定义域上是增函数.A .0B .1C .2D .3解析:选C ②④是随机事件;①是必然事件;③是不可能事件.3.从4双不同的鞋中任意摸出4只,事件“4只全部成对”的对立事件是( ) A .至多有2只不成对 B .恰有2只不成对 C .4只全部不成对D .至少有2只不成对解析:选D 从4双不同的鞋中任意摸出4只,可能的结果为“恰有2只成对”“4只全部成对”“4只都不成对”,故事件{4只全部成对}的对立事件是{恰有2只成对}+{4只都不成对}={至少有2只不成对},故选D.4.统计某校1 000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是( )A .20%B .25%C .6%D .80%解析:选D 从左至右,后四个小矩形的面积和等于及格率,则及格率是1-10×(0.005+0.015)=0.8=80%.5.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A.15B.25C.35D.45解析:选C 记取到语文、数学、英语、物理、化学书分别为事件A ,B ,C ,D ,E ,则A ,B ,C ,D ,E 互斥,取到理科书的概率为事件B ,D ,E 概率的和.∴P (B +D +E )=P (B )+P (D )+P (E )=15+15+15=35.6.在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:选C 一个五位数能否被2或5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除”这一事件中含有基本事件2,4,5,概率为35=0.6.7.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差解析:选A 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 9.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是________.解析:平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 答案:乙10.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是________.解析:高三的人数为900-240-260=400,所以在高三抽取的人数为45900×400=20.答案:2011.已知两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为_______.解析:记两个零件中恰有一个一等品的事件为A ,则P (A )=23×⎝ ⎛⎭⎪⎫1-34+⎝ ⎛⎭⎪⎫1-23×34=512.答案:51212.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:∵x=10×0.97+20×0.98+10×0.9910+20+10=0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98.答案:0.98三、解答题(本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)13.(8分)某教授为了测试贫困地区和发达地区同龄儿童的智力,出了10个智力题,每个题10分.统计结果如下表所示:贫困地区发达地区(1)分别计算两地区参加测试的儿童中得60分以上的频率,填入表中;(2)估计两个地区参加测试的儿童得60分以上的概率.解:(1)如表所示:贫困地区发达地区(2)随着测试人数的增加,两个地区参加测试的儿童得60分以上的频率逐渐趋近于0.5和0.55.故可估计概率分别为0.5和0.55.14.(10分)从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.解:(1)“选出的两名代表”这个试验的样本空间Ω={(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)}.(1)记甲被选中为事件A ,则A ={(甲,乙),(甲,丙),(甲,丁)},故P (A )=36=12.(2)记丁没被选中为事件B ,则B ={(甲,乙),(甲,丙), (乙,丙)},则P (B )=1-12=12.15.(10分)某制造商为运动会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm ,保留两位小数)如下:40.02 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.01 40.02 39.98 40.00 39.99 40.00 39.96(1)完成下面的频率分布表,并在图中画出频率分布直方图和频率分布折线图.(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.解:(1)频率分布表如下:频率分布直方图、频率分布折线图如图所示.(2)因为抽样的20只产品中在[39.98,40.02]范围内的有18只,所以合格率为1820×100%=90%.所以根据抽样检查结果,可以估计这批产品的合格只数为9 000.16.(12分)某校为了解高一学生周末的阅读时间,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末阅读时间(单位:h),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.(1)求图中a的值;(2)在[1,1.5),[1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2人恰好都在同一个组的概率.解:(1)由频率分布直方图可知,周末阅读时间在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由1-(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5×a+0.5×a.解得a=0.30.(2)由题意得周末阅读时间在[1,1.5),[1.5,2)中的学生分别有15人、20人,按分层抽样的方法应分别抽取3人、4人,分别记作A,B,C及a,b,c,d,从7人中随机抽取2人,共有AB,AC,Aa,Ab,Ac,Ad,BC,Ba,Bb,Bc,Bd,Ca,Cb,Cc,Cd,ab,ac,ad,bc,bd ,cd ,共21种,抽取的2人在同一组的有AB ,AC ,BC ,ab ,ac ,ad ,bc ,bd ,cd ,共9种,故所求概率P =921=37.B 卷——高考应试能力标准练 (时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012解析:选B 根据分层随机抽样的概念知1296=12+21+25+43N ,解得N =808,故选B.2.某台机床加工的1 000只产品中次品数的频率分布如下表:则次品数的众数、平均数依次为( ) A .0,1.1 B .0,1 C .4,1D .0.5,2解析:选A 由表可知,次品数的众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1.3.如图是1951~2016年我国的年平均气温变化的折线图.根据图中信息,下列结论正确的是( )A.1951年以来,我国的年平均气温逐年增高B.1951年以来,我国的年平均气温在2016年再创新高C.2000年以来,我国每年的年平均气温都高于1981~2010年的平均值D.2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值解析:选D 由图可知,1951年以来,我国的年平均气温变化是有起伏的,不是逐年增高的,所以选项A错误;1951年以来,我国的年平均气温最高的不是2016年,所以选项B错误;2012年的年平均气温低于1981~2010年的平均值,所以选项C错误;2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值,所以选项D正确.故选D.4.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4C.0.6 D.0.7解析:选B 由题意可知不用现金支付的概率为1-0.45-0.15=0.4.故选B.5.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A 设新农村建设前,农村的经济收入为a,则新农村建设后,农村经济收入为2a.新农村建设前后,各项收入的对比如下表:6.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5B .0.6C .0.7D .0.8解析:选C 设调查的100位学生中阅读过《西游记》的学生人数为x ,则x +80-60=90,解得x =70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.7.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( )A .公平,每个班被选到的概率都为112B .公平,每个班被选到的概率都为16C .不公平,6班被选到的概率最大D .不公平,7班被选到的概率最大 解析:选 D P (1)=0,P (2)=P (12)=136,P (3)=P (11)=118,P (4)=P (10)=112,P (5)=P (9)=19,P (6)=P (8)=536,P (7)=16,故选D.8.(2019·全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A.16B.14C.13D.12解析:选D 法一:设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.法二:两位男同学与两位女同学随机排成一列,因为男同学人数与女同学人数相等,所以两女同学相邻与不相邻的排法种数相同,所以两女同学相邻与不相邻的概率均为12.9.31,乙的成绩的平均值为24,则下列结论错误的是( )A .x =9B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.10.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D 由P (A B )=P (B A ),得P (A )P (B )=P (B )P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A ∩B )=19,∴P (A )=P (B )=13,∴P (A )=23.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 11.(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________. 解析:因为这组数据的平均数为8,所以方差s 2=16×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53.答案:5312.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲____________,乙________,丙________.解析:甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数=4+6×3+8+9+12+138=8;丙:该组数据的中位数是7+92=8.答案:众数 平均数 中位数13.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k ∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________.解析:因为高一年级抽取学生的比例为2401 200=15,所以k k +5+3=15,解得k =2,故高三年级抽取的人数为1 200×32+5+3=360.答案:36014.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点出现”,则事件A ∪B 发生的概率为________.( B 表示B 的对立事件)解析:事件A 包含的基本事件为“出现2点”或“出现4点”;B 表示“大于等于5的点出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与B 是互斥的,故P (A∪B )=P (A )+P (B )=13+13=23.答案:23三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(8分)某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15. (1)求x 的值;(2)现用比例分配的分层随机抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?解:(1)依题意有x1 000=0.15,解得x =150.(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250, ∴第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m 名工人,则有m 400=501 000,解得m =20,∴应在第三车间抽取20名工人.16.(10分)在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.解:如图所示,分别记这段时间内开关JA ,JB ,JC 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不闭合的概率是P (A B C )=P (A )P (B )P (C )=[1-P (A )][1-P (B )]·[1-P (C )]=(1-0.7)×(1-0.7)×(1-0.7)=0.027.于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A BC )=1-0.027=0.973.即在这段时间内线路正常工作的概率是0.973.17.(10分)(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解:(1)由已知得0.70=a+0.20+0.15,解得a=0.35,所以b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18.(10分)(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.解:(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{B ,C },{B ,D },{B ,E },{B ,F },{C ,D },{C ,E },{C ,F },{D ,E },{D ,F },{E ,F },共15种.②由表格知,符合题意的所有结果为{A ,B },{A ,D },{A ,E },{A ,F },{B ,D },{B ,E },{B ,F },{C ,E },{C ,F },{D ,F },{E ,F },共11种.所以,事件M 发生的概率P (M )=1115.19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表 使用了节水龙头50天的日用水量频数分布表 (1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解:(1)频率分布直方图如图所示.(2)根据频率分布直方图知,该家庭使用节水龙头后50天日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m 3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x 1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x 2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).。
概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
高中文科数学(统计与概率)综合练习

《概率与统计》练习求:(Ⅰ)年降雨量在)200,100[范围内的概率;(Ⅱ)年降雨量在)150,100[或)300,250[范围内的概率;(Ⅲ)年降雨量不在)300,150[范围内的概率;(Ⅳ)年降雨量在)300,100[范围内的概率.2.高三某班40名学生的会考成绩全部在40分至100分之间,现将成绩分成6段:)50,40[、)60,50[、)70,60[、)80,70[、)90,80[、]100,90[.据此绘制了如图所示的频率分布直方图。
在这40名学生中,(Ⅰ)求成绩在区间)90,80[内的学生人数;(Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间]100,90[内的概率.3.已知集合}1,1(},2,0,2{-=-=B A .(Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ;(Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区域D :⎪⎩⎪⎨⎧-≥≤-+≥+-10202y y x y x 内的概率.4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0.(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.5.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图.如图7.(Ⅰ)根据茎叶图判断哪个班的平均身高较高;(Ⅱ)计算甲班的样本方差(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于176的同学被抽中的概率.cm173的同学,求身高为cm6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的.(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)8.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
人教B版高中数学选择性必修第二册第四章概率与统计综合测试卷

第四章概率与统计综合测试卷时间:120分钟满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知4个红球,2个白球,每次随机取1个球,不放回地取两次.在第一次取到红球的条件下,第二次取到白球的概率为()A .35B .25C .23D .3102.两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),下列说法错误的是()A .落在回归直线方程上的样本点越多,回归直线方程拟合效果越好B .相关系数|r|越接近1,变量x ,y 相关性越强C .相关指数R 2越小,残差平方和越大,即模型的拟合效果越差D .若x 表示女大学生的身高,y 表示体重,则R 2≈0.65表示女大学生的身高解释了65%的体重变化3.已知随机变量X 服从二项分布X ~B(6,13),则P(X =2)=()A .1316B .4243C .13243D .802434.甲、乙两人独立完成某一任务的概率分别为14,23,若甲、乙分别去完成这项任务且相互之间不受影响,则甲完成此任务而乙没有完成此任务的概率为()A .112B .16C .14D .235.一名小学生的年龄和身高的数据如下表.由散点图可知,身高y(单位:cm )与年龄x(单位:岁)之间的回归直线方程为y ^=b ^x +65,预测该学生11岁时的身高约为()年龄x 6789身高y118126136144A .163cmB .161.8cmC .152cmD .158cm6.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X ~N(μ,σ2),则P(μ-σ<X ≤μ+σ)=0.6826,P(μ-2σ<X ≤μ+2σ)=0.9544.A .2386B .2718C .3413D .47727.下列说法中,正确命题的序号是()①已知随机变量ξ服从正态分布N(2,δ2),P(ξ<4)=0.84,则P(2<ξ<4)=0.34;②以模型y =c e kx 去拟合一组数据时,为了求出回归方程,设z =ln y ,求得回归直线方程为z ^=0.3x +4,则c ,k 的值分别是e 4和0.3;③若事件A 与事件B 互斥,则事件A 与事件B 独立;④若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为16.A .①④B .③④C .②③D .①②8.袋中有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,则下列结论中正确的是()①取出的最大号码X 服从超几何分布;②取出的黑球个数Y 服从超几何分布;③取出2个白球的概率为114;④若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为114.A .①②B .②④C .③④D .①③④二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设A ,B 是两个概率大于0的随机事件,则下列说法正确的是()A .若事件A 和B 是对立事件,则P(A)+P(B)=1B .若事件A 和B 是互斥事件,则P(A)+P(B)=1C .若事件A 和B 相互独立,则P(A +B)=P(A)+P(B)D .若事件A 和B 相互独立,则P(AB)=P(A)P(B)10.若随机变量X 服从两点分布,其中P(X =1)=12,E(X)、D(X)分别为随机变量X 的均值与方差,则下列结论正确的是()A .P(X =0)=12B .E(X)=12C .E(3X)=12D .D(2X)=1411.下列四个表述中,正确的是()A .运用最小二乘法求得的回归直线一定经过样本中心(x -,y -)B .在回归直线方程y ^=0.1x +10中,当变量x 每增加1个单位时,变量y ^约增加0.1个单位C .具有相关关系的两个变量x ,y 的相关系数为r ,那么|r|越接近于0,x ,y 之间的线性相关程度越高D .在一个2×2列联表中,根据表中数据计算得到χ2的观测值k ,若k 的值越大,则认为两个变量间有关的把握就越小12.2021年10月16日,搭载神舟十三号载人飞船的火箭发射升空,这是一件让全国人民关注的大事,因此每天有很多民众通过手机、电视、报纸了解有关新闻,某组织随机选取10人调查民众了解这一新闻的方式,其中喜欢用电视、手机、报纸了解这一新闻的分别有3人、6人、1人,现随机选出2人,则()A .有1人喜欢用电视的方式的概率是715B .有2人喜欢用电视的方式的概率是415C .至多有1人喜欢用电视的方式的概率是1415D .至少有1人喜欢用手机的方式的概率是815三、填空题:本题共4小题,每小题5分,共20分.13.一个箱子中有6个大小相同的产品,其中4个正品、2个次品,从中任取3个产品,记其中正品的个数为随机变量X ,则X 的均值E(X)=________.14.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.记事件A 为“抽取到的两张卡片上的数字奇偶性相同”,事件B 为“两张卡片上的数字均为偶数”,则P(B|A)=________.15.如下表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的回归直线方程y ^=0.7x ^+0.3,那么表中m 的值为________.x 3456y2.9m44.116.如图是一块高尔顿板示意图:在一块木块上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,…,6,用X 表示小球落入格子的号码,假定底部6个格子足够长,投入160粒小球,则落入3号格的小球大约有________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某校举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从参赛的学生中抽出60人,对这60名学生的成绩(满分100分)进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,得到如图所示的频率分布直方图.(1)估计参加这次知识竞赛的学生成绩的中位数;(2)若规定80分以上(含80分)为优秀,用频率估计概率,从参赛学生中随机抽取3人,记其中成绩优秀的人数为ξ,求ξ的分布列.18.(12分)某商家为了促销,规定每位消费者均可免费参加一次抽奖活动.活动规则如下:在一不透明的纸箱中有9张相同的卡片,其中3张卡片上印有“中”字,3张卡片上印有“国”字,另外3张卡片上印有“红”字.消费者从该纸箱中不放回地随机抽取3张卡片,若抽到的3张卡片上都印有同一个字,则获得一张20元代金券;若抽到的3张卡片中每张卡片上的字都不一样,则获得一张10元代金券;若抽到的3张卡片是其他情况,则不获得任何奖励.(1)求某位消费者在一次抽奖活动中抽到的3张卡片上都印有“中”字的概率;(2)记随机变量X为某位消费者在一次抽奖活动中获得代金券的金额数,求X的分布列和数学期望E(X);(3)该商家规定,消费者若想再次参加该项抽奖活动,则每抽奖一次需支付5元.若你是消费者,请从收益方面来考虑是否愿意再次参加该项抽奖活动,并说明理由.19.(12分)中国共产党第二十次全国代表大会于2022年10月16日在北京召开,为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有A 和B 两类试题,每类试题各10题,其中每答对1道A 类试题得10分;每答对1道B 类试题得20分,答错都不得分,每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知小明同学A 类试题中有7道题会作答,而他答对各道B 类试题的概率均为25.(1)若小明同学在A 类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率;(2)若小明只作答A 类试题,设X 表示小明答这3道试题的总得分,求X 的分布列和期望;(3)小明应从A 类试题中抽取几道试题作答才能使自己得分的数学期望更大?请从得分的数学期望角度给出理由.20.(12分)某市甲乙两所高中学校高二年级联合举办安全知识竞赛,共两轮,每轮满分为80分.参赛选手为这两所学校高二学生随机抽取的各100名学生.图1和图2分别是甲校和乙校参赛选手第一轮竞赛成绩的频率分布直方图.(1)若规定成绩在66分以上的学生为优秀,试根据第一轮竞赛的成绩分别估计甲乙这两所学校高二学生的优秀率;(2)已知第二轮竞赛成绩不低于60分的学生中,甲校增加了15人,乙校不变.根据第二轮竞赛的成绩完成下面2×2列联表.依据小概率值α=0.001的独立性检验,分析甲乙两个学校高二学生这次竞赛的成绩是否有差异.成绩低于60分人数成绩不低于60分人数合计甲校乙校合计附表及公式:α=P(χ2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d.21.(12分)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017~2021年中国在线直播用户规模(单位:亿人),其中2017年~2021年对应的代码依次为1~5.年份代码x 12345市场规模y3.984.565.045.866.36参考数据:y -=5.16,v -=1.68,错误!i y i =45.10,其中v i =x i .参考公式:对于一组数据(v 1,y 1),(v 2,y 2),…,(v n ,y n ),其回归直线y ^=b ^v +a ^的斜率和截距的最小二乘估计公式分别为b ^=错误!,a ^=y --b ^v -.(1)由上表数据可知,可用函数模型y ^=b ^x +a ^拟合y 与x 的关系,请建立y 关于x的回归方程(a ^,b ^的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p ,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X ,若P(X =3)=P(X =4),求X 的分布列与期望.22.(12分)2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立,若某考生报考甲大学,每门科目通过的概率均为12,该考生报考乙大学,每门科目通过的概率依次为16,23,m ,其中0<m<1.(1)若m =23,分别求出该考生报考甲、乙两所大学在笔试环节恰好通过一门科目的概率;(2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,当该考生更希望通过乙大学的笔试时,求m 的取值范围.参考答案与解析1.答案:B解析:第一次取到红球后还剩3个红球,2个白球,故第二次取到白球的概率为25.故选B.2.答案:A解析:对于A :回归直线方程拟合效果的强弱是由相关指数R 2或相关系数|r |判定,故不正确;对于B :根据相关系数|r |越接近1,变量相关性越强,故正确;对于C :相关指数R 2越小,残差平方和越大,效果越差,故正确;对于D :根据R 2的实际意义可得,R 2≈0.65表示女大学生的身高解释了65%的体重变化,故正确.故选A.3.答案:D解析:P (X =2)=C 26(13)2(1-13)4=80243.故选D.4.答案:A解析:依题意,甲、乙分别去完成这项任务相互独立,则甲完成此任务而乙没有完成此任务的概率为14×(1-23)=112.故选A.5.答案:B解析:由表中数据可知:x -=6+7+8+94=7.5,y -=118+126+136+1444=131,因为回归方程y ^=b ^x +65过样本中心(x -,y -),所以131=b ^×7.5+65解得b ^=8.8,将x =11代入y ^=8.8x +65得y ^=161.8.故选B.6.答案:C解析:因为曲线C 为正态分布N (0,1)的密度曲线,所以根据正态分布的性质,P (0<x <1)=12P (-1<x <1)=0.3413,所以落入阴影部分的点的个数的估计值为10000×0.3413=3413.故选C.7.答案:D解析:对于①,因为ξ~N (2,δ2),P (ξ<4)=0.84,所以P (2<ξ<4)=0.84-0.5=0.34,故①正确;对于②,y =c e kx 两边同时取对数可得ln y =ln c +kx ,则z =ln c +kx ,又因为z ^=0.3x +4,所以k =0.3,ln c =4,所以k =0.3,c =e 4,故②正确;对于③,若事件A 与事件B 互斥,则事件A 与事件B 不会同时发生,当事件A 与事件B 独立,两事件可以同时发生,故③错误;若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为22×2=8,故④错误.所以正确的为①②.故选D.8.答案:B解析:对于①,根据超几何分布的定义,要把总体分为两类,再依次选取,由此可知取出的最大号码X 不符合超几何分布的定义,无法用超几何分布的数学模型计算概率,故①错误;对于②,取出的黑球个数Y 符合超几何分布的定义,将黑球视作第一类,白球视作第二类,可以用超几何分布的数学模型计算概率,故②正确;对于③,取出2个白球的概率为C 26C 24C 410=37,故③错误;对于④,若取出一个黑球记2分,取出一个白球记1分,则取出四个黑球的总得分最大,∴总得分最大的概率为C 46C 410=114,故④正确.故选B.9.答案:AD解析:若A ,B 是对立事件,则事件A ,B 满足P (A )+P (B )=1,所以A 选项正确;若事件A ,B 互斥,如:投掷一枚均匀的骰子,设A ={向上的点数是1},B ={向上的点数是2},则A ,B 互斥,P (A )+P (B )<1,所以B 选项错误;只有当A 和B 互斥时,P (A +B )=P (A )+P (B ),所以C 选项错误;若A 和B 相互独立,则P (AB )=P (A )P (B ),所以D 选项正确.故选AD.10.答案:AB解析:根据随机变量X 服从两点分布,其中P (X =1)=12,∴P (X =0)=12,故A 正确;E (X )=0×12+1×12=12,故B 正确;则E (3X )=3E (X )=3×12=32,故C 错误;D (X )=(0-12)2×12+(1-12)2×12=14,则D (2X )=4D (X )=4×14=1,故D 错误.故选AB.11.答案:AB解析:A :由样本中心一定在回归直线上,正确;B :由y ^=0.1x +10,x 每增加1个单位则y ^约增加0.1个单位,正确;C :两个变量x ,y 的相关系数为r ,那么|r |越接近于1,x ,y 之间的线性相关程度越高,错误;D :观测值k 越大,则认为两个变量间有关的把握就越大,错误.故选AB.12.答案:AC解析:设选出的2人中喜欢用电视的方式的人数为X ,则X 的可能取值为0,1,2,则P (X =0)=C 03C 27C 210=715,P (X =1)=C 13C 17C 210=715,P (X =2)=C 23C 07C 210=115,A 正确,B 错误.这2人中至多有1人喜欢用电视的方式的概率是P (X =0)+P (X =1)=1415,C 正确.这2人中至少有1人喜欢用手机的方式的概率为C 16C 14C 210+C 26C 04C 210=1315,D 错误.故选AC.13.答案:2解析:任取3个产品,记其中正品的个数为随机变量X ,则X 的可能取值为1,2,3则P (X =1)=C 14C 22C 36=420=15,P (X =2)=C 24C 12C 36=1220=35,P (X =3)=C 34C 02C 36=420=15,则E (X )=1×15+2×35+3×15=2.14.答案:38解析:P (B |A )=n (AB )n (A )=C 24C 24+C 25=66+10=38.15.答案:2.8解析:由已知中的数据可得:x -=4.5,y -=(2.9+m +4+4.1)÷4=m +114,∵数据中心点(x -,y -)一定在回归直线上,∴11+m 4=0.7×4.5+0.3,解得m =2.8.16.答案:50解析:设A =“向右下落”,则A -=“向左下落”,且P (A )=P (A -)=12,设Y =X -1,∵小球下落过程中共碰撞5次,∴Y ~B (5,12),∴P (Y =k )=P (X =k +1)=C k 5(12)k (1-12)5-k =C k 5(12)5,(k =0,1,2,3,4,5),∴P (X =3)=C 25(12)5=516,故投入160粒小球,则落入3号格的小球大约有160×516=50粒.17.解析:(1)设样本数据的中位数为a ,由0.05+0.15+0.2<0.5,0.05+0.15+0.2+0.3>0.5,知a ∈(70,80).所以0.05+0.15+0.2+(a -70)×0.03=0.5,解得a =2203,故参加这次知识竞赛的学生成绩的中位数约为2203.(2)由题意,知样本中80分以上(含80分)的频率为310,则从参赛学生中随机抽取1名学生,他的成绩是优秀的概率约为310,所以ξ~B (3,310).所以P (ξ=0)=(710)3=3431000,P (ξ=1)=C 13×310×(710)2=4411000,P (ξ=2)=C 23×(310)2×710=1891000,P (ξ=3)=(310)3=271000.所以ξ的分布列为ξ0123P 34310004411000189100027100018.解析:(1)记“某位消费者在一次抽奖活动中抽到的3张卡片上都印有‘中’字”为事件A ,则P (A )=C 33C 39=184.所以某位消费者在一次抽奖活动中抽到的3张卡片上都印有“中”字的概率是184.(2)随机变量X 的所有可能取值为0,10,20,则P (X =20)=C 33+C 33+C 33C 39=128,P (X =10)=C 13C 13C 13C 39=928,P (X =0)=1-928-128=914.所以X 的分布列为X 01020P 914928128E (X )=0×914+10×928+20×128=5514.(3)记随机变量Y 为消费者在一次抽奖活动中的收益,则Y =X -5,所以E (Y )=E (X )-5=-1514<0,因此我不愿意再次参加该项抽奖活动.19.解析:(1)小明仅答对1题的概率P =710×(35)2+310·C 12·25·35=99250.(2)X 可能的取值为0,10,20,30,P (X =0)=C 33C 310=1120,P (X =10)=C 17C 23C 310=740,P (X =20)=C 27C 13C 310=2140,P (X =30)=C 37C 310=724,所以X 的分布列为X0102030P 11207402140724所以E (X )=0×1120+10×740+20×2140+30×724=21.(3)设小明从两类试题中分别抽取n 1,n 2道试题,回答正确的题数分别为x 1,x 2,两类试题总得分为y ,∵x 1服从超几何分布,x 2服从二项分布,∴E (x 1)=n 1×710=0.7n 1,E (x 2)=n 2×25=0.4n 2,由n 1+n 2=3,∴E (y )=10E (x 1)+20E (x 2)=10×0.7n 1+20×0.4n 2=10×0.7n 1+20×0.4(3-n 1)=24-n 1.∵n 1=0,1,2,3,∴当n 1=0时E (y )max =24.即小明全部回答B 类试题时,得分的期望值最大为24.20.解析:(1)根据频率分布直方图,甲校高二学生的优秀率为0.01×10×70-6670-60+0.01×10=0.14;乙校高二学生的优秀率为0.035×10×70-6670-60+0.025×10=0.39.(2)第一轮竞赛中成绩不低于60分的学生,甲校有100×0.01×20=20人,乙校有:100×(0.035×10+0.025×10)=60人;则第二轮竞赛中成绩不低于60分的学生,甲校有35人,乙校有60人;故2×2列联表如下所示:成绩低于60分人数成绩不低于60分人数合计甲校6535100乙校4060100合计10595200故可得χ2=200(65×60-35×40)2105×95×100×100=5000399≈12.531>10.828,故在小概率值α=0.001的独立性检验下,甲乙两个学校高二学生这次竞赛的成绩有差异.21.解析:(1)设v =x ,则y ^=b ^v +a ^,因为y -=5.16,v -=1.68,错误!2i =错误!i=15,所以b ^=错误!=45.10-5×1.68×5.1615-5×1.682=1.7560.888≈1.98.把(1.68,5.16)代入y ^=b ^v +a ^,得a ^=5.16-1.98×1.68≈1.83.即y 关于x 的回归方程为y ^=1.98x +1.83.(2)由题意知X ~B(4,p),P(X =3)=C 34p 3(1-p)=4p 3(1-p),P(X =4)=C 44p 4=p 4,由4p 3(1-p)=p 4得p =45,所以X 的取值依次为0,1,2,3,4,P(X =0)=C 04(1-45)4=1625,P(X =1)=C 14·45·(1-45)3=16625,P(X =2)=C 24(45)2(1-45)2=96625,P(X =3)=C 34(45)3(1-45)=256625,P(X =4)=C 44(45)4=256625,所以X 的分布列为X01234P 16251662596625256625256625E(X)=4×45=165.22.解析:(1)设“该考生报考甲大学恰好通过一门笔试科目”为事件A ,“该考生报考乙大学恰好通过一门笔试科目”为事件B ,根据题意可得P(A)=C 13(12)1(12)2=38,P(B)=16×(13)2+56×23×13×2=2154=718.(2)设该考生报考甲大学通过的科目数为X ,报考乙大学通过的科目数为Y ,根据题意可知,X ~B(3,12),所以E(X)=3×12=32,P(Y =0)=56×13(1-m)=518(1-m),P(Y =1)=16×13(1-m)+56×23(1-m)+56×13m =1118-13m ,P(Y =2)=16×23(1-m)+16×13m +56×23m =19+12m ,P(Y =3)=16×23m =19m.则随机变量Y 的分布列为Y0123P 518(1-m)1118-13m 19+12m 19m E(Y)=1118-13m +29+m +13m =56+m ,若该考生更希望通过乙大学的笔试时,有E(Y)>E(X),所以56+m>32,又因为0<m<1,所以23<m<1,所以m 的取值范围是(23,1).。
高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率与统计》练习求:(Ⅰ)年降雨量在)200,100[范围内的概率;(Ⅱ)年降雨量在)150,100[或)300,250[范围内的概率;(Ⅲ)年降雨量不在)300,150[范围内的概率;(Ⅳ)年降雨量在)300,100[范围内的概率.>·2.高三某班40名学生的会考成绩全部在40分至100分之间,现将成绩分成6段:)50,40[、)60,50[、)70,60[、)80,70[、)90,80[、]100,90[.据此绘制了如图所示的频率分布直方图。
在这40名学生中,(Ⅰ)求成绩在区间)90,80[内的学生人数;(Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间]100,90[内的概率."@3.已知集合}1,1(},2,0,2{-=-=B A .;(Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ;(Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区域D :⎪⎩⎪⎨⎧-≥≤-+≥+-10202y y x y x 内的概率..4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如A 组B 组C 组?疫苗有效 673xy疫苗无效77 90z>已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0.(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.…5.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图.如图7.(Ⅰ)根据茎叶图判断哪个班的平均身高较高;(Ⅱ)计算甲班的样本方差(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于176的同学被抽中的概率.173的同学,求身高为cmcm;)6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.>!7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的.(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)。
,8.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? —(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
22()()()()()n ad bc K a b c d a c b d -=++++^参考答案解答题1.解:(Ⅰ)年降雨量在)200,100[ 范围内的概率为37.025.012.0=+;(Ⅱ)年降雨量在)150,100[或)300,250[范围内的概率为26.014.012.0=+; (Ⅲ)年降雨量不在)300,150[范围内的概率为45.014.016.025.01=---; (Ⅳ)年降雨量在)300,100[范围内的概率为67.014.016.025.012.0=+++.<2.解:(Ⅰ)因为各组的频率之和为1,所以成绩在区间)90,80[的频率为1.010)045.0020.015..02005.0(1=⨯+++⨯-,所以,40名学生中成绩在区间)90,80[的学生人数为41.040=⨯(人).(Ⅱ)设A 表示事件“在成绩大于等于80分的学生中随机选2名学生,至少有1名学生成绩在区间]100,90[内”,由(Ⅰ)的结果可知成绩在区间)90,80[内的学生有4人,记这4个人分别为d c b a ,,,, 成绩在区间]100,90[内的学生有210005.040=⨯⨯人,记这2个人分别为f e ,, 则选取学生的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a c a d a e a f b c b d b e b f (,),(,),(,)c d c e c f ,<(,),(,),(,)d e d f e f 基本事件数为15,事件“至少一人成绩在区间[90,100]之间”的可能结果为:(,),(,),(,),(,),a e a f b e b f (,),(,),(,),(,),(,)c e c f d e d f e f ,基本事件数为9, 所以52159)(==A P 93()155P A ==. 3. 解:(Ⅰ))1,2(),1,2(),1,0(),1,0(),1,2(),1,2{(-----=M . ( Ⅱ)记“以),(y x 为坐标的点位于区域D 内”为事件A . 集合M 中共有6个元素,即基本事件总数为6.'把集合M 中的6个元素分别代入表示区域D 的不等式组检验, 知点)1,2(),1,0(),1,0(),1,2(----在区域D 内 所以区域D 含有集合M 中的元素4个,所以3264)(==A P . 故以),(y x 为坐标的点位于区域D 内的概率为32. 4.解:(Ⅰ)在全体样本中随机抽取1个,抽到B 组疫苗有效的概率为33.0,即0.332000x= ∴ 660x =. (Ⅱ)C 组样本个数为:500)9066077673(2000=+++-=+z y ,用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取个数为/902000500360=⨯(个).(Ⅲ)设测试不能通过事件为M ,C 组疫苗有效与无效的可能的情况记为),(z y .由(Ⅱ)知 500y z += ,且 ,y z N ∈,基本事件空间包含的基本事件有:)35,465(、)34,466(、)33,467(、)32,468(、)31,469(、)30,470(共6个 .若测试不能通过,则2009077>++z ,即33>z .事件M 包含的基本事件有:)35,465(、)34,466(共2个,∴ 3162)(==M P . ∴故不能通过测试的概率为31.5. 解:(Ⅰ)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180 之间.因此乙班平 均身高高于甲班; (Ⅱ)17010182179179171170168168163162158=+++++++++=x甲班的样本方差为22222)170168()170168()170163()170162()170158[(101-+-+-+-+- 57])170182()170179()170179()170171()170170(22222=-+-+-+-+-+(Ⅲ)设身高为cm 176的同学被抽中的事件为A ;从乙班10名同学中抽中两名身高不低于cm 173的同学有:)179,178(),181,176(),179,176(),178,176(),181,173(),179,173(),178,173(),176,173( )181,179(),181,178(共10个基本事件, 而事件A 含有4个基本事件;所以52104)(==A P . 6.解:(Ⅰ)甲校两男教师分别用B A ,表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用F E ,表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:),(),,(),,(),(),,(),,(),(),,(),,(F C E C D C BF E B D B AF E A D A 共9种从中选出两名教师性别相同的结果有:),(),,(),,(),,(F C E C D B D A 共4种, 选出的两名教师性别相同的概率为94=P (Ⅱ)从甲校和乙校报名的教师中任选2名的所有可能的结果为:),(),,(),,(),(),,(),,)(,(),(),,(),,)(,(),,(F C E C D C BF E B D B C B AF E A D A C A B A),(),(),,(F E DF E D 共15种,从中选出两名教师来自同一学校的结果有:),)(,(),,(C B C A B A ,),(),(),,(F E DF E D 共6种,选出的两名教师来自同一学校的概率为52156==P。