高中数学概率与统计测试题
高中数学统计与概率测试题
高中数学统计与概率测试题高中数学统计与概率测试题选择题1.某校期末考试后,为了分析该校高一年级1000名学生的研究成绩,从中随机抽取了100名学生的成绩单。
以下说法中正确的是()A。
1000名学生是总体B。
每名学生是个体C。
每名学生的成绩是所抽取的一个样本D。
样本的容量是1002.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图。
以下说法不正确的是()A。
获得参与奖的人数最多B。
各个奖项中三等奖的总费用最高C。
购买奖品的费用平均数为9.25元D。
购买奖品的费用中位数为2元3.XXX为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查。
为此将他们随机编号1,2,⋯,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A。
23B。
24C。
25D。
264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=()A。
13B。
12C。
10D。
95.A、B、C、D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是A。
1/15B。
C。
D。
6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图。
根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A。
高中数学概率统计练习题
y 2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40B.80C.160D.3202.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体3.(2015?抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15B.18C.21D.224.一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为()A.15B.16C.17D.195.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11B.11.5C.12D.12.56.某公司在2014年上半年的收入x(单位:万元)与月支出(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系7.下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球9.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A.B.C.D.10.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42B.0.28C.0.3D.0.711.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.112.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.二.填空题(共4小题)13.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为。
2022年秋高中数学第四章概率与统计测评试题二新人教B版选择性必修第二册
第四章测评(二)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+b e xD.y=a+b ln x2.(2021安徽淮南田家庵校级月考)在建立两个变量y与x的回归模型中,分别选择了4个不同的模型,模型1的相关系数r为0.88,模型2的相关系数r为0.945,模型3的相关系数r为0.66,模型4的相关系数r为0.01,其中拟合效果最好的模型是()A.模型1B.模型2C.模型3D.模型43.设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态曲线如图所示,下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≥t)≥P(Y≥t)D.对任意正数t,P(X≤t)≥P(Y≤t)4.(2021安徽宣城郎溪校级月考)甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( ) A.0.49B.0.42C.0.7D.0.915.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (单位: 万公顷)关于年数x (单位:年)的函数关系较为接近的是( ) A.y=0.2x B.y=0.1x 2+0.1x C.y=0.2+log 4xD.y=2x106.(2021江西抚州南城校级期中)设离散型随机变量X 的分布列为若随机变量Y=X-2,则P (Y=2)等于( ) A.0.3B.0.4C.0.6D.0.77.(2021北京西城校级期中)在一段时间内,甲去博物馆的概率为0.8,乙去博物馆的概率为0.7,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去博物馆的概率是( ) A.0.56B.0.24C.0.94D.0.848.(2021陕西榆林一模)设0<a<12,0<b<12,随机变量ξ的分布列为当a 在0,12内增大时,( ) A.E (ξ)增大,D (ξ)增大 B.E (ξ)增大,D (ξ)减小 C.E (ξ)减小,D (ξ)增大 D.E (ξ)减小,D (ξ)减小二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对某中学的高中女生体重y(单位:kg)与身高x(单位:cm)进行线性回归分析,根据样本数据(x i,y i)(i=1,2,3,…,12),计算得到相关系数r=0.996 2,用最小二乘法近似得到回归直线方程为y^=0.85x-85.71,则以下结论正确的是()A.y与x正相关B.x与y具有较强的线性相关关系,得到的回归直线方程有价值C.若该中学某高中女生身高增加1 cm,则其体重约增加0.85 kgD.若该中学某高中女生身高为160 cm,则可断定其体重为50.29 kg10.(2021福建福州一模)“一粥一饭,当思来之不易”,道理虽简单,但每年我国还是有2 000多亿元的餐桌浪费,被倒掉的食物相当于2亿多人一年的口粮.为营造“节约光荣,浪费可耻”的氛围,某市发起了“光盘行动”.某机构为调研民众对“光盘行动”的认可情况,在某大型餐厅中随机调查了90位来店就餐的客人,制成如下列联表,通过计算得到χ2的值为9.已知P(χ2≥6.635)=0.010,P(χ2≥10.828)=0.001,则下列判断正确的是()A.在该餐厅用餐的客人中大约有66.7%的客人认可“光盘行动”B.在该餐厅用餐的客人中大约有99%的客人认可“光盘行动”C.有99%的把握认为“光盘行动”的认可情况与年龄有关D.在犯错误的概率不超过0.1%的前提下,认为“光盘行动”的认可情况与年龄有关11.(2021新高考Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则下列说法错误的是( ) A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立12.小张从家到公司开车有两条线路,所需时间(单位:分钟)随交通堵塞状况有所变化,其概率分布如表所示,则下列说法正确的是( )A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件B.从所需的平均时间看,线路一比线路二更节省时间C.如果要求在45分钟以内从家赶到公司,小张应该走线路一D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04 三、填空题:本题共4小题,每小题5分,共20分.13.(2021四川成都武侯校级模拟)已知某产品的销售额y (单位:万元)与广告费用x (单位:万元)之间的关系如表所示,若销售额与广告费用之间的回归直线方程为y ^=6.5x+a ^,预计当广告费用为6万元时的销售额约为 万元.14.一个袋子内装有除颜色不同外其余完全相同的3个白球和2个黑球,从中不放回地任取两次,每次取一球,在第一次取到的是白球的条件下,第二次也取到白球的概率是 .15.(2021福建福州期中)已知随机变量ξ服从二项分布,即ξ~B6,12,则E (2ξ+3)= ,D (2ξ+3)= .16.(2021浙江杭州期中)已知随机变量ξ的分布列如表所示,若P (ξ≤x )=34,则实数x 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021山东模拟)短视频已成为很多人生活中娱乐不可或缺的一部分,很多人喜欢将自己身边的事情拍成短视频发布到网上,某人统计了发布短视频后1~8天的点击量(单位:万次)的数据并进行了初步处理,得到下面的散点图及一些统计量的值.其中t i =x i 2.某位同学分别用两种模型:①y ^=b ^x 2+a ^,②y ^=d ^x+c ^进行拟合. (1)根据散点图,比较模型①,②的拟合效果,应该选择哪个模型?(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程;(在计算回归系数时精确到0.01) (3)预测该短视频发布后第10天的点击量是多少.附:b ^=∑i=1n(x i -x)(y i -y)∑i=1n (x i -x)2,a ^=y −b ^x .18.(12分)(2021陕西模拟)为了调查某校学生对学校食堂的某种食品的喜爱是否与性别有关,随机对该校100名性别不同的学生进行了调查,得到如下列联表.(1)请将上述列联表补充完整;(2)判断是否有99.9%的把握认为是否喜爱某种食品与性别有关?(3)用分层抽样的方法在喜爱某种食品的学生中抽6人,现从这6名学生中随机抽取2人,求恰好有1名男生喜爱某种食品的概率.附:χ2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.19.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值为代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8≤Z≤212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间[187.8,212.2]的产品件数,利用①的结果,求E(X).附:√150≈12.2.若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.683,P(μ-2σ≤Z≤μ+2σ)≈0.954.20.(12分)(2021四川自贡模拟)在一次产品质量抽查中,发现某箱5件产品中有2件次品.(1)从该箱产品中随机抽取1件产品,求抽到次品的概率;(2)从该箱产品中依次不放回随机抽取2件产品,求抽出的2件产品中有次品的概率P;(3)若重复进行(2)的试验10次,则出现次品次数的期望是10P,请问上述结论是否正确?请简要说明理由.21.(12分)(2021新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.22.(12分)小明在某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前54单没有奖励,超过54单的部分每单奖励20元.(1)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式.(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的频率分布直方图,其中当某天的派送量指标在m-15,m 5(m=1,2,3,4,5)时,日平均派送量为50+2m单,若将频率视为概率,回答下列问题:①估计这100天中的派送量指标的平均数(同一组中的数据用该组区间的中点值为代表);②根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列及数学期望.请利用数学期望帮助小明分析他选择哪种薪酬方案比较合适?并说明你的理由.参考答案第四章测评(二)1.D 结合题中散点图,由图象的大致走向判断,此函数应该是对数函数模型,故应该选用的函数模型为y=a+b ln x.2.B 在4个不同的回归模型中,模型2的相关系数r=0.945最大,所以拟合效果最好.故选B.3.D 由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错误;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错误;对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错误;对任意正数t ,P (X ≤t )≥P (Y ≤t ),故D 正确.故选D.4.B 甲、乙两人各进行1次射击,两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是C 21×0.7×0.3=0.42. 故选B.5.D 将(1,0.2),(2,0.39),(3,0.78)代入y=0.2x ,当x=3时,y=0.6,和0.78相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=0.1x 2+0.1x ,当x=2时,y=0.6,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=0.2+log 4x ,当x=2时,y=0.7,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=2x 10,当x=1时,y=0.2,当x=2时,y=0.4,与0.39相差0.01,当x=3时,y=0.8,和0.78相差0.02.综合以上分析,选用函数关系y=2x 10较为接近. 故选D.6.A 由离散型随机变量X 的分布列得0.2+0.1+0.1+0.3+m=1,解得m=0.3,因为随机变量Y=X-2,所以P (Y=2)=P (X=4)=0.3.故选A.7.C 根据题意,设甲去博物馆为事件A ,乙去博物馆为事件B ,则P (A )=0.8,P (B )=0.7,则P (A )=0.2,P (B )=0.3,两人都不去博物馆的概率P (AB )=0.2×0.3=0.06,则甲乙两人至少有一个去博物馆的概率P=1-P (AB )=0.94.故选C.8.D 由题意可得E (ξ)=-12+b=-a ,D (ξ)=(-1+a )2×12+(0+a )2×a+(1+a )2×b=-a+122+54.当a 在0,12内增大时,E (ξ)减小,D (ξ)减小.故选D.9.ABC 由于回归直线方程中x 的系数为0.85>0,因此y 与x 正相关,故A 正确;根据相关系数r=0.9962接近1,故B 正确;由回归直线方程中系数的意义可得身高x 每增加1cm,其体重约增加0.85kg,故C 正确;当某女生的身高为160cm 时,其体重估计值是50.29kg,而不是确定值,故D 错误.故选ABC. 10.AC 因为χ2的值为9,且P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,因为9>6.635,但9<10.828,所以有99%的把握认为“光盘行动”的认可情况与年龄有关,或者说,在犯错误的概率不超过1%的前提下,认为“光盘行动”的认可情况与年龄有关,所以选项C 正确,选项D 错误;由表可知认可“光盘行动”的人数为60人,所以在该餐厅用餐的客人中认可“光盘行动”的比例约为6090×100%≈66.7%,故选项A 正确,选项B 错误.故选AC.11.ACD 由已知得P (甲)=16,P (乙)=16, P (丙)=56×6=536,P (丁)=66×6=16,P (甲丙)=0≠P (甲)P (丙),P (甲丁)=16×6=136,P (乙丙)=16×6=136≠P (乙)P (丙),P (丙丁)=0≠P (丙)P (丁).由于P (甲丁)=P (甲)·P (丁)=136,根据相互独立事件的性质,知事件甲与丁相互独立,故B 正确,A,C,D 错误.12.BD “所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事件,A 错误; 线路一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39分钟,线路二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40分钟,所以线路一比线路二更节省时间,B 正确;线路一所需时间小于45分钟的概率为0.7,线路二所需时间小于45分钟的概率为0.8,小张应该选线路二,故C 错误;所需时间之和大于100分钟,则线路一、线路二的时间可以为(50,60),(60,50)和(60,60)三种情况, 概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,故D 正确.故选BD.13.48 ∵x =15×(0+1+2+3+4)=2,y =15×(10+15+20+30+35)=22, ∴a ^=22-6.5×2=9,则y ^=6.5x+9,取x=6,得y ^=6.5×6+9=48.14.12 记事件A :第一次取得白球, 事件B :第二次取得白球.则P (B|A )=P(AB)P(A)=3×25×435=12.15.9 6 ∵随机变量ξ~B 6,12,∴E (ξ)=6×12=3,D (ξ)=6×12×12=32.则E (2ξ+3)=2E (ξ)+3=9,D (2ξ+3)=22D (ξ)=6.16.[2,3) 由随机变量ξ的分布列,结合P (ξ≤x )=34,得P (ξ≤x )=P (ξ=-2)+P (ξ=0)+P (ξ=2)=14+14+14=34,故实数x 的取值范围是[2,3). 17.解(1)由散点图可知,模型①效果更好.(2)∵t i =x i 2,∴y ^=b ^t+a ^,∵b ^=∑i=18(t i -t)(y i -y)∑i=18(t i-t)2=686.83570≈0.19,∴a ^=y −b ^t =5-0.19×25.5≈0.16,∴y ^=0.19x 2+0.16.(3)由(2)可知,令x=10,则y ^=0.19×100+0.16=19.16.预测该短视频发布后第10天的点击量是19.16万次.18.解(1)完成列联表如下:(2)由(1)得χ2=100×(20×10-30×40)250×50×60×40=503≈16.667>10.828,所以有99.9%的把握认为是否喜爱某种食品与性别有关.(3)用分层抽样的方法在喜爱某种食品的学生中抽6人,则其中男生有20×660=2(人),女生有4人.则从这6名学生中随机抽取2人有C 62=15(种)结果,其中恰好有1名男生喜爱某种食品有C 21C 41=8(种)结果,故所求的概率P=815.19.解(1)这500件产品质量指标值的样本平均数x 和样本方差s 2分别为 x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N (200,150),因为σ=√150≈12.2,从而P (187.8≤Z ≤212.2)=P (200-12.2≤Z ≤200+12.2)≈0.683.②由①知,一件产品的质量指标值位于区间[187.8,212.2]的概率约为0.683,依题意知X~B (100,0.683),所以E (X )=100×0.683=68.3.20.解(1)从该箱产品中随机抽取1件产品,抽到次品的概率为25.(2)从该箱产品中依次不放回随机抽取2件产品,抽出的2件产品中有次品的概率P=1-35×24=710.(3)正确.若重复进行(2)的试验10次,则出现次品的次数X~B 10,710,所以出现次品的次数E (X )=10×710=7=10P.21.解(1)X=0,20,100. P (X=0)=1-0.8=0.2=15,P (X=20)=0.8×(1-0.6)=45×25=825,P (X=100)=0.8×0.6=45×35=1225.所以X 的分布列为(2)若小明先回答A 类问题,期望为E (X ).则E (X )=0×15+20×825+100×1225=2725.若小明先回答B类问题,Y为小明的累计得分, Y=0,80,100,P(Y=0)=1-0.6=0.4=25,P(Y=80)=0.6×(1-0.8)=35×15=325,P(Y=100)=0.6×0.8=35×45=1225.E(Y)=0×25+80×325+100×1225=2885.因为E(X)<E(Y),所以小明应选择先回答B类问题.22.解(1)甲方案中派送员日薪y与送单数n的函数关系式为y=100+n,n∈N,乙方案中派送员日薪y与送单数n的函数关系式为y={140,n≤54,n∈N,20n-940,n≥55,n∈N.(2)①(0.1×1+0.3×1.5+0.5×1+0.7×1+0.9×0.5)×0.2=0.44.②X甲的分布列为所以E(X甲)=152×0.2+154×0.3+156×0.2+158×0.2+160×0.1=155.4. X乙的分布列为所以E(X乙)=140×0.5+180×0.2+220×0.2+260×0.1=176.由以上的计算结果可以看出,E(X甲)<E(X乙),即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.。
高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案
阶段验收评价(三)统计与概率一、单项选择题(本大题共8小题,每小题5分,共40分)1.某学校共有36个班级,每班50人,现要求每班派3名代表参加会议,在这个问题中,样本容量是( )A .30B .50C .108D .150解析:选C 由样本的定义知,样本容量n =36×3=108.2.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.3.某校高三级部分为甲、乙两个级部,现用分层抽样的方法从高三级部中抽取30名老师去参加教研会.已知乙级部中每名老师被抽到的可能性都为13,则高三级部的全体老师的人数为( )A .10B .30C .60D .90解析:选D 因为乙级部中每名老师被抽到的可能性都为13,所以高三年级中每名老师被抽到的可能性都为13,由30÷13=90(人),可得全体老师人数.4.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是 ( )A .至少有一个红球;都是红球B .至少有一个红球;都是白球C .至少有一个红球;至少有一个白球D .恰有一个红球;恰有两个红球解析:选D 根据互斥事件、对立事件的定义可得.5.已知一组数据8,9,10,x ,y 的平均数为9,方差为2,则x 2+y 2= ( )A .162B .164C .168D .170解析:选D 由题意可知15(8+9+10+x +y )=9,15[(8-9)2+(9-9)2+(10-9)2+(x -9)2+(y -9)2]=2,解得x 2+y 2=170.6.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( ) A .11 B .11.5 C .12D .12.5解析:选C 由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C. 7.种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( )A .p +q -2pqB .p +q -pqC .p +qD .pq解析:选A 恰有一株成活的概率为p (1-q )+q (1-p )=p +q -2pq .8.(2020·新高考山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%解析:选C 不妨设该校学生总人数为100,既喜欢足球又喜欢游泳的学生人数为x ,则100×96%=100×60%-x +100×82%,解得x =46,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C. 二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列说法正确的是( )A .一组数据不可能有两个众数B.一组数据的方差必须是正数C.将一组数据中的每一个数据都加上或减去同一常数后,方差不变D.在频率分布直方图中,每个小长方形的面积等于相应小组的频率解析:选CD A错,众数可以有多个;B错,方差可以为0.10.不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色解析:选ABD从6张卡片中一次取出2张卡片的所有情况有“2张都为红色”“2张都为绿色”“2张都为蓝色”“1张红色1张绿色”“1张红色1张蓝色”“1张绿色1张蓝色”,在选项给出的四个事件中,与“2张卡片都为红色”互斥而非对立的事件有“2张卡片都不是红色”“2张卡片恰有一张红色”“2张卡片都为绿色”,而“2张卡片至少有一张红色”包含事件“2张卡片都为红色”,二者并非互斥事件.故选A、B、D.11.在一个古典概型中,若两个不同的随机事件A,B发生的概率相等,则称A和B是“等概率事件”,如:随机抛掷一个骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是()A.在同一个古典概型中,所有的样本点之间都是“等概率事件”B.若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C.因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D.同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”解析:选AD对于A,由古典概型的定义知,所有样本点的概率都相等,故所有的样本点之间都是“等概率事件”,故A正确;对于B,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B错误;对于C,由题可知“等概率事件”是针对同一个古典概型的,故C错误;对于D,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D正确.故选A、D.12.下列对各事件发生的概率判断正确的是 ( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是13D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A不发生的概率相同,则事件A 发生的概率是29解析:选AC 对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为 1-132×13=427,故A 正确; 对于B ,用A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35B 错误;对于C ,该试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},记A 为“取出的2个数之差的绝对值为2”,则A ={(1,3),(2,4)},故所求概率为13,故C 正确;对于D ,易得P (A ∩B )=P (B ∩A ), 即P (A )P (B )=P (B )P (A ), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ),又P (A ∩B )=19,所以P (A )=P (B )=13所以P (A )=23,故D 错误.故选A 、C.三、填空题(本大题共4小题,每小题5分,共20分)13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 解析:由题意知,1245+15=30120+a,解得a =30.答案:3014.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率为________.解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为1224=12. 答案:1215.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________. 解析:∵x =10×0.97+20×0.98+10×0.9910+20+10=0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.9816.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出白球的概率为______;摸出红球的概率为________.解析:由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”也是对立事件,∵P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D )=1-P (B )-P (D )=1-0.42-0.38=0.2. 答案:0.38 0.2四、解答题(本大题共6小题,共70分)17.(10分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:天数111221 2用水量/吨22384041445095(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量更合适?解:(1)x=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.18.(12分)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.解:用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A-)=0.2,P(B-)=0.3,P(C-)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A-BC)+P(A B-C)+P(AB C-)=P(A-)P(B)P(C)+P(A)P(B-)P(C)+P(A)P(B)P(C-)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A-B-C-)=1-P(A-)P(B-)P(C-)=1-0.2×0.3×0.1=0.994.19.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解:(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110 1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙机床次品数的平均数较小.(2)s2甲=110×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙机床的生产状况比较稳定.20.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A).(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.解:(1)样本空间与点集S={(x,y)|x∈N*,y∈N*,1≤x≤5,1≤y≤5}中的元素一一对应.因为S中点的总数为5×5=25(个),所以样本点总数为n=25.事件A包含的样本点共5个,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(A)=525=15.(2)B与C不是互斥事件,因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.结合(1)知和为偶数的样本点个数为13个,即甲赢的概率为13 25,乙赢的概率为12 25,所以这种游戏规则不公平.21.(12分)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 解:(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.22.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式支付金额不大于2 000元大于2 000元仅使用A27人3人仅使用B24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数.(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000 元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。
高中数学概率统计专题练习题及答案
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
全国名校高中数学题库--概率与统计
“概率与统计”专题训练一.随机抽样(简单随机抽样,系统抽样,分层抽样)1.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(B)A.1,2,3,4,5B、5,15,25,35,45C.2,4,6,8,10D、4,13,22,31,402.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是(D)A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,63.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为__120_______4.一个社会调查机构要了解某地区8000名教师的月收入情况,从中随机抽取400名进行调查,调查结果如下表所示:则该地区月收入在[2000,4000]的教师估计有_6400___名.5.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是____134____.6.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生___900_____人.7.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生参加摄影座谈会,如果选出的是5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多_3___人.8.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采取分层抽样的方法进行抽样,已知甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了___5600_______件产品.二.用样本估计总体(频率分布直方图,茎叶图,众数,中位数,平均数,标准差,方差)1.频率分布直方图:小长方形的面积=频率,各个小矩形的面积之和为12.众数:出现次数最多的数3.中位数:将一组数据按大小依次排列,处在最中间的一个数据(或最中间两个数据的平均数)4.标准差:s =5.方差:()()()2222121...n s x x x x x x n ⎡⎤=−+−++−⎢⎥⎣⎦方差(或标准差)越小,数据越稳定.1.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中不死鱼,也不增加),则鱼池中大约有鱼(B )A.120条B.1200条C.130条D.1000条2.某校从参加高三年级期末考试的学生中抽出60名学生,将其成绩(是不小于40不大于100的整数)分成六段[)50,40,[)60,50…[]100,90后画出如下部分观察频率分布直方图图形的信息,估计这次考试的平均分为(D )A.70B.72C.73D.713.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是(A)A.63B.64C.65D.664.在某次考试中,共有100个学生参加考试,如果某题的得分情况如下那么这些得分的众数是(C )A.37.0%B.20.2%C.0分D.4分5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是(C)A.甲B.乙C.丙D.丁甲乙丙丁平均环数x8.68.98.98.2方差2s 3.5 3.5 2.1 5.649.559.569.579.589.599.56.随机调查某校50个学生在“六一”儿童节的午餐费,结果如下表:这50个学生“六一”节午餐费的平均值和方差分别是(A )A.4.2,0.56 B.4.2,56.0 C.4,0.6 D.4,6.07.一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但知道这组数的平均数、中位数、众数依次成等差数列,这个数的所有可能值的和为(A )A.9B.3C.17D.-118.对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为(B )A.300B.100C.60D.20第9题图9.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是48.10.在光明中学举行的电脑知识竞赛中,将九年级的两个班的学生成绩(得分均为整数)进行整理后分成五组,绘制出如下的频率分布直方图,已知图中从左到右的第一、第三、第四、第五的频率分别为0.30,0.15,0.10,0.05,第二小组的频数是40,则这两个班参赛的学生人数为100.11.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x =____15____.12.某教师出了一份共3道题的测试卷,每道题1分,全班得3分、2分、1分、0分的学生所占比例分别为30%、40%、20%、10%.若全班共有30人,则全班同学的平均得分是__1.9______分(kg )(第8题图)13.某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均分为90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是___85__分.14.样本101,98,102,100,99______15.已知一组数a,0,1,2,3的平均值为1,则样本方差为216.为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示.从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?提示:=85x 甲=85x 乙2133=3s 甲2139=3s 乙应选派甲三.统计案例22()()()()()n ad bc K a b c d a c b d −=++++临界值表如下:P (K 2≥k 0)0.500.400.250.150.100.050.0250.0100.0050.001k 00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.8281.下列各关系中是相关关系的是(C )①路程与时间(速度一定)的关系;②加速度与力的关系;③产品成本与产量的关系;④圆周长与圆面积的关系;⑤广告费支出与销售额的关系.A.①②④B.①③⑤C.③⑤D.③④⑤2.工人月工资y(元)依劳动生产率x(千元)变化的回归方程为y ^=50+80x 下列判断正确的是(B )A.劳动生产率为1000元时,工资为130元B.劳动生产率提高1000元时,工资提高80元C.劳动生产率提高1000元时,工资提高130元D.当月工资250元时,劳动生产率为2000元3.(2011年高考山东卷)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时,销售额为(B )A.63.6万元B.65.5万元C.67.7万元D.72.0万元4.已知x 、y 之间的一组数据如下:则线性回归方程bx a y+=ˆ所表示的直线必经过点3(,5)25.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:无效有效总计男性患者153550女性患者64450总计2179100设H 0:服用此药的效果与患者的性别无关,则K 2的观测值k ≈___4.882_____,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为____0.05____.6.一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:转速x (转/秒)1614128每小时生产缺损零件数y (件)11985(1)作出散点图;(2)如果y 与x 线性相关,求出回归直线方程;(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?提示:(2)x =12.5,y =8.2544211438,660i i i i i x y x ====∑∑4142145i ii i i x y x y b xbx ==−=≈−∑∑54.25a y bx =−=−线性回归方程为:554.25y x =−(3)1012.85y x ≤≤由得:,所以运转速度应控制在12转/秒内.广告费用x (万元)4235销售额y (万元)49263954x 0123y 82647.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生20525女生1015合计302050已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.提示:8.337.879,99.5%k ≈>有的把握四.概率1.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是(D )A.110B.310C.35D.9102.某商场在春节举行抽奖促销活动,规则是:从装有编为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖,则中奖的概率是(B )A.13B.23C.14D.343.记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+−≤≥≥表示的平面区域分别为12,ΩΩ,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω内的概率为(A )A .12πB .1πC .14D .24ππ−4.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲不输的概率是____23____.5.从含有2件正品和1件次品的3件产品中每次任取1件,每次取出后再放回,连续取两次,则两次取出的产品中恰好有一件次品的概率是____49____.6.在区间()0,1内任取两个实数,则这两个实数之和小于0.8的概率是825.7.在边长为1的正方形ABCD 内随机选一点M,则点M 到点D 的距离小于正方形的边长的概率是4π.8.已知集合{2,0,1,3},A =−在平面直角坐标系中,点M 的坐标(,)x y 满足,x A y A ∈∈.(1)请列出点M 的所有坐标;(2)求点M 不在y 轴上的概率;(3)求点M 正好落在区域5000x y x y +−<⎧⎪>⎨⎪>⎩上的概率.提示:(1)基本事件有16个(-2,-2)(-2,0)(-2,1)(-2,3)(0,-2)(0,0)(0,1)(0,3)(1,-2)(1,0)(1,1)(1,3)(-3,-2)(3,0)(3,1)(3,3)(2)34P =(3)316P =9.已知集合{}2230A x x x =+−<,{}(2)(3)0B x x x =+−<,(1)在区间()3,3−上任取一个实数x ,求“x A B ∈∩”的概率;(2)设(),a b 为有序实数对,其中a 是从集合A 中任取的一个整数,b 是从集合B 中任取的一个整数,求“a b A B −∈∪”的概率.1)由已知{}31A x x =−<<,{}23B x x =−<<,…………………………2分设事件“x A B ∈∩”的概率为1P ,这是一个几何概型,则13162P ==。
高中数学概率与统计概率分布练习题及答案
高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。
求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。
b) 中奖号码是偶数的概率为15/30,即1/2。
c) 中奖号码是质数的概率为8/30,即4/15。
问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。
求销售量的概率分布表。
解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。
求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。
b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。
问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。
若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。
解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。
以上是高中数学概率与统计概率分布的练习题及答案。
高中数学:概率统计专题
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
高考数学-概率与统计(含22年真题讲解)
高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。
数学高考概率与统计历年真题精选2024
数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。
为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。
1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。
2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。
A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。
2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。
2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。
今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。
解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。
根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。
高中数学概率与统计练习题及参考答案2023
高中数学概率与统计练习题及参考答案2023以下是根据题目要求写出的高中数学概率与统计练习题及参考答案。
一、单项选择题1、设A、B为两事件,且P(A)=0.4,P(B)=0.6,则P(AB)的取值范围是A、[0.2,0.6]B、[0.24,0.6]C、[0.0,0.4]D、[0.16,0.6]答案:B2、已知事件A发生的概率为0.6,事件B发生的概率为0.5,事件A和事件B至少有一个发生的概率为:A、0.6B、0.5C、0.9D、0.1答案:C3、小明乘坐公交车去上学,如果按时到达的概率为0.8,那么他迟到的概率为:A、0.8B、0.2C、0.6D、0.4答案:B二、填空题1、一套大小为1、2、3的衣服,从中随意取出一件的概率为_______。
答案:1/62、在1~50中随机取出一个整数,使其能被6整除的概率是_______。
答案:1/63、事件A和事件B相互独立,且P(A)=0.4,P(B)=0.3,则P(AB)的取值为_______。
答案:0.12三、解答题1、某小区内有200户人家,其中有120户家庭有私家车,60户家庭有小轿车,70户家庭既有私家车又有小轿车。
试求出这些家庭中有汽车的概率是多少?解:设事件A为家庭有私家车,B为家庭有小轿车,P(A)=120/200=0.6,P(B)=60/200=0.3,P(AB)=70/200=0.35,所以这些家庭中有汽车的概率是P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.35=0.55。
2、某饮料公司一次生产200瓶矿泉水饮料,其中有5瓶不合格品,现从这200瓶中任意抽取20瓶,问抽取的20瓶中恰好有3瓶不合格品的概率是多少?解:设事件A为抽出20瓶中恰好有3瓶不合格品,根据二项分布公式P(A)=C(5,3)*C(195,17)/C(200,20)=56*17409840/6564120420=0.0148(保留四位小数)。
四、计算题1、某班级20名学生参加一次数学考试,已知这次考试的平均成绩是85分,标准差为7分,求这次考试成绩高于90分的学生人数的理论值和实际值。
高三数学练习题:概率与统计
高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。
现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。
问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。
现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。
问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。
而星期一和星期二都下雨的概率是0.15。
现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。
问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。
现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。
问题5:
某打印店收到100份订单,其中有20份订单有错误。
现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。
高一数学概率与统计试题
高一数学概率与统计试题概率与统计综合测试卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一所中学有高一.高二.高三共三个年级的学生1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为80人的样本,那么应当从高三年级的学生中抽取的人数是()A.10 B.20 C.30 D.402.从总体中抽取的样本数据共有m个a,n个b,p个c,则总体的平均数的估计值为( )A. B. C.D.3.甲.乙两人独立地解同一问题,甲解出这个问题的概率是,乙解出这个问题的概率是,那么其中至少有1人解出这个问题的概率是()A. B.C. D.4.若的展开式中各项的系数和为128,则项的系数为( )A.189 B.252 C.-189 D.-2525.甲.乙.丙.丁四名射击选手在选拨赛中所得的甲乙丙丁8998S25.76.25.76.4平均环数及其方差S2如下表所示,则选送参加决赛的最佳人选是A.甲B.乙C.丙 D.丁6.已知n为奇数,且n≥3,那么被9除所得的余数是( )A.0 B.1 C.7D.87.某仪表显示屏上有一排八个编号小孔,每个小孔可显示红或绿两种颜色灯光.若每次有且只有三个小孔可以显示,但相邻小孔不能同时显示,则每次可以显示()种不同的结果.A.20 B.40 C.80 D.1608.现有20个零件,其中16个一等品,4个二等品.若从20个零件中任取2个,那么至少有一个是一等品的概率是()A.B.C.D.9.七张卡片上分别写有0.0.1.2.3.4.5,现从中取出三张后排成一排,组成一个三位数,则共能组成( )个不同的三位数.A.100 B.105 C.145D.15010.把一枚质地不均匀的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是()A. B.C.D.二.填空题:本大题共6小题,每小题5分,共30分.11.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:宽带动迁户原住户已安装6035未安装4560则该小区已安装宽带的户数估计有户12.如下是一个容量为200的样本的频率分布直方图,根据图中数据填空:(1)样本数据落在范围[5,9)的频率为_______;(2)样本数据落在范围[9,13)的频数为_______.13.在某市高三数学统考的抽样调查中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为_____________人.14.方程的解集是____________________.15.若某人投篮的命中率为p,则他在第n次投篮才首次命中的概率是________________.16.从1到10这10个数中任取不同的三个数,相加后能被3整除的概率是_____________.戴南高级中学_~_学年度下学期月考高二年级数学科答卷二.填空题:111213141516三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)有A.B.C.D四封信和1号.2号.3号三个信箱,若四封信可以随意投入信箱,投完为止.(1)求3号信箱恰好有一封信的概率;(2)求A信没有投入1号信箱的概率.18.(本小题满分12分)一个口袋中装有三个红球和两个白球.第一步:从口袋中任取两个球,放入一个空箱中;第二步:从箱中任意取出一个球,记下颜色后放回箱中.若进行完第一步后,再重复进行三次第二步操作,分别求出从箱中取出一个红球.两个红球.19.(本小题满分12分)若非零实数m.n满足2m+n=0,且在二项式(a_gt;0,b_gt;0)的展开式中当且仅当常数项是系数最大的项,(1)求常数项是第几项;(2)求的取值范围.20.(本小题满分12分)在一次由甲.乙.丙三人参加的围棋争霸赛中,比赛按以下规则进行,第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者.根据以往战绩可知,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,(1)求比赛以乙连胜四局而告终的概率;(2)求比赛以丙连胜三局而告终的概率.21.(本小题满分12分)在矩形ABCD中,AB=4,BC=3,E为DC边的中点,沿AE将ΔAED 折起,使二面角D-AE-B为60°.(1)求DE与平面AC所成角的大小;(2)求二面角D-EC-B的大小.(1)(2)22.(本小题满分12分)已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1) 第一小组做了三次实验,求至少两次实验成功的概率;(2) 第二小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.戴南高级中学___学年度下学期期中考试高二年级数学科试卷参考答案一.B.D.D.C.CC.D.D.B.A二.(11)9500; (12)0.32,72;(13)810;(14){1,3};(15); (16)三.(17) (1)设3号信箱恰好有一封信的概率为P1,-------(1分)则P1 == ;------(5分)(2)设A信没有投入1号信箱的概率为P2, -------(6分)则.------(10分)(18)设从箱中取出一个红球.两个红球.三个红球的概率分别为----(1分)从箱中取出一个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为--------(6分)从箱中取出两个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为-------(12分)解法二:设从箱中取出一个红球.两个红球.三个红球的概率分别为----(1分)第一步操作结束后,箱子中没有红球的概率为,箱子中有1个红球的概率为,箱子中有2个红球的概率为,-------(5分)则,--------(8分),--------(12分)(19)(1)设为常数项, ------(1分)则可由------(3分)解得 r=4, ------(5分)所以常数项是第5项. ------(6分)(2)由只有常数项为最大项且a_gt;0,b_gt;0,可得-------(10分)解得------(12分) (20)(1)设乙连胜四局的概率为,则-------(6分)(2)设丙连胜三局的概率为,则------(12分)(21)解:(1)在图(2)中,作平面,为垂足,作,为垂足,连结,则∴为二面角的平面角∴在中,在中,∵平面∴为与平面所成的角------------(6分)(2)在图(2)中过作于,为垂足,连结,则∴为二面角的平面角则∴∴二面角的平面角为.----------(12分)(22)(1) 第一小组做了三次实验,至少两次实验成功的概率是.------------(6分)(2) 第二小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其各种可能的情况种数为.因此所求的概率为. ----------(12分)。
高中数学《计数原理与概率统计》练习题(含答案解析)
高中数学《计数原理与概率统计》练习题(含答案解析)一、单选题1.某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是( ) A .35B .40C .45D .602.数据3.2,3.4,3.8,4.2,4.3,4.5,,6.6x 的65百分位数是4.5,则实数x 的取值范围是( ) A .[4.5,)+∞ B .[4.5,6.6) C .(4.5,)+∞D .(4.5,6.6]3.若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A .15B .310 C .35D .124.已知随机变量X 服从二项分布(),XB n p ,若()54E X =,()1516=D X ,则p =( )A .14B .13C .34D .455.总体由编号01,02,…,29,30的30个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )第1行78 16 62 32 08 02 62 42 62 52 53 69 97 28 01 98 第2行32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81 A .27B .26C .25D .196.已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( ) A .83B .53C .23D .137.将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.88.为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[)25,35内的产品为一等品,则该企业生产的产品为一等品的概率约为( )A .0.38B .0.61C .0.122D .0.759.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立10.在一副去掉大小王的52张扑克牌中随机抽取1张,记M 表示事件“取到红桃”,N 表示事件“取到J”,有以下说法:①M 与N 互斥;①M 与N 相互独立;①M 与N 相互独立.则上述说法中正确说法的序号为( ) A .①B .①C .①①D .①①二、填空题11.已知随机变量X 服从正态分布2(1,)N σ,且(01)0.4P X <≤=,则(2)P x >=_______.12.从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________. 13.已知随机变量X ,Y 分别满足(),X B n p ,()5,4Y N ,且均值()()E X E Y =,方差()()D X Y D =,则p =________.14.若随机变量X 服从二项分布115,4B ⎛⎫⎪⎝⎭,则使()P X k =取得最大值时,k =______.三、解答题15.某科技公司研发了一项新产品A ,经过市场调研,对公司1月份至6月份销售量及销售单价进行统计,销售单价x (千元)和销售量y (千件)之间的一组数据如下表所示:(1)试根据1至5月份的数据,建立y 关于x 的回归直线方程;(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过065.千件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?参考公式:回归直线方程ˆˆˆybx a =+,其中i ii 122ii 1ˆnnx y n x yb xnx==-⋅⋅=-∑∑.参考数据:5i i i 1392x y ==∑,52i i 1502.5x ==∑.16.某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)如下: 甲班:75、78、80、89、85、92、96. 乙班:75、80、80、85、90、90、95.求甲、乙两班学生成绩的方差,并从统计学角度分析该校应选择甲班还是乙班参赛.17.第24届冬季奥运会将于2022年2月在北京和张家口举办,为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从全校众多学生中随机选取了20名学生作为样本,得到他们的分数统计如下: 我们规定60分以下为不及格;60分及以上至70分以下为及格;70分及以上至80分以下为良好;80分及以上为优秀.(I )从这20名学生中随机抽取2名学生,恰好2名学生都是优秀的概率是多少?(II )将上述样本统计中的频率视为概率,从全校学生中随机抽取2人,以X 表示这2人中优秀人数,求X 的分布列与期望.18.某保险公司根据官方公布的2011—2020年的营业收入,制成表格如下:表1由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型2y bx a =+(b 和a 均为常数)来拟合y 和x 的关系,这时,可以令2t x =,得y bt a =+,由表1可得t 与y 的相关数据如表2(1)根据表2中数据,建立y 关于t 的回归直线方程(系数精确到个位数);(2)根据(1)中得到的回归直线方程估计2023年的营业收入以及营业收入首次超过4000亿元的年份.参考公式;回归直线方程ˆˆˆvu βα=+中,()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-. 参考数据:38.5t =,703.45y =,()102411.05110i i t t=-=⨯∑,()()10512.32710i i i t ty y =--=⨯∑.参考答案与解析:1.C【解析】利用分层抽样的定义直接求解即可 【详解】由题意可得男生抽取的人数是8003508045800-⨯=. 故选:C 2.A【分析】根据%p 分位数的定义判断求解.【详解】因为65%8 5.2⨯=,第65百分位数是4.5,故这组数据的第65百分位数是第六个数,所以x 的取值范围是[4.5,)+∞, 故选:A. 3.B【分析】由古典概率模型的计算公式求解.【详解】样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为310. 故选:B. 4.A【分析】由二项分布的均值和方差公式列方程组求解. 【详解】由题意5415(1)16np np p ⎧=⎪⎪⎨⎪-=⎪⎩,解得145p n ⎧=⎪⎨⎪=⎩. 故选:A . 5.D【分析】根据随机数表法的步骤即可求得答案.【详解】由题意,取出的数有23,20,80(超出范围,故舍去),26,24,26(重复,故舍去),25,25(重复,故舍去),36(超出范围,故舍去),99(超出范围,故舍去),72(超出范围,故舍去),80(超出范围,故舍去),19. 故选:D. 6.A【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =⨯+⨯+⨯=,()()()()22211120111213333D X =-⨯+-⨯+-⨯=,因为23Y X =+, 则()()843D Y D x == 故选:A. 7.C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C. 8.B【分析】利用频率=频率组距⨯组距,即可得解. 【详解】根据频率分布直方图可知,质量指标值在[)25,35内的概率()0.0800.04250.12250.61P =+⨯=⨯=故选:B 9.B【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, , 1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁, 1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙, 故选:B【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立 10.D【分析】根据互斥事件和相互独立事件的定义逐一判断即可得出答案. 【详解】解:因为M 表示事件“取到红桃”,包括“取到红桃J ”, N 表示事件“取到J”, 包括“取到红桃J ”, 所以事件,M N 可以同时发生,所以事件,M N 不是互斥事件,故①错误; 52张扑克牌中有13张红桃,4张J , 所以()()()1314113,,1524521344P M P N P M =====-=, 事件M N ⋂表示“取到红桃J ”,有1张, 事件MN 表示“取到除了红桃J 的J ”,有3张,所以()()()152P M N P M P N ⋂==,()()()352P M N P M P N ⋂==, 所以M 与N 相互独立,M 与N 相互独立, 故①①正确. 故选:D. 11.0.1【分析】利用正态分布对称性可求解. 【详解】由正态分布密度曲线对称性可知, (1)(01)(0)0.5P X P X P X ≤=<≤+<=,所以(0)0.1P X <=,所以(2)P x >=(0)0.1P X <=,故答案为:0.1. 12.4【分析】直接列举基本事件即可.【详解】从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种. 故答案为:4.13.15##0.2【分析】由二项分布和正态分布的期望、方差公式建立方程,求解即可. 【详解】解:因为随机变量X ,Y 分别满足(),XB n p ,()5,4Y N ,所以()()5E X np E Y ===,()()()14D X np p D Y =-==, 解得125,5n p ==,故答案为:15.14.3或4【分析】先求得()P X k =的表达式,利用列不等式组的方法来求得使()P X k =取得最大值时k 的值. 【详解】依题意015,N k k ≤≤∈,依题意()1515151515151********C 1C C 344444kkk k k kk k k P X k ----⎛⎫⎛⎫==⋅⋅-=⋅⋅=⋅⋅ ⎪⎪⎝⎭⎝⎭,()()15150151141515151513130C 3,1C 354444P X P X ⎛⎫⎛⎫==⋅⋅===⋅⋅=⨯ ⎪ ⎪⎝⎭⎝⎭,()151154P X ⎛⎫== ⎪⎝⎭,()()()1501P X P X P X =<=<=,所以()0P X =、()15P X =不是()P X k =的最大项, 当114k ≤≤时,由1511615151515151141515151511C 3C 34411C 3C 344k k k k k k k k ----+-⎧⋅⋅≥⋅⋅⎪⎪⎨⎪⋅⋅≥⋅⋅⎪⎩,整理得1151511515C 3C 3C C k k k k -+⎧≥⎨≥⎩,即()()()()()()15!15!3!15!1!16!15!15!3!15!1!14!k k k k k k k k ⎧≥⨯⎪⨯--⨯-⎪⎨⎪⨯≥⎪⨯-+⨯-⎩, 整理得131631151k kk k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,163343315k k k k k -≥⎧⇒≤≤⎨+≥-⎩, 所以当k 为3或4时,()P X k =取得最大值. 故答案为:3或415.(1)ˆ3240y x =-+.;(2)是.【分析】(1)先由表中的数据求出,x y ,再利用已知的数据和公式求出,b a ,从而可求出y 关于x 的回归直线方程;(2)当8x =时,求出y 的值,再与15比较即可得结论 【详解】(1)因为()199.51010.511105x =++++=,()1111086585y =++++=,所以23925108ˆ 3.2502.5510b-⨯⨯==--⨯,得()ˆ8 3.21040a=--⨯=, 于是y 关于x 的回归直线方程为 3.240ˆyx =-+; (2)当8x =时,ˆ 3.284014.4y=-⨯+=, 则ˆ14.4150.60.65yy -=-=<, 故可以认为所得到的回归直线方程是理想的. 16.该校应该选择乙班参赛.【分析】设有n 个数据为i x (1≤i≤n ,*i ∈N ),则其平均数为11n i i x x n ==∑,其方差为()2211n ii s x x n ==-∑,据此代入题干数据即可计算求解. 【详解】由题意,知75788089859296857x ++++++==甲,75808085909095857x ++++++==乙.①()()()2222136075857885968577s ⎡⎤=⨯-+-++-=⎣⎦甲,()()()2222130075858085958577s ⎡⎤=⨯-+-++-=⎣⎦乙. ①x x =乙甲,22s s >乙甲.即两班平均成绩相同,但乙班成绩较甲班成绩稳定,故应该选择乙班参赛. 17.(1)395;(2)分布列见详解;()25E X =.【分析】(1)利用组合数以及古典概型的概率计算公式即可求解.(2)由题意可得0,1,2x =,再利用二项分布的概率计算公式列出分布列,从而求出数学期望. 【详解】(1)记恰好2名学生都是优秀的事件为A ,则()242206319095C P A C ===. (2)抽到一名优秀学生的概率为41205p ==, X 的取值为0,1,2,()2002411605525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()111241815525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()022241125525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 故X 的分布列为:()168120122525255E X =⨯+⨯+⨯= 18.(1)ˆ22144yt =- (2)3574亿元,2024年【分析】(1)根据所给数据先求出ˆ22b≈,再利用ˆˆa y bt =-求得ˆ144a ≈-,即可得回归方程;第 11 页 共 11 页 (2) 2023年对应的13169x t =⇒=,代入回归方程计算即可;再令221444000t ->,解得188.4t >,即2188.4x >,即可求得所对应的年份.【详解】(1)解:易得()()()105110421 2.32710ˆ221.05110i i i i i t ty y b tt ==--⨯=≈≈⨯-∑∑, ˆˆ703.452238.5144ay bt =-≈-⨯≈-, 故y 关于t 的回归直线方程为ˆ22144yt =-. (2)解:2023年对应的t 的值为169,故该年的营业收入为ˆ221691443574y =⨯-=(亿元),所以估计2023年的营业收入为3574亿元.依题意,有221444000t ->.解得188.4t >,即2188.4x >.因为1314<,所以估计营业收入首次超过4000亿元的年份序号为14.即2024年.。
高中数学概率与统计真题(解析版)
高中数学专题23 概率与统计真题汇编1.在1,2,3…,10中随机选出一个数a,在-1,-2,-3.…,-10中随机选出一个数b,则a2+b被3整除的概率为.【答案】【解析】若a∈{1,2,4,5,7,8,10},.若.若a∈{3,6,9},.若.∴a2+b为3的倍数的概率为.2.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为.【答案】【解析】先考虑abc+def为奇数的情况,此时abc,def一奇一偶,若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样有3!×3!=36种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72种.从而abc+def为偶数的概率为.3.袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为________.【答案】【解析】一种取法符合要求,等价于从A中取走的两张纸币的总面值a小于从B中取走的两张纸币的总面值b,从而,.故只能从A中取走两张1元纸币,相应的取法数为.又此时,即从B中取走的两张纸币不能均为1元纸币,相应有种取法.因此,所求的概率为.4.在正方体中随机取三条棱,它们两两异面的概率为______.【答案】【解析】设正方体为,共12条棱,从中任意取出三条棱的方法有种.下面考虑使三条棱两两异面的取法数.由于正方体棱共确定三个互不平行的方向(即的方向),具有相同方向的四条棱两两共面,因此,取出的三条棱必属于三个不同的方向.可先取定方向的棱,这有四种取法.不妨设取的棱为.则方向只能取棱,共两种可能.当方向取棱时,方向取棱分别只能为.综上,三条棱两两异面的取法数为8.故所求概率为.5.设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_______.【答案】【解析】每对点之间是否连边有2种可能,共有种情形.考虑其中点A、B可用折线连接的情形数.(1)有边AB:共种情形.(2)无边AB,但有边CD:此时,点A、B可用折线连接当且仅当点A与C、D中至少一点相连,且点B与C、D中至少一点相连,这样的情形数为.(3)无边AB,也无边CD:此时,AC与CB相连有种情形,AD与DB相连也有情形,但其中AC、CB、AD、DB均相连的情形被重复计了一次,故点A与B可用折线连接的情形数为.综上,情形数的总和为.故点A与B可用折线连接的概率为.6.从1,2,…,20中任取五个不同的数,其中至少有两个是相邻数的概率是______.【答案】【解析】设取自1,2, (20)若互不相邻,则.由此知从1,2,…,20中取五个互不相邻的数的选法与从1,2,…,16中取五个不同的数的选法相同,即种.于是,所求的概率为.7.某情报站有四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第一周使用种密码.那么,第七周也使用种密码的概率是______(用最简分数表示).【答案】.【解析】用表示第周用种密码本的概率.则第周末用种密码的概率为.故.8.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一人投掷.则先投掷人的获胜概率是________.【答案】【解析】同时投掷两颗骰子点数和大于6的概率为,从而,先投掷人的获胜概率为.9.某车站每天早上8:00~9:00、9:00~10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律见表1.一旅客8:20到站.则他候车时间的数学期望为______(精确到分).表1到站时刻8:10~9:10 8:30~9:30 8:50~9:50概率【答案】27【解析】旅客候车时间的分布如下表.候车时间(分)10 30 50 70 90 概率候车时间的数学期望为.1.从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为(). A.B.C.D.【答案】D【解析】从这20个数中任取三个数,可构成的数列共有个.若取出的三个数a、b、c成等差数列,则a+c=2b.故a与c的奇偶性相同,且a、c确定后,b随之而定.从而,所求概率为.选D.2.掷两次色子,用X记两次掷得点数的最大值.则下列各数中,与期望最接近的数为( ) A.4B.C.5D.【答案】B【解析】易知,,,,,,,故,与最接近.3.将1,2,3,4,5,6,7,8,9这9个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.【答案】.【解析】要使每行、每列所填数之和都是奇数,必须使每行或每列中要么只有一个奇数,要么三个全为奇数,故满足条件的填法共有种.因此所求的概率为.故答案为:4.从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________.【答案】【解析】如图,正9边形中包含中心的三角形有以下三种形状:对于(1),有3种情况;对于(2),有9种情况:对于(3);有18种情况;故所求概率为,故答案为:5.从1,2,…,10中随机抽取三个各不相同的数字,其样本方差的概率=_________.【答案】【解析】的样本方差,当且仅当是连续的正整数.故.故答案为:6.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.(1)求男生闯过四关的概率;(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.【答案】(1);(2)见解析【解析】分析:(1)利用相互独立事件的概率计算公式即可得出;(2)记女生四关都闯过为事件,则的取值可能为0,1,2,3,4,利用相互独立事件的概率公式即可得出.详解:(1)记男生四关都闯过为事件,则;(2)记女生四关都闯过为事件,则,因为,,,,所以的分布如下:.点睛:本题考查了相互独立与互斥事件的概率计算公式,随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力.7.设n为给定的大于2的整数。
高中数学必修二概率统计专题训练(经典必练题型)
高中数学必修二概率统计专题训练(经典必练题型)介绍本文档是针对高中数学必修二中的概率统计专题进行的训练,旨在帮助学生巩固和提高概率统计方面的知识和技能。
文档包含一系列经典必练题型,涵盖了该专题的重要内容。
题型一:排列组合1. 有5个不同的苹果和3个不同的橘子,从中任选3个水果,求共有几种选法。
2. 由字母A、B、C、D、E无重复组成的3位数共有多少种?题型二:事件与概率1. 一枚骰子被掷两次,求两次得到的点数之和为7的概率。
2. 从1至10的十个自然数中随机选择两个数,求两数之和为偶数的概率。
题型三:独立事件与复合事件1. 甲、乙、丙三个人独立地作一件事情成功的概率分别是1/2、1/3、1/4,求三人都成功的概率。
2. 一批零件共有100个,其中有5个次品。
从中连续取3个,求取出3个次品的概率。
题型四:条件概率1. 甲、乙两组各选一位同学参加足球比赛,甲组和乙组每组有5名同学,甲组中有两名女生和三名男生,乙组中有4名女生和一名男生。
从两组中各选出一位同学参加比赛,已知参赛者是女生,求该同学来自甲组的概率。
2. 甲、乙两个班级的数学成绩分别如下表所示,学生随机抽取一位,已知该学生是不及格的,求该学生来自乙班的概率。
题型五:概率分布1. 投掷一枚均匀硬币,正面向上为事件A,反面向上为事件B。
设事件A和事件B的概率分别为0.4和0.6,记为P(A)=0.4,P(B)=0.6。
求该硬币投掷一次出现事件A的概率。
2. 掷一个骰子,其点数的概率分布为:P(X=1)=1/6,P(X=2)=1/6,P(X=3)=1/6,P(X=4)=1/6,P(X=5)=1/6,P(X=6)=1/6。
求投掷一次出现点数为奇数的概率。
以上为高中数学必修二概率统计专题训练的经典必练题型,希望能够帮助学生加深对该专题的理解和应用。
高中数学-概率与统计测试题
高中数学概率与统计测试题一、选择题:(本题共10小题,每小题给出的四个选项中,只有一项是符合题目要求的) 1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x 为某一实数时可使02x ”是不可能事件 ③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件, 其中正确命题的个数是 ( ) A .0 B. 1 C. 2 D. 32.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a>b>cB .b>c>aC .c>a>bD .c>b>a 3. 下列说法一定正确的是 ( )A .一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B .一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况 C .如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元 D .随机事件发生的概率与试验次数无关 4.下列说法中,正确的是( ). A .数据5,4,4,3,5,2的众数是4 B .一组数据的标准差是这组数据的方差的平方C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数6.从一副扑克牌(54张)中抽取一张牌,抽到牌“K ”的概率是( ). A .154B .127C .118D .2275.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B .19 C .16 D .112 6.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( ).A .56 B .45 C .23 D .127.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为A .60%B .30%C .10%D .50% 8.下列说法正确的是A .某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品 B .气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10﹪的地方不会下雨C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D .掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.9.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变B .平均数改变,方差不变C .平均数不变,方差改变D .平均数改变,方差改变10.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数 为10,方差为2,则|x -y |的值为( ).(A )1 (B )2 (C )3 (D )4二、填空题:(本题共4小题,每小题3分,共12分,请把答案填写在答题纸上)11. 对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为(填序号) 。
高一数学统计与概率试题
高一数学统计与概率试题1.在棱长为2的正方体中,点为底面的中心,在正方体内随机取一点,则点到点的距离大于1的概率为()A.B.C.D.【答案】B【解析】正方体体积为,点到点的距离不大于1时构成的图形的体积为,所以所求概率为【考点】几何概型概率2.(本题满分14分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表商店名称A B C D E(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.(3)当销售额为4(千万元)时,估计利润额的大小.【答案】(1)两个变量符合正相关;(2);(3)2.4【解析】(1)随着x的增加,y在增加,因此两变量之间是正相关,(2)利用表格中的数据首先计算出,代入公式得到,即可得到回归方程,(3)利用回归方程可由销售额估计利润大小试题解析:(1)(五个点中,有错的,不能得2分,有两个或两个以上对的,至少得1分)两个变量符合正相关 4分(2)设回归直线的方程是:,6分∴8分9分∴y对销售额x的回归直线方程为: 11分(3)当销售额为4(千万元)时,利润额为:=2.4(千万元) 14分【考点】回归分析3.在区间上随机取一个数,使的值介于到1之间的概率为A.B.C.D.【答案】B【解析】当时,区间长度为2,而区间长度为3,所以概率【考点】1.三角不等式;2.几何概型概率4.某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为()A.45,75,15B.45,45,45C.30,90,15D.45,60,30【答案】D【解析】层比是,所以各个年级所抽取的人数就是:,,.【考点】分层抽样5.如图是某学校抽取的个学生体重的频率分布直方图,已知图中从左到右的前个小组的频率之比为,第小组的频数为,则的值是.【答案】48【解析】因为各小组频率之和为1,而后两组频率之和为:,所以前三组频率之和为1-0.25=0.75,又因为从左到右的前3个小组的频率之比为1:2:3,故第三组频率为,因为第3小组的频数为18,则抽取的学生人数是.【考点】频率分布直方图6.某企业有职工人,其中高级职称人,中级职称人,一般职员人,现抽取人进行分层抽样,则各职称人数分别为A.B.C.D.【答案】B【解析】,故选B.【考点】分层抽样,等概率抽样.7.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比,如图是将某年级60篇学生调查报告的成绩进行整理,分成5组画出的频率分布直方图.已知从左往右4个小组的频率分别是0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于等于80分为优秀,且分数为整数)()A.18篇B.24篇C.25篇D.27篇【答案】D【解析】根据频率分布直方图,得:分数大于80分的频率为,所以被评为优秀的调查报告有,故选D。
高二数学统计与概率试题
高二数学统计与概率试题1.某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为()A.B.C.D.【答案】B【解析】略2.(本小题满分12分)现有三人被派去各自独立地解答一道数学问题,已知三人各自解答出的问题概率分别为,,,且他们是否解答出问题互不影响.(Ⅰ)求恰有二人解答出问题的概率;(Ⅱ)求“问题被解答”与“问题未被解答”的概率.【答案】(1);(2)【解析】记“第i个人解答出问题”为事件Ai(i=1,2,3),依题意有…………1分P(A1)=,P(A2)=,P(A3)=,且A1,A2,A3相互独立.…………4分(Ⅰ)设“恰好二人解答出问题”为事件B,则有B=A1A2+A1A3+A2A3,且A1A2、A1A3、A2A3彼此互斥于是P(B)=P(A1A2)+P(A1A3)+P(A2A3)=××+××+××=.答:恰好二人解答出问题的概率为.…………6分20090318(Ⅱ)设“ 问题被解答”为事件C,“问题未被解答”为事件 D. D=··,且、、相互独立,则P(D)=P()·P()·P()=××=.而P(C)=1-P(D)=…………12分3.某学校高一年级共8个班,高二年级6个班从中选一个班级担任学校星期一早晨升旗任务,共有()种安排方法A.8B.6C.14D.48【答案】C【解析】根据分类计数的原理:共种方法.【考点】分类计数原理4.(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:分组频数(1)根据频率分布直方图估计这组数据的众数与平均数;(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【答案】(1)这组数据的众数为2.25,平均数为2.02.(2)政府的解释是正确的,原因详见解析.【解析】(1)众数是出现次数最多的数,从频率分布直方图知,条形图最高的一组的组中值.(2)从频率分布直方图或频率分布表可知,大约有88%的居民月用水量在3t以下,所以政府解释正确.试题解析:由图知,这组数据的众数为2.25,平均数为.(2)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.【考点】频率分布直方图及频率分布表的应用.5.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是.【答案】【解析】因为2人中谁担任正副班长有区别,所以需要排列.没有女生选中的概率为,则至少有1名女生当选的概率为.【考点】排列组合的应用.6.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是()A.3个都是正品B.至少有1个次品C.3个都是次品D.至少有1个正品【答案】D【解析】,必然事件是一定会发生的时间,12件产品中只有2个次品,因此抽取3个时至少有一个正品,因此D是必然事件【考点】必然事件7.已知关于的一元二次函数.(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点,求函数上是增函数的概率.【答案】(1);(2).【解析】(1)因为,函数在区间上是增函数,所以只需函数对称轴,然后写出所有的基本事件,找出满足的基本事件,分别计算其个数,再利用古典概型的概率公式可得函数在区间上是增函数的概率;(2)(,)是区域内的随机点,由(1)知(,)满足且时,函数在区间上是增函数,所以满足条件的点应在区域内,因此这是几何概型问题,分别求这两个区域的面积,通过面积比可得所求概率.试题解析:(1)∵函数的图象的对称轴为要使在区间上为增函数,当且仅当>0且,若=1则=-1;若=2则=-1,1;若=3则=-1,1;∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为.(2)由(1)知当且仅当且>0时,函数在区间上为增函数,依条件可知试验的全部结果所构成的区域为,构成所求事件的区域为三角形部分.由∴所求事件的概率为.【考点】1、古典概型;2、几何概型.【方法点晴】本题主要考查的是古典概型和几何概型,属于中档题.解题时一定要分清问题是古典概型还是几何概型,对于古典概型通过列出所有基本事件数出基本事件个数或通过分析得到基本事件个数,然后确定满足所求条件的基本事件个数,利用求解;几何概型要分清基本事件空间区域的度量是长度、面积、体积,然后分别求出对应的度量利用计算,本题涉及到了线性区域面积的计算是难点.8.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为.【答案】8【解析】∵高一年级有名学生,在高一年级的学生中抽取了名,∴每个个体被抽到的概率是∵高二年级有名学生,∴要抽取学生,故答案为:.【考点】分层抽样.9.某市一高中经过层层上报,被国家教育部认定为2015年全国青少年足球特色学校.该校成立了特色足球队,队员来自高中三个年级,人数为50人.视力对踢足球有一定的影响,因而对这50人的视力作一调查.测量这50人的视力(非矫正视力)后发现他们的视力全部介于4.75和5.35之间,将测量结果按如下方式分成6组:第一组,第二组,…,第6组,下图是按上述分组方法得到的频率分布直方图.又知:该校所在的省中,全省喜爱足球的高中生视力统计调查数据显示:全省100000名喜爱足球的高中生的视力服从正态分布.(1)试评估该校特色足球队人员在全省喜爱足球的高中生中的平均视力状况;(2)求这50名队员视力在5.15以上(含5.15)的人数;(3)在这50名队员视力在5.15以上(含5.15)的人中任意抽取2人,该2人中视力排名(从高到低)在全省喜爱足球的高中生中前130名的人数记为,求的数学期望.参考数据:若~N(, 2),则 0.6826,,【答案】(1);(2)人;(3).【解析】(1)利用组中值频率,即可得到结论;(2)首先理解频率分布直方图横纵坐标表示的意义,恒坐标表示身高,纵轴表示频数,即:每组中包含个体的个数,可以以及频率分布直方图,了解数据的分布情况,知道每段所占的比例,从而求出这名队员视力在以上的人数;(3)先根据正态分布的规律求出全市前名视力在以上,这人中以上的有人,确定变量的取值,求出概率,即可得到变量的期望.试题解析:(1)由频率分布直方图知,该校特色足球队人员平均视力为4.80.1+4.90.2+5.00.3+5.10.2+5.20.1+5.30.1=5.03高于全省喜爱足球的高中生的平均值5.01. 4分(2)由频率分布直方图知,后两组队员的视力在5.15以上(含5.15),其频率为0.2,人数为0.250=10,即这50名队员视力在5.15以上(含5.15)的人数为10人. 6分⑶,即,,.所以全省喜爱足球的高中生中前130名的视力在5.25以上.这50人中视力在5.25以上的有0.150=5人,这50名队员视力在5.15以上(含5.15)的人分为两部分:5人在5.25以上,5人在5.155.25.随机变量可取0,1,2,于是,,..【考点】正态分布曲线的特点及曲线表示意义;离散型随机变量的分布列及期望,10.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.【答案】(Ⅰ)见解析;(Ⅱ)【解析】(1)由分步计数原理知这个过程一共有8个结果,按照一定的顺序列举出所有的事件,顺序可以是按照红球的个数由多变少变化,这样可以做到不重不漏.(2)本题是一个等可能事件的概率,由前面可知试验发生的所有事件数,而满足条件的事件包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),根据古典概型公式得到结果.解:(I)一共有8种不同的结果,列举如下:(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)(Ⅱ)本题是一个等可能事件的概率记“3次摸球所得总分为5”为事件A事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3由(I)可知,基本事件总数为8,∴事件A的概率为【考点】等可能事件的概率;随机事件.11.某校高二年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【答案】25【解析】设应抽取的男生人数为为,所以有,应抽取25人【考点】分层抽样12.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题计结果如下图表所示:(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.【答案】(1);(2),,;(3).【解析】(1)先由第一组求出的值,再结合图表及频率分布直方图就可以求出的值;(2)根据(1)中求出的各组人数,按照分层抽样的方法就可求出各组应抽取的人数;(3)先列出从人中随机抽取人的总抽取方法,再列出所抽取的人中第二组至少有人的抽取方法数,即可求出所得的概率.试题解析:(1)由频率表中第一组数据可知,第一组总人数为,再结合频率分布直方图可知,,,,(2)第二,三,四组中回答正确的共有人,所以利用分层抽样在人中抽取人,每组分别抽取的人数为:第二组:人,第三组:人,第四组:人.(3)设第二组的人为,第三组的人为,第四组的人为,则从人中抽人所有可能的结果有:共个基本事件,其中第二组至少有一人被抽中的有这个基本事件.所以第二组至少有一人获得幸运奖的概率为.【考点】1、频率分布表及直方图;2、分层抽样;3、古典概型.13.下列说法错误的是()A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大【答案】B【解析】平均数与每一个样本的数据有关,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但是一组数据的平均数不一定大于这组数据中的每个数据.解:对于A:总体:考察对象的全体,故A对;对于C:在统计里,一组数据的集中趋势可以用平均数、众数与中位数,故C对.∵平均数不大于最大值,不小于最小值.比如:1、2、3的平均数是2,它小于3.故B不对;∵从方差角度看,方差最小,成绩较稳定.故D正确.故选B.【考点】分布的意义和作用;众数、中位数、平均数;极差、方差与标准差.14.从学号为~的高一某班名学生中随机选取名同学参加体育测试,采用系统抽样的方法,则所选名学生的学号可能是A.B.C.D.【答案】B【解析】系统抽样时每组10名学生,因此抽取的编号构成以10为公差的等差数列,因此B正确【考点】系统抽样15.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.【答案】【解析】所求概率为【考点】古典概型概率16.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两轴单位长度相同),用回归直线近似的刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,的值为B.线性相关关系较强,的值为C.线性相关关系较强,的值为D.线性相关关系太弱,无研究价值【答案】B【解析】由散点图可知,点的分布比较集中在一条直线附近,所以语文成绩和英语成绩之间具有线性相关关系,且线性相关关系较强,由于所有点都在直线的下文,所以回归直线的斜率小于,故结论最大的可能成立的是B.【考点】散点图.17.组合数恒等于()A.B.C.D.【答案】D【解析】由题意得,,故选D.【考点】组合数的运算.18.设,则等于()A.1.6B.3.2C.6.4D.12.8【答案】C【解析】由于满足二项分布,所以,故.【考点】二项分布的均值与方差.19.掷3枚均匀硬币一次,求正面个数与反面个数之差的分布列,并求其均值和方差.【答案】.【解析】设正面个数为,反面个数为,,故,,,,,由此,列出分布列,并利用期望和方差公式,计算得.试题解析:解:的可能取值为-3,-1,1,3,且,,因此,的分布列为因此,【考点】离散型随机变量的期望与方差.【方法点晴】若离散型随机变量的分布列为称为随机变量的均值或数学期望,它反映了离散型随机变量取值的平均水平.描述了 ()相对于均值的偏离程度,而为这些偏离程度的加权平均,刻画了随机变量与其均值的平均偏离程度.称为随机变量的方差,其算术平方根为随机变量的标准差.20.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率,分别是()A.,B.,C.,D.,【答案】A【解析】根据条件概率的函数,的含义为在发生的情况下,发生的概率,即在“至少出现一个点”的情况下,“三个点数都不相同”的概率,因为“至少出现一个点”的情况数目为,“三个点数都不相同”则只有一个点,共有种,;其含义是在在发生的情况下,发生的概率,即“三个点数都不相同”的情况下,“至少出现一个点”的概率,所以,故选A.【考点】条件概率.【方法点晴】本题主要考查了条件概率的计算,着重考查了学生分析问题和解答问题的能力与转化与化归思想的应用,其中明确条件概率的基本含义是解答的关键,属于中档试题,本题的解答中,根据条件概率的函数,的含义为在发生的情况下,发生的概率,其含义是在在发生的情况下,发生的概率是解得的关键.21.一个口袋中装有形状大小均相同的6个红球和4个白球,从中不放回的依次摸出2个球,在第一次摸出红球的条件下,第二次也摸出红球的概率为()A.B.C.D.【答案】D【解析】第一次摸出红球后,剩下9个球,其中有5个红球,因此从中摸出一个红球概率为.故选D.【考点】条件概率.22.已知x、y的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.1【答案】B【解析】由表格数据可知,中心点坐标为,代入回归方程得【考点】回归方程23.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).【答案】【解析】当一,二,三等奖被三个不同的人获得,共有种不同的方法,当一,二,三等奖被两个不同的人获得,即有一个人获得其中的两个奖,共有,所以获奖的不同情况有种方法,故填:60.【考点】排列组合【方法点睛】本题主要考察了排列组合和分类计数原理,属于基础题型,重点是分析不同的获奖情况包含哪些情况,其中一,二,三等奖看成三个不同的元素,剩下的5张无奖奖券看成相同元素,那8张奖券平均分给4人,每人2张,就可分为三张奖券被3人获得,或是被2人获得的两种情况,如果是被3人获得,那这4组奖券就可看成4个不同的元素的全排列,如何2人获得,3张奖券分为2组,从4人挑2人排列,最后方法相加.24.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求的值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望. (以直方图中的频率作为概率).【答案】(1);(2)分布列见解析,期望为.【解析】(1)由频率分布直方图知,所有小矩形面积(频率)之和为1,可求得;(2)由统计的知识,可知小球重量在内的概率为,因此随机变量,利用二项分布概率公式可计算出所有概率,从而得概率分布表,再由期望公式可计算期望.试题解析:(1)由题意,得,解得;(2)利用样本估计总体,该盒子中小球重量在内的概率为,则.的可能取值为、、、,,,,.的分布列为:.(或者).【考点】频率分布直方图,随机变量频率分布列,数学期望.25.甲乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以的比分获胜的概率为()A.B.C.D.【答案】【解析】设“甲获胜”为事件A,则,则甲以的比分获胜的概率:,故选A.【考点】n次独立试验.26.NBA决赛期间,某高校对学生是否收看直播进行调查,将得到的数据绘成如下的2×2列联表,但部分字迹不清:将表格填写完整,试说明是否收看直播与性别是否有关?附:P 0.150.100.050.0250.0100.0050.001【答案】有99%的把握认为是否收看直播与性别有关【解析】根据所给数据得到列联表,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,即可得出结论试题解析:;所以有99%的把握认为是否收看直播与性别有关,【考点】独立性检验的应用27.事件在四次独立重复试验中事件出现的概率相同,若事件至少发生一次的概率为,则事件在一次试验中出现的概率为()A.B.C.D.【答案】A【解析】设事件A在一次试验中发生的概率为p,根据相互独立事件的概率可知,【考点】n次独立重复试验中恰好发生k次的概率28.已知在四棱锥中,底面,底面是正方形,,在该四棱锥内部或表面任取一点,则三棱锥的体积不小于的概率为______.【答案】【解析】由题意得,如图,的中点分别为,当点在几何体内部或表面上时,.在几何体中,连接,则,又,则所求概率为.【考点】1.线面垂直的性质;2.锥体体积;3.几何概型.【方法点睛】本题主要考查的是线面垂直的性质,锥体体积,几何概型,考查学生分析解决问题的能力,属于中档题,对于本题而言,主要考查的是利用几何概型求概率,很显然是要求出的体积,然后求出三棱锥的体积不小于时,的面积,两个值相除,即可得到概率值,因此此类问题主要分析清楚问题要求的具体量是什么,多理解题意是解决此类问题的关键.29.的展开式中的系数为.(用数字作答)【答案】【解析】由题意可得,令,综上所述,的系数为,故答案为.【考点】1、二项展开式的通项公式;2、二项展开式的系数.30.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:组号12345温差()发芽数(颗)该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1);(2)(1)中所得的回归直线方程可靠.【解析】(1)根据表中的数据,利用公式计算成的值,在利用公式求得和的值,即可求解回归直线方程;(2)分别计算当时和时对应的,可通过比较得到结论.试题解析:(1)由题意:,,.,故回归直线方程为:.(2)当时,,,当时,,,∴(1)中所得的回归直线方程可靠.【考点】回归直线方程的求解及应用.【方法点晴】本题主要考查了统计的应用问题,其中解答中涉及到回归直线方程的求解、最小二乘法的应用、以及回归直线方程的应用等知识点的综合考查,试题比较基础,但运算量较大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中准确预算是解答本题的关键.31.某产品的广告费用x与销售额y的统计数据如右表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额大约为()万元A.63.6B.65.5C.67.7D.72.0【答案】B【解析】由题意得,,又因为,即,把点代入回归直线方程,得,解得,即回归直线方程为,当时,解得,故选B.【考点】回归直线方程的应用.32.某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.组号分组频数频率(1)求、、的值;(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率.【答案】(1),,;(2).【解析】(1)依题意,得,,,即可求解、、的值;(2)由第三、四、五组共有名学生,用分层抽样的方法抽取名学生,则第三、四、五组的人数,设出第三组的名学生记为、、,第四组的名学生记为、,第五组的名学生记为,即可利用古典概型求解其概率.试题解析:(1)依题意,得,,,解得,,;(2)因为第三、四、五组共有名学生,用分层抽样的方法抽取名学生,则第三、四、五组分别抽取名,名,名.第三组的名学生记为、、,第四组的名学生记为、,第五组的名学生记为,则从名学生中随机抽取名,共有种不同取法,具体如下:,,,,,,,,,,,,,,,其中第三组的名学生、、没有一名学生被抽取的情况有种,具体如下:、、,故第三组中至少有名学生与张老师面谈的概率为.【考点】分层抽样;古典概型及其概率的计算.33.某商场要从化为手机、、、、5种型号中,选出3种型号的手机进行促销活动,则在型号被选中的条件下,型号也被选中的概率是()A.B.C.D.【答案】D【解析】设事件为“型号被选中”,事件为“型号被选中”.,,.【考点】条件概率.34.已知某地区中小学生人数和近视情况如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【答案】A【解析】试题分析:因,故,应选A.【考点】分层抽样的特点.35.已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.(1)若x,y∈Z,求x+y≥0的概率;(2)若x,y∈R,求x+y≥0的概率.【答案】(1) (2)【解析】(1)因为x,y∈Z,且x∈[0,2],y∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x,y∈Z,x+y≥0的基本事件的个数,然后求比值即为所求的概率;(2)因为x,y∈R,且围成面积,则为几何概型中的面积类型,先求x,y∈Z,求x+y≥0表示的区域的面积,然后求比值即为所求的概率试题解析:(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,∴P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,∵x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.∴P(B)====,故x,y∈R,x+y≥0的概率为.【考点】几何概型中的面积类型和古典概型36.某校有1400名考生参加市模拟考试,现采取分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析,得到下面的成绩频数分布表:分数分组[0,30)[30,60)[60,90)[90,120)[120,150](1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:文理失分概念问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)(参考公式:,其中.【答案】(1)(2)没有90%的把握【解析】(1)利用组中值与对应频数乘积的和计算总分,再除以总人数得平均数;先根据分成抽样确定理科总人数,样本中理科考生有人及格,所以估计有,(2)先将数据代入参考公式得,再比较数据确定是否有90%把握.试题解析:(1)∵∴估计文科数学平均分为.∴理科考生有人及格.(2),故没有90%的把握认为概念失分与文、理考生的不同有关.37.已知的取值如图所示,若与线性相关,且线性回归方程为x123,则的值为A. B. C. D.【答案】D【解析】 ,选D.38.若…,则____【答案】【解析】令得39.为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并做出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计1.如果一个整数为偶数的概率为(1)a+b 为偶数的概率;(2)a+b+c 为偶数的概率。
0.6 ,且 a,b,c 均为整数,求2.从 10 位同学 (其中 6 女,4 男)中随机选出 3 位参加测验,每位女同学能通过测验的概率43均为,每位男同学能通过测验的概率均为,求55(1)选出的 3 位同学中,至少有一位男同学的概率;(2)10 位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。
3.袋中有 6 个白球, 4 个红球,甲首先从中取出 3 个球,乙再从余下的 7 个球中取出 4 个球,凡取得红球多者获胜。
试求(1)甲获胜的概率;(2)甲,乙成平局的概率。
4.箱子中放着 3 个 1 元硬币, 3 个 5 角硬币, 4 个 1 角硬币,从中任取 3 个,求总钱数超过1 元 8 角的概率。
5.有 10 张卡片,其号码分别位 1,2,3⋯,10,从中任取 3 张。
(1)求恰有 1 张的号码为 3 的倍数的概率;(2)记号码为 3 的倍数的卡片张数为ξ,求ξ的数学期望。
6.某种电子玩具按下按钮后,会出现白球或绿球,已知按钮第一次按下后,出现红球与绿球1的概率都是,从按钮第二次按下起,若前次出现红球,则下次出现红球、绿球的概率21 2 3 2分别为, ;若前次出现绿球,则下次出现红球、绿球的概率分别为, ,记第 n(n ∈ 3 3 5 5N,n ≥1) 次按下后,出现红球的概率为P n(1)求P2的值;(2)当 n∈N,n ≥2 时,求用P n 1表示P n的表达式;(3)求P n关于 n 的表达式。
7.有甲、乙两个盒子 ,甲盒子中有 8 张卡片 ,其中两张写有数字 0,三张写有数字1 ,三张写有数字2 ;乙盒子中有 8 张卡片,其中三张写有数字 0,两张写有数字1,三张写有数字 2 , (1) 如果从甲盒子中取两张卡片,从乙盒子中取一张卡片,那么取出的3 张卡片都写有 1 的概率是多少? (2)如果从甲、乙盒子中各取一张卡片,设取出的两张卡片数字之和为ξ,求ξ的分布列和期望。
8.甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有 1 个白球, 3 个黑球,2 个红球且只有颜色不同的 6 个小球的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一个人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取(1) 求甲摸球次数不超过三次就获胜的概率;(2) 求甲获胜的概率。
9.设有均由 A,B,C 三个部件构成的两种型号产品甲和乙,当A或 B 是合格品并且 C 是合格品时,甲是正品;当 A, B 都是合格品或者 C 是合格品时,乙是正品。
若 A 、B、C 合格的概率均是 P,这里 A ,B,C 合格性是互相独立的。
(1) 产品甲为正品的概率P1是多少?(2)产品乙为正品的概率P2 是多少?(3)试比较P1与P2的大小。
10.一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱的二等品,我们对该箱中的产品逐一取出进行测试。
(1) 求前二次取出的都是二等品的概率;(2) 求第二次取出的是二等品的概率;(3)用随机变量ξ表示第二个二等品被取出时共取的件数,求ξ的分布列及数学期望。
111.袋中装有黑球和白球共 7 个,从中任取 2 个球都是白球的概率为。
现有甲,乙两人从7 袋中轮流摸取 1 球,甲先取,乙后取,然后甲再取,⋯,取后不放回,直到两人中一人取到白球时即终止,每个球在第 1 次被取出的机会是等可能的,(1) 求袋中原有白球的个数;(2) 求甲取到白球的概率。
12.箱内有大小相同的 20 个红球, 80 个黑球,从中任意取出 1 个,记录它的颜色后再放回箱内,进行搅拌后再任意取出 1 个,记录它的颜色后又放回箱内搅拌,假设三次都是这样抽取,试回答下列问题(1) 求事件:“第一次取出黑球,第二次取出红球,第三次取出黑球”的概率;(2) 求事件:“三次中恰有一次取出红球”的概率;(3)如果有 50 人进行这样的抽取,试推测约有多少人取出2个黑球, 1个红球。
13.甲、乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜并且比赛就此结束,现已知甲,乙两队每比赛一局,甲队获胜的概率是0.6,乙队获胜的概率是0.4 ,且每局比赛的胜负是相互独立的,问(1)甲队以 3:2 获胜的概率是多少?(2) 乙队获胜的概率是多少?14.某射手进行射击练习,每次射出一发子弹,每射击 5 发算一组,一旦命中就停止,并进入下一组练习,否则一直打完 5 发子弹才能进入下一组练习,已知他每射击一次的命中率为 0.8 ,且每次射击命中与否互不影响。
(1)求在完成连续两组练习后,恰好共耗用了 4 发子弹的概率;(2) 求一组练习中所耗用子弹数ξ的分布列,并求ξ的期望。
15.袋子里有大小相同的 3 个红球和 4 个黑球,今从袋子里随机取出 4个球。
(1) 求取出的红球数ξ的概率分布列和数学期望;(2) 若取出每个红球得 2 分,取出黑球得 1 分,求得分不超过 5 分的概率。
16.下表为某班英语及数学成绩的分布,学生共有 50 人,成绩分 1 至 5 五个档次。
例如表中所示英语成绩为 4 分,数学成绩为 2 分的学生为 5 人,将全班学生的姓名卡片混合在一起,任取一张,该卡片同学的英语成绩为x ,数学成绩为 y,设 x,y 为随机变量 (注:没(1)分别求出 x=1 的概率及 x≥3 且 y=3 的概率;(2)求 a+b 的值;133(3)若y的期望值为133,试确定 a,b 的值。
50概率与统计解答1 解:整数为奇数的概率为 1-0.6 =0.4(1) 当 a,b 都为偶数或都为奇数时, a+b 为偶数,记 a+b 为偶数的概率为P(a+b) 则P(a+b) =0.6 ×0.6 + 0.4 ×0.4= 0.52(2)由(1) 可知,a+b 为奇数的概率为 0.48 ,a+b+c 为偶数的条件是 a+b 与 c 均为偶数,或者 a+b 与 c 均为奇数,记 a+b+c 为偶数的概率为 P(a+b+c) ,则P(a+b+c) = 0.52 ×0.6 +0.48 ×0.4=0.504 2解: (1)随机选出的 3 位同学中,至少有一位男同学的概率为(2)甲、乙被选出且能通过测验的概率为C81 4 3 4C130 5 5 1253 解:(1) 甲获胜是指以下三种情况①甲取3 个红球,必获胜,概率为C43C130 30363C②甲取2 个红球 ,乙取 1 红 3 白或乙取 4 白 ,则甲获胜 ,概率为C42C16(C12C53 C54 )C130C74314③甲取1 个红球,乙取 4 个白球,则甲获胜,概率为C41C62C44C130C7470(2)甲、乙成平局包括两类事件①甲取2 红 1 白,乙取 2 红 2 白,概率为C42C16C22C52C130C74335②甲取1 红 2 白,乙取 1 红 3 白,概率为C42C16C31C43C130C74635∵这两个事件彼此排斥∴成平局的概率为 3 635 35 354 解:记“总钱数超过 1 元 8 角”为事件 A,它包括以下 4 种情况:①“ 3 个 1 元硬币”记为事件 A 1;②2个1 元硬币 ,1 个 5 角硬币”记为 A2;③“ 2 个 1 元硬币 ,1 个 1 角硬币”记为事件A3;④1个1元硬币 ,2 个 5 角硬币”记为事件 A4P(A1) C33C130 121,P(A2) CC31C3039129,P(A3)C32C14C13012 11122011,P(A4)C31C32C130 120340A1 A2 , A ,AP(A) P(A1) P(A2) P(A3 ) P(A4) 1 9 1212031125 解:(1) 恰有一张号码为 3 的倍数的概率是P C13C7221(2) ξ可取0,1,2,3C130 40P( 0)C C37C10 274,P( 1)C31C72C13021,P(402)C13C73C130 47,P( 3)C33C130 120∴ξ的分布列为9 106 解:(1) 若按钮第一次、第二次按下后均出现红球,则其概率为1;若按钮第一次、第二次按下后依次出现绿球,红球,则其概率为12 13。
故所求概率为P2 136 10715P n-1 (2) 第 n-1次按下按钮后出现红球的概率为P n-1 (n ∈N,n ≥2),则出现绿球的概率为 1-若第 n-1 次、第 n 次按下后均出现红球,则其概率为P n 11;若第n-1 次、第 n 次按下后依次出现绿球,红球,则其概率为(1 P n 1) 3,所以P n 113P n353(14P n 1)145P n3, 其中N,n(3)由(2)得P n19 145(P n 1 ),(其中n,n2),故{P n 9} 构成首项为1,公比为4的等比数列。
所以38 15 P n38415)9(n N;n191)7 解 :(1) 从甲盒子中取 2 张卡片是写1 的概率C32C823,从乙盒子中取1 张卡片是写 1的概率C112 1。
所以取出3 张卡片都是写 1C81 4 的概率38 4 112(2) ξ可取0,1,2,3,,47 21 7 1 012324 40 40 120P( 2 3 3 2 2 3 3 132 3 3 2 3 3 210),P( 1),P( 2)8 8 32 8 8 8 8 648 8 8 8 8 8 64第三次取得红球的概率为 1(4)239(2) 产品乙为正品的概率3 13 21 15 9 136 17 0 1 2 3 432 64 64 64 64 64 823 32 1313(94)1,甲 3 3 3 3 9∴甲摸球次数不超过三次就获胜的概率13(49) 13(49) 133 243(2) 甲第一次取得红球的概率为 1,甲第二次取得红球的概率为2 2 1 1(4)1,,3 3 3 3 9 14 2 甲第三次取得红球的概率为 ( )2,⋯39∴甲获胜的概率 P lim [1 1(4) lin m3 3 9 9 解:(1) 产品甲为正品的概率P 1 P(A B) P(C) [P(A)1142 .. 13(49)n 1] 3 3 ( )2 .39 39 4 59P(B) P(A B)] P(C) 2P 2 P 38 解 :(1)甲第一次取得红球的概率为1,甲第二次取得红球的概率为1 4 n 1,甲第 n 次取得红球的概率为B) C] P(A B) P(C) P(A B C) P P 2 P 34(2) 四件产品逐一取出排成一列共有 A 44种方法,第二次取出的产品是二等品的共有C 21 A 33种方法。