高中数学必修三 概率与统计

合集下载

高中数学必修3概率统计常考题型:简单随机抽样

高中数学必修3概率统计常考题型:简单随机抽样

【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。

人教版高二数学必修三概率与统计概率与统计在实际问题中的应用

人教版高二数学必修三概率与统计概率与统计在实际问题中的应用

人教版高二数学必修三概率与统计概率与统计在实际问题中的应用概率与统计作为高中数学的重要内容,不仅在理论上具有重要的意义,更在实际问题中有着广泛的应用。

本文将从概率论和统计学的角度来探讨概率与统计在实际问题中的应用。

一、概率与实际问题的关系1.1 概率的基本概念和运算概率是研究随机现象结果的可能性的一门学科。

概率的基本概念包括样本空间、随机事件和概率等。

在实际问题中,我们可以通过概率来描述某些事件发生的可能性大小,并进行预测和决策。

概率的运算包括加法定理、乘法定理和条件概率等。

通过这些运算,我们可以对实际问题中的事件进行复杂的计算和分析,提高对事件发生概率的准确度。

1.2 概率在风险评估中的应用概率在风险评估中有着广泛的应用。

例如,在保险业中,保险公司需要评估被保险人的风险,通过分析历史数据和建立风险模型,计算出不同事件发生的概率,从而确定保险费率和保险赔付金额。

此外,在金融投资领域,投资者需要评估不同投资项目的风险和收益,通过概率分析,可以计算出不同投资策略的预期回报率和风险水平,为投资决策提供科学依据。

二、统计与实际问题的关系2.1 统计的基本概念和方法统计是研究数据收集、整理、分析和解释的一门学科。

统计的基本概念包括总体和样本、参数和统计量等。

通过收集和整理大量的数据样本,可以得出总体的一些特征和规律。

统计的方法包括描述统计和推断统计。

描述统计通过各种图表和统计指标来描述数据的分布和特征;推断统计通过从样本数据中推断总体的一些特征,并进行统计推断和假设检验。

2.2 统计在社会调查中的应用统计在社会调查中有着广泛的应用。

例如,在人口普查中,通过大规模的抽样调查和数据统计,可以获得不同地区的人口数量、年龄结构、教育程度等信息,为政府制定人口政策和社会规划提供依据。

此外,统计在市场调研和消费者行为研究中也有重要作用。

通过对消费者的样本数据进行统计分析,可以了解消费者的购买习惯、偏好和需求,为企业的市场决策和产品设计提供参考。

高中数学必修三 第三章 概率 第1节 事件与概率

高中数学必修三 第三章 概率  第1节  事件与概率
(2,4); (4)“xy=4”包含以下 3 个基本事件:(1,4),(2,2),(4,1);“x=y”包含以 下 4 个基本事件:(1,1),(2,2),(3,3),(4,4).
练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.

在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D

高中数学人教A版必修3《概率与统计》中的高考热点问题

高中数学人教A版必修3《概率与统计》中的高考热点问题

上一页
图2
返回首页
下一页
高三一轮总复习
(1)求频率分布直方图中 a 的值; (2)估计该企业的职工对该部门评分不低于 80 的概率; (3)从评分在[40,60)的受访职工中,随机抽取 2 人,求此 2 人的评分都在[40,50) 的概率. [规范解答] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以 a =0.006.3 分 (2)由所给频率分布直方图知,50 名受访职工评分不低于 80 的频率为(0.022 +0.018)×10=0.4,所以该企业职工对该部门评分不低于 80 的概率的估计值为 0.4.6 分
上一页
返回首页
下一页
高三一轮总复习
[规律方法] 1.本题(1)中,指针连续地变化,是几何概型,第(2)问是顾客获 得优惠券的各种可能,是有限的可以一一列举的离散问题,满足古典概型.
2.题目以“市场销售手段”为背景,认真审题,实现知识迁移,恰当选择 概型是解题的关键.
上一页
返回首页
下一页
高三一轮总复习
下一页
高三一轮总复习
[温馨提示] 1.本题的易失分点: (1)不能利用频率分布直方图的频率求出 a 值. (2)求错评分落在[50,60),[40,50)间的人数. (3)没有指出基本事件总数与事件 M 包含的基本事件个数,或者只指出事件 个数,没有一一列举出 10 个基本事件及事件 M 包含的基本事件,导致扣 3 分或 2 分.
18
30
总计
36
24
60
2分
在患“三高”疾病人群中抽 9 人,则抽取比例为396=14,
所以女性应该抽取 12×14=3(人).5 分
上一页

高中必修三数学统计教案

高中必修三数学统计教案

高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。

一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。

二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。

2.统计学的基本概念:总体、样本、抽样、数据等。

三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。

2.概率统计方法:频率分布、概率分布、期望值等。

3.推断统计方法:参数估计、假设检验等。

四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。

2.练习题:让学生做一些实践练习,巩固所学的统计方法。

五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。

六、作业
布置相关作业,让学生进一步巩固所学知识。

七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。

注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。

新人教版高中数学选择性必修第三册7.1 条件概率与全概率公式

新人教版高中数学选择性必修第三册7.1 条件概率与全概率公式

.
解析 (1)从这批产品中随便地取一件,则这件产品恰好是次品的概率是 81 = 27 .
1 200 400
(2)设A:取出的产品是甲厂生产的,B:取出的产品为次品,
则由已知可得P(A)= 500 ,P(AB)= 25 ,所以这件产品恰好是甲厂生产的次品的概
1 200
1 200
率是P(B|A)= P(AB) = 1 .
第七章 随机变量及其散布
1 |利用定义求条件概率 农历五月初五是我国的传统节日——端午节,这一天,馨馨的妈妈煮了9个粽子,其 中4个大枣馅、3个腊肉馅、2个豆沙馅,馨馨随机选取两个粽子.
第七章 随机变量及其散布
1.若已知馨馨取到的两个粽子的馅不同,则取到的两个粽子分别是大枣馅和豆沙馅
的概率是多少?
P(A) P(D)
+
P(B) P(D)
=
C620 12 180
+
C620 12 180
=
13 58
.
C620
C620
所以他获得优秀的概率是 13 .
58
第七章 随机变量及其散布
4 |乘法公式及其应用 乘法公式的特点及注意事项 1.知二求一:若P(A)>0,则已知P(A),P(B|A),P(AB)中的两个值就可以求得第三个值; 若P(B)>0,则已知P(B),P(A|B),P(AB)中的两个值就可以求得第三个值. 2.P(B)与P(B|A)的区分在于两者产生的条件不同,它们是两个不同的概念,在数值上 一般也不同.
多少?
提示:用C表示事件“取到的两个粽子为同一种馅”,D表示事件“取到的两个粽子
都为腊肉馅”,
则P(C)=
C24
C32 C92

普通高中数学课程标准(2017年版)概率与统计 几何与代数内容的比较

普通高中数学课程标准(2017年版)概率与统计 几何与代数内容的比较

概率与统计内容的比较一、概率与统计内容体系编排比较我们可以从纵向和横向两个角度对《修订》与《大纲》中"概率与统计"内容结构的设置做个比较:纵向比较:①《修订》必修课程中"概率与统计"相关内容主要有统计(数据与基本概念、抽样、统计图表、用样本估计总体)、概率(随机事件与概率、随机事件的独立性)組成。

选修课程由限定选修课程和任意选修课程组成。

其中限定选修课程有计数原理、概率(随机事件的条件概率、离散型随机变量及其分布列、正态分布)、统计(成对数据间的相关性、一元线性回归模型)。

其中任意选修课程由A课程统计与概率(连续型隨机变量及其分布、二维随机变量及其联合分布、参数估计、假设检验、二元线性回归模型)、B课程应用统计(连续型随机变量及其分布、二维随机变量及其联合分布、参数估计、假设检验、聚类分析、正交设计)、C课程社会调查与数据分析(社会调查概论、社会调查方案设计、抽样设计、社会调查数据分析、社会调查数据报告、社会调査案例选讲)组成。

②《实验》必修课程中概率与统计相关内容主要由必修课程组成和选修课程组成。

其中必修课程有数学3统计(随机抽样、用样本估计总体、变量的相关性)、概率(随机事件与概率、古典概型及概率计算公式、几何概型)。

选修课程由限定选修课程和任意选修课程组成。

其中限定选修课程有选修1-2统计案例(14课时)和选修2-3计数原理(基本计数原理、排列与姐合、二项式证明)、概率(离散型随机变量、二项分布、直方图)、统计案例组成。

任意选修课程主要有风险与决策、优选法与试验设计初步组成。

经过比较可知,《实验》与《修订》在"概率与统计"必修课程内容中均含有统计和概率相关内容,而选修课程中概率内容只有《修订》和《实验》理科选修课程中才有。

此次《修订》取消文理分科后,文理科在必修课程和选修课程均要学习概率等相关内容,说明概率内容得到了进一步的重视。

同时,《修订》在任意选修课程新増加了统计与概率的相关选修课程。

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

高中数学必修3概率统计常考题型随机事件的概率

高中数学必修3概率统计常考题型随机事件的概率

随机事件的概率【知识梳理】.事件的分类()前提:对于给定的随机事件,在相同的条件下重复次试验,观察事件是否出现.()频数:指的是次试验中事件出现的次数.频率:指的是事件出现的比例()=..概率()定义:对于给定的随机事件,如果随着试验次数的增加,事件发生的频率()稳定在某个常数上,把这个常数记作(),称为事件的概率.()范围:[].()意义:概率从数量上反映了随机事件发生的可能性的大小.【常考题型】题型一、事件的分类【例】 指出下列事件是必然事件、不可能事件还是随机事件:()某人购买福利彩票一注,中奖万元;()三角形的内角和为°;()没有空气和水,人类可以生存下去;()同时抛掷两枚硬币一次,都出现正面向上;()从分别标有的四张标签中任取一张,抽到号标签;()科学技术达到一定水平后,不需任何能量的“永动机”将会出现.[解] ()购买一注彩票,可能中奖,也可能不中奖,所以是随机事件.()所有三角形的内角和均为°,所以是必然事件.()空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.()同时抛掷两枚硬币一次,不一定都是正面向上,所以是随机事件.()任意抽取,可能得到号标签中的任一张,所以是随机事件.()由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.【类题通法】对事件分类的两个关键点()条件:在条件下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;()结果发生与否:有时结果较复杂,要准确理解结果包含的各种情况.【对点训练】指出下列事件是必然事件、不可能事件,还是随机事件.()我国东南沿海某地明年将受到次冷空气的侵袭.()若为实数,则≥.()抛掷硬币次,至少有一次正面向上.()同一门炮向同一目标发射多枚炮弹,其中的炮弹击中目标.()没有水分,种子发芽.解:()我国东南沿海某地明年可能受到次冷空气侵袭,也可能不是次,是随机事件.()对任意实数,≥总成立,是必然事件.()抛掷硬币次,也可能全是反面向上,也可能有正面向上,是随机事件.()同一门炮向同一目标发射,命中率可能是,也可能不是,是随机事件.()没有水分,种子不可能发芽,是不可能事件.题型二、试验及重复试验的结果的分析【例】指出下列试验的条件和结果:()某人射击一次,命中的环数;()从装有大小相同但颜色不同的,,,这个球的袋中,任取个球;()从装有大小相同但颜色不同的,,,这个球的袋中,一次任取个球.[解]()条件为射击一次;结果为命中的环数:,共种.()条件为从袋中任取个球;结果为:,,,,共种.()条件为从袋中任取个球;若记(,)表示一次取出的个球是和,则试验的全部结果为:(,),(,),(,),(,),(,),(,),共种.【类题通法】分析试验结果的方法()首先要准确理解试验的条件、结果等有关定义,并能使用它们判断一些事件,指出试验结果,这是后续学习求事件的概率的前提和基础.()在写试验结果时,一般采用列举法写出,必须首先明确事件发生的条件,根据日常生活的经验,按一定的次序一一列举,才能保证没有重复,也没有遗漏.【对点训练】下列随机事件中,一次试验各指什么?它们各有几次试验?试验的可能结果有哪几种?()一天中,从北京站开往合肥站的列列车,全部正点到达;()某人射击两次,一次中靶,一次未中靶.解:()一列列车开出,就是一次试验,共有次试验.试验的结果有“只有列列车正点到达”“只有列列车正点到达”“全部正点到达”“全部晚点到达”,共种.()射击一次,就是一次试验,共有次试验.试验的结果有“两次中靶”“第一次中靶,第。

(完整word版)高中数学必修3统计与概率

(完整word版)高中数学必修3统计与概率

统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。

2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。

3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。

4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。

5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。

6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。

7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。

8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。

以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。

高中数学概率统计

高中数学概率统计

高中数学概率统计
概率统计是数学中的一个重要分支,它研究随机现象和事件发
生的可能性。

在高中阶段,学生需要通过研究概率统计来理解和应
用概率的基本概念和计算方法。

概率是指某个事件发生的可能性大小。

在数学中,概率可以通
过计算来得出。

常见的计算方法包括频率概率和几何概率。

学生需
要学会根据给定的条件计算概率,包括单个事件和多个事件的概率
计算。

在概率统计中,还有一些重要的概念需要学生掌握。

例如,样
本空间是指随机事件所有可能结果的集合;事件是样本空间的子集,表示满足特定条件的结果集合;试验是指对随机现象进行观察和记
录的过程。

高中数学概率统计还涉及到一些常见的概率分布,如二项分布、均匀分布和正态分布。

学生需要理解这些分布的特点和应用场景,
以及如何计算和图示化概率分布。

通过研究高中数学概率统计,学生可以提高他们的数据分析和问题解决能力。

他们能够在实际生活中应用概率统计的知识,例如在投资、保险和赌博等方面做出理性的决策。

总之,高中数学概率统计是一门重要的数学课程,它帮助学生理解和应用概率的基本概念和计算方法,提高他们的数学思维和问题解决能力。

高中数学必修3第三章概率全章复习

高中数学必修3第三章概率全章复习

⾼中数学必修3第三章概率全章复习概率全章复习⼀、基础知识梳理(⼀)随机事件的概率随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,⼀定会发⽣的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,⼀定不会发⽣的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发⽣也可能不发⽣的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某⼀事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数;称事件A 出现的⽐例nn A f An)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发⽣的频率)(A f n 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发⽣的次数A n 与试验总次数n 的⽐值nn A,它具有⼀定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越⼩。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发⽣的可能性的⼤⼩。

频率在⼤量重复试验的前提下可以近似地作为这个事件的概率概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对⽴事件;(4)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);(3)若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)=P(A)+ P(B)=1,于是有P(A)=1—P(B); (4)互斥事件与对⽴事件的区别与联系,互斥事件是指事件A 与事件B 在⼀次试验中不会同时发⽣,其具体包括三种不同的情形:(1)事件A 发⽣且事件B 不发⽣;(2)事件A 不发⽣且事件B 发⽣;(3)事件A 与事件B 同时不发⽣,⽽对⽴事件是指事件A 与事件B 有且仅有⼀个发⽣,其包括两种情形;(1)事件A 发⽣B 不发⽣;(2)事件B 发⽣事件A 不发⽣,对⽴事件互斥事件的特殊情形。

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件(共25张PPT)
3.抛掷一枚硬币出现正面朝上的概率是 0.5, 所以将一枚硬币投掷10000次,出现正面 朝上的次数很有可能接近于5000次。
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。

高中数学必修3概率统计常考题型:系统抽样

高中数学必修3概率统计常考题型:系统抽样

【知识梳理】1.系统抽样的概念要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.2.系统抽样的步骤【常考题型】题型一、系统抽样的概念【例1】 (1)某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.[解析] (1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n (n ∈N *)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40. [答案] (1)C (2)40【类题通法】系统抽样的判断方法判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.【对点训练】某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了( )A .抽签法B .随机数表法C .系统抽样法D .放回抽样法解析:选C 此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n ,符合系统抽样特点.题型二、系统抽样的设计【例2】 (1)某初级中学领导采用系统抽样方法,从该校预备年级800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.[解析] ∵采用系统抽样方法,每16人抽取一个人,1~16中随机抽取一个数抽到的是7,∴在第k 组抽到的是7+16(k -1),∴从33~48这16个数中应取的数是7+16×2=39.[答案] 39(2)某企业对新招的504名员工进行岗前培训,为了了解员工的培训情况,试用系统抽样的方法按照下列要求抽取员工,请你写出具体步骤.①从中抽取8名员工,了解基本理论的掌握情况.②从中抽取50名员工,了解实际操作的掌握情况.[解] ①第一步,将504名员工随机编号,依次为001,002,003,…,503,504,将其等距分成8段,每一段有63个个体;第二步,在第一段(001~063)中用简单随机抽样方法随机抽取一个号码作为起始号码,比如26号;第三步,起始号+间隔的整数倍,确定各个个体:将编号为26,26+63,26+63×2,…,26+63×7的个体抽出组成样本.②第一步,用随机方式给每个个体编号:001,002,003,…,503,504;第二步,利用随机数表法剔除4个个体,比如剔除编号为004,135,069,308的4个个体,然后再对余下的500名员工重新编号,分别为001,002,003,…,499,500,并等距分成50段,每段10个个体;第三步,在第一段001,002,003,…,010中用简单随机抽样方法抽出一个号码(如006)作为起始号码;第四步,起始号+间隔的整数倍,确定各个个体,将编号为006,016,026,…,486,496的个体抽出组成样本.【类题通法】设计系统抽样应关注的几个问题(1)系统抽样一般是等距离抽取,适合总体中个体数较多,个体无明显差异的情况;(2)总体均匀分段,通常在第一段(也可以选在其他段)中采用简单随机抽样的方法抽取一个编号,再通过将此编号加段距的整数倍的方法得到其他的编号.注意要保证每一段中都能取到一个个体;(3)若总体不能均匀分段,要将多余的个体剔除(通常用随机数表的方法),不影响总体中每个个体被抽到的可能性.【对点训练】某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解:(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.题型三、简单随机抽样与系统抽样的综合问题【例3】某集团有员工1 019人,其中获得过国家级表彰的有29人,其他人员990人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人,如何确定人选?[解]获得过国家级表彰的人员选5人,适宜使用抽签法:其他人员选30人,适宜使用系统抽样法.(1)确定获得过国家级表彰的人员人选:①用随机方式给29人编号,号码为1,2, (29)②将这29个号码分别写在一个小纸条上,揉成小球,制成号签;③将得到的号签放入一个不透明的袋子中,搅拌均匀;④从袋子中逐个抽取5个号签,并记录上面的号码;⑤从总体中将与抽到的号签的号码相一致的个体取出,人选就确定了.(2)确定其他人员人选:第一步:将990名其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人; 第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码; 第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.(1),(2)确定的人选合在一起就是最终确定的人选.【类题通法】系统抽样与简单随机抽样的区别和联系1.区别(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈一定的周期性,可能会使抽样的代表性很差;(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上产品质量的检验,不知道产品的数量,因此不能用简单随机抽样.2.联系(1)将总体均分后的起始部分进行抽样时,采用的是简单随机抽样;(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;(3)与简单随机抽样一样是不放回的抽样;(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.【对点训练】下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数:1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,后两位数为12;确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改.(3)何处是用简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:取一张人民币,末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:取一张人民币,其末位数为2.【练习反馈】1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为( )A .抽签法B .随机数表法C .系统抽样法D .其他方式的抽样解析:选C 符合系统抽样的特点.2.从已编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,6,16,32 解析:选B 用系统抽样的方法抽取到的导弹编号应该为k ,k +d ,k +2d ,k +3d ,k +4d ,其中d =505=10,k 是1到10中用简单随机抽样方法得到的编号,因此只有选项B 满足要求. 3.将参加数学竞赛的1 000名同学编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,如果第1部分编号为0001,0002,…,0020,第1部分随机抽取的一个号码为0015,则抽取的第40个号码为________.解析:利用系统抽样的概念,若n 部分中在第1部分抽取的号码为m ,分段间隔为d ,则在第k 部分中抽取的第k 个号码为m +(k -1)d ,所以抽取的第40个号码为0 015+39×20=0 795.答案:0 7954.一个总体中有100个个体,随机编号0,1,2,…,99.依编号顺序平均分成10个组,组号依次为1,2,3,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为t ,则在第k 组中抽取的号码个位数字与t +k 的个位数字相同,若t =7,则在第8组中抽取的号码应该是________.解析:∵k =8,t =7,t +k =15,∴在第8组中抽取的号码是75.答案:755.为了了解某地区今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请写出用系统抽样抽取的过程.解:(1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分含100个个体.(3)在第一部分,即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个样本容量为150的样本.。

高中数学必修三概率知识点

高中数学必修三概率知识点

高中数学必修三概率知识点一、概述高中数学必修三中的概率知识点是数学学科的重要组成部分,也是日常生活和工作中经常涉及的重要内容之一。

概率论是研究随机现象的数学学科,通过对随机事件的分析和推断,揭示其内在规律和特点。

概率知识点作为高中数学必修三的重要内容,涉及概率的基本概念、事件的关系和运算、古典概型、几何概型以及离散型随机变量等知识点。

掌握这些知识点对于理解现实生活中的各种随机现象,进行科学合理的决策和风险评估具有重要意义。

在学习概率知识点时,需要掌握其基本概念和原理,学会运用概率思维解决实际问题,培养逻辑思维能力和数据处理能力。

概率知识点也是后续学习统计学、金融数学等学科的基础,对于提高数学素养和综合能力具有不可替代的作用。

1. 概率论的重要性概率论是数学的一个分支,用于研究随机现象的数量规律。

在高中数学必修三的学习中,概率知识点的重要性不容忽视。

它不仅仅是一门学科的核心内容,更是理解现实世界的一把钥匙。

在我们的日常生活中,无论是天气预测、金融投资、医学研究,还是游戏设计、风险评估等各个领域,概率知识都有着广泛的应用。

学习概率论不仅能够提高学生解决实际问题的能力,更能培养他们的逻辑思维和决策能力。

概率论是理解和预测随机事件的重要工具。

在日常生活和工作中,我们经常会遇到各种随机事件,比如抛硬币、抽奖等。

通过学习概率,我们可以知道这些随机事件的规律和趋势,从而更好地做出预测和决策。

其次val 序列深入式学习,概率论对于决策制定具有指导意义。

在金融投资领域,投资者可以通过学习概率知识,分析股票市场的走势和风险,从而做出更明智的投资决策。

在医学领域,医生可以根据疾病的发病率和患者的症状概率来做出诊断。

掌握概率知识对于个人和社会都具有重要意义。

它使我们能够更好地理解世界,做出明智的决策。

对于现代社会的发展,人们更需要有利用数学方法来理解世界的技能,这已成为我们教育的一大目标。

通过学习概率知识,学生可以为他们的未来生涯发展打下坚实的基础。

高中数学必修3概率统计常考题型:(整数值)随机数(random numbers)的产生.doc

高中数学必修3概率统计常考题型:(整数值)随机数(random numbers)的产生.doc

(整数值)随机数(random numbers)的产生【知识梳理】1.随机数的产生(1)标号:把n个大小,形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.3.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.【常考题型】题型一、随机数的产生方法【例1】某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.【类题通法】产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础(关键词:等可能).(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书(关键词:步骤与顺序).【对点训练】用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率.题型二、利用随机模拟法估计概率【例2】(1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35B.0.25C.0.20 D.0.15[解析]由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=1 4=0.25.故选B.[答案] B(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解]利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为930=0.3.【类题通法】利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n 个随机数表示时,要把n 个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.【对点训练】甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:0.367【练习反馈】1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2,小王抛两次,则出现的随机数之和为3的概率为( )A.12B.13C.14D.15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D .0.75解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75,故选D.3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n. (2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是mn.。

高中数学必修三第三章概率知识要点

高中数学必修三第三章概率知识要点

一、随机事件的概率1.事件与随机事件在一定条件下必然发生的事件叫;在一定条件下不可能发生的事件叫;在一定条件下可能发生也可能不发生的事件叫。

2.事件的频率与概率⑴若在n次试验中事件A发生了m次, 则称为事件A的频率。

记做。

二、⑵若随着试验次数n的增大, 事件A的频率总接近某个常数p, 在它的附近作微小摆动, 则称为事件A的概率, 记做, 显然。

三、 3.概率从数量上反映了一个事件的大小。

四、概率的基本性质1.事件的关系与运算:(1)互斥事件:若为, 则称事件与事件互斥。

(2)对立事件:若为, 为, 则称事件与事件互为对立事件。

2.概率的几个基本性质:(1)概率的取值范围是: 。

(2)的概率为1;的概率为0。

五、(3)如果事件与事件互斥, 那么。

六、(4)如果事件与事件对立, 那么;;。

七、古典概型1.古典概型的特征:(1):一次试验中, 基本事件只有有限个;八、(2): 每个基本事件发生的可能性都相等。

九、2、求古典概率的常用方法: 列举法与列表法。

十、几何概型1.几何概型的特征:(1)几何概型的基本事件有无穷多个;(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。

2.求几何概率用到的一个方法: 线性规划。

练习题:1.甲盒中有红, 黑, 白三种颜色的球各3个, 乙盒子中有黄, 黑, 白, 三种颜色的球各2个, 从两个盒子中各取1个球, 求取出的两个球是不同颜色的概率.2.设关于的一元二次方程, 若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.3.将一颗质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次, 将得到的点数分别记为.将的值分别作为三条线段的长, 求这三条线段能围成等腰三角形的概率.1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修三:概率与统计1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ). A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,32 2.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克B.360千克C.36千克D.30千克3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,84.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ). A.直线l1和l2一定有公共点(s,t)B.直线l1和l2相交,但交点不一定是(s,t) C.必有直线l1∥l2 D.直线l1和l2必定重合5..设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确的是( ).A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg6.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大 B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大 C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小 D .以上说法都不对7、.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则( )(A) A x >B x ,sA >sB(B) A x <B x ,sA >sB (C) A x >B x ,sA <sB(D) A x <B x ,sA <sB8.山东采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 (A )7 (B ) 9 (C ) 10 (D )19某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( )(A )7 (B )15 (C )25 (D )3510..样本(12,,,n x x x L )的平均数为x ,样本(12,,m y y y L )的平均数为()y x y ≠,若样本(12,,,n x x x L ,12,,m y y y L )的平均数(1)z ax a y =+-,其中102α<<,则n ,m 的大小关系为( )A .n m < B .n m > C .n m = D .不能确定11.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法12 .总体有编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A .08B .07C .02D .0113.假设学生在初一和初二数学成绩是线性相关的.若10个学生初一数学分数(x)和初二数学分数(y)如下:x 74 71 72 68 76 73 67 70 65 74 y76757170767965776272初一和初二数学分数间的回归方程为___________.14.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A.31B.41C.21 D.32 15.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( )A. 1 B.21 C.31 D.32 16一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出 一球,则取出的两个球同色的概率是( )A.21 B.31 C.41 D.5217现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放 一个球,则K 或S 在盒中的概率是( )A.101 B.53 C.103 D.109 18、甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A318B 418C 518D 61819、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( )(A )45(B)35(C )25(D)1520 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为 ( )A.15 B.25 C.35 D.4521.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎨⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18 B.14 C.34 D.7822.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C )6π(D )44π-23..如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π- B .112π- C .2πD .1π24. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为( ) A .16B .13C .23D .4525从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据( )的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则A .x x <甲乙,m 甲>m 乙B .x x <甲乙,m 甲<m 乙 C .x x >甲乙,m 甲>m 乙D .x x >甲乙,m 甲<m 乙26. 右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( ) A .1000N P =B .41000N P =C .1000M P =D .41000M P = 27 .节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A .14B .12C .34D .7828.利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________29.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 30.在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.31 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是___________24. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________35.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是______________。

38.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).39.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有_______条鱼. 40、三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 。

41、某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .42、加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ . 43、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。

由图中数据可知a = 。

若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。

44、 设平顶向量m a = ( m , 1), n b = ( 2 , n ),其中 m , n ∈{1,2,3,4}.(I )请列出有序数组( m ,n )的所有可能结果;(II )记“使得ma ⊥(m a -nb )成立的( m ,n )”为事件A ,求事件A 发生的概率。

相关文档
最新文档