椭圆常考题型汇总及练习进步

合集下载

椭圆题型及方法总结

椭圆题型及方法总结

椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。

2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。

3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。

4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。

5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。

6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。

以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。

椭圆27种常考经典题型及方法

椭圆27种常考经典题型及方法

椭圆27种常考经典题型及方法
很多学生都说,青颜整理的63套高中数学解题方法很实用,特别针对了解答题类。

很多学生很期待,青颜能出一套关于高中数学选择填空破题方面的方法。

今天开始,我们就开始更新一系列高中数学选择填空破题微方法大全,而椭圆是常见常考的一个考点!下面是
椭圆27种常考经典题型及方法!
今天我们研究椭圆的定义(第一定义),“平面内与两个定点的距离之和等于定长的动点轨迹” (定长大于两定点之间的距离)是椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点F i F 2距离和等于常数 2a (大于F^2 )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 2c .椭圆的几何性质:以2 2务每 1 a b 0为例a b2 2X y1. 范围:由标准方程可知,椭圆上点的坐标X, y 都适合不等式 — 1,召 1,即a bx a, y b 说明椭圆位于直线 xa 和yb 所围成的矩形里(封闭曲线) .该性质主要用于求最值、轨迹检验等问题 .2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

4.长轴、短轴:5.离心率椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关. 2 2a ,从而b ac 越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而b 越大,椭圆越接近圆。

2b 26. 通径(过椭圆的焦点且垂直于长轴的弦) ,——a7. 设F 1、F 2为椭圆的两个焦点, P 为椭圆上一点,当P 、F 1、F 2三点不在同一直线上时,3.顶点(椭圆和它的对称轴的交点)有四个:Aa,0、 A^ a,0、B i 0, b 、B 2 0, b .AA2叫椭圆的长轴,A 1A 22a, a 是 长半轴长;B 1B 2叫椭圆的短轴,B-|B 2 2b,b 是短半轴长.(1) 椭圆焦距与长轴的比 ea c 0,(2)Rt OB 2F 2, B 2F 2OB 22OF 2 ,即 a 2 b 22c .这是椭圆的特征三角形,并且cos OF 2B 2的值是椭圆的离心率.近于 .当e 接近于1时,c 越接P 、F ,、F 2构成了一个三角形一一焦点三角形.依椭圆的定义知:PF i PF 2 2a, F 1F 2 2c .(二) 运用的知识点及公式 1、 两条直线I ,: y k ,x bi ,l 2: y k 2x b>垂直:则k i k 2 1 ;两条直线垂直,则直线所在的向量£&222、 韦达定理:若一元二次方程ax bx c 0(a 0)有两个不同的根 x ,,X 2,贝yb cx , x 2, x , x 2 a a3、 中点坐标公式:x 已 x 2 ,y 出 y 2 ,其中x, y 是点A(x ,, y ,), B(x 2, y 2)的中点坐标 2 24、 弦长公式:若点 A(x i ,y i ), B(X 2,y 2)在直线 y kx b(k 0) 上, 则y , kx , b, y kx ? b ,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB | ./(x , x 2)2~(y ,_竜(x , x 2)2 (kx , kx 2)2k 2)(x ,①2, (, ^)[(x ,X 2)? 4x ,X 2】或者AB (x x>)2(y y(三) 转方向:方向一:向斜率转化,变为函数最值及最优解问题,或者变为不等式问题 方向二:向距离转化, 2(,k 2)[(y , y 2) 4y ,y 2]。

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)椭圆题型总结一、椭圆的定义和方程问题(一)定义:PA+PB=2a>2c1.命题甲:动点到两点的距离之和命题乙: 的轨迹P B A ,);,0(2常数>=+a a PB PA P 是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知、是两个定点,且,若动点满足则动点的轨迹1F 2F 421=F F P 421=+PF PF P 是()A.椭圆B.圆C.直线D.线段3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得1F 2F P P F 1Q ,那么动点的轨迹是( )2PF PQ =Q A.椭圆 B.圆 C.直线 D.点4.已知、是平面内的定点,并且,是内的动点,且1F 2F α)0(221>=c c F F M α,判断动点的轨迹.a MF MF 221=+M 5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中192522=+y x M 1F N 1MF O 心,则的值是。

ON (二)标准方程求参数范围若方程表示椭圆,求k 的范围.(3,4)U (4,5)13522=-+-k y k x 2.( )轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知方程表示焦点在Y 轴上的椭圆,则实数m 的范围是.112522=-+-m y m x 4.已知方程表示焦点在Y 轴上的椭圆,则实数k 的范围是 .222=+ky x 5.方程所表示的曲线是.231y x -=6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。

222=+ky x y k 7.已知椭圆的一个焦点为,求的值。

06322=-+m y mx )2,0(m 8.已知方程表示焦点在X 轴上的椭圆,则实数k 的范围是.=+ky x (三)待定系数法求椭圆的标准方程1.根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;P (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求)2,3(),1,6(21--P P 椭圆方程.2.以和为焦点的椭圆经过点点,则该椭圆的方程)0,2(1-F )0,2(2F )2,0(A 为。

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学 - 椭圆常考题型汇总及练习第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义 :平面内与两定点 F 1、F 2 距离和等于常数 2a (大于 F 1F 2 )的点的轨迹叫做椭圆 . 两个定点 叫做椭 圆的焦 点;两焦 点间的 距离叫 做椭圆的 焦距 2c . 椭圆的几 何性质 : 以 22x2y 2 1 a b 0 为例a2 b 222xy1. 范围: 由标准方程可知,椭圆上点的坐标 x,y 都适合不等式 2 1, 2 1,即 abx a, y b 说明椭圆位于直线 x a 和 y b 所围成的矩形里(封闭曲线) .该性质主要用 于求最值、轨迹检验等问题 .2.对称性 :关于原点、 x 轴、 y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

4. 长轴、短轴:5. 离心率3. 顶点(椭圆和它的对称轴的交点)有四个: A 1a,0 、 A 2 a,0 、 B 1 0, b 、 B 2 0,b .A 1A 2 叫椭圆的长轴, A 1A22a, a 是 长半轴长; B 1B 2 叫椭圆的短轴,B 1B22b,b 是短半轴长 .1) 椭圆焦距与长轴的比 e a c 0,0e2) Rt OB 2F 2 , B 2F 2OB 22OF 2 ,即a 2b 22c 2 .这是椭圆的特征三角形,并cos OF 2B 2 的值是椭圆的离心率 .椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关 .当 e 接近于 1 时, c 越接近于 22a,从而b ac 越小,椭圆越扁; 当 e 接近于 0 时,c 越接近于 0,从而 b22ac越大,椭圆越接近圆。

2b 2 6.通径(过椭圆的焦点且垂直于长轴的弦) ,2ba7.设 F 1、 F 2 为椭圆的两个焦点, P 为椭圆上一点,当 P 、 F 1、F 2 三点不在同一直线上时,P 、 F 1、 F 2 构成了一个三角形——焦点三角形 . 依椭圆的定义知:PF 1 PF 2 2a, F 1F 2 2c .(二) 运用的知识点及公式1、两条直线 l 1: y k 1x b 1,l 2: y k 2x b 2 垂直:则 k 1k 21;两条直线垂直,则直线所在的向量 v r 1 gv r2 022、韦达定理:若一元二次方程 ax bx c 0(a 0) 有两个不同的根 x 1,x 2,则 bcx 1 x 2,x 1x 2 。

(完整版)椭圆大题题型汇总例题+练习

(完整版)椭圆大题题型汇总例题+练习

椭圆大题题型解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等运用的知识:x?xy?y1212A(x,y),B(x,y)?,y x?yx,的中点坐,其中1、中点坐标公式:是点221122标。

)(),Bx,yxA(,y0)k??b(y?kx在直线上,2、弦长公式:若点2112b?kx??y?kxb,y则,这是同点纵横坐标变换,是两大坐标变换技巧之一,2121222222)?kx)(kx?kx)x?))?(y?y(1?(x?x)??(?AB(x?x212121122122?4x)x?k])[(x?x?(1211211122222)yy??(1?)((x?x)??(yAB?y)(x?xy?(y?))?或者22211212112kkk12)[(y?y)?4?(1?yy]。

12122kl:y?kx?b,l:y?kx?bkk??1、两条直线垂直:则321121122rrg v0v?两条直线垂直,则直线所在的向量1220)0(a??axbx?c?x,x则:,同的根不次元若一二方程有两个理达、4韦定21bcx?x??,xx?。

2211aa常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,。

用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)2xy?l轴上是否存在一点两点,在x交于A、例题1、过点T(-1,0)作直线与曲线N :B xx ABE?,使得是等边三角形,若存在,求出;若不存在,请说明理由。

E(,0)002x21?y?OF已知椭圆例题2的左焦点为,、为坐标原点。

椭圆的复习(基本知识+常考题型)

椭圆的复习(基本知识+常考题型)

椭圆基本知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点12,F F 距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集2121{||||2,2||2}M P PF PF a a F F c =+=>=,这里两个定点12,F F 叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(若1212||||||PF PF F F +=时,P 的轨迹为线段21F F ;若1212||||||PF PF F F +<,则无轨迹)。

2.标准方程: ①焦点在x 轴上:22221(0)x y a b a b+=>>; 焦点12(,0),(,0)F c F c -②焦点在y 轴上:22221(0)y x a b a b+=>>; 焦点12(0,),(0,)F c F c -注意:①在两种标准方程中,总有0a b >>,且222ca b =-;②两种标准方程可用一般形式表示:221x y m n+= 或221mx ny += 二.椭圆的简单几何性质:1.范围:(1)椭圆22221(0)x y a b a b+=>>横坐标a x a -≤≤ ,纵坐标b y b -≤≤(2)椭圆22221(0)y x a b a b+=>> 横坐标b x b -≤≤,纵坐标a y a -≤≤2.对称性:椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.椭圆的顶点:椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率:我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),2221()c b e aa==-0e =是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

椭圆大题题型及方法总结

椭圆大题题型及方法总结

椭圆大题题型及方法总结
椭圆在大题中的题型一般有以下几种:
1. 求椭圆方程:这是基础中的基础,可以直接设方程,也可以根据已知条件设方程。

2. 探究椭圆的性质:例如探究椭圆的焦点位置、焦距大小、离心率等性质。

3. 求椭圆上的点的坐标:通常会涉及到椭圆上的点与其他图形的关系,例如与直线、圆、柱形等的关系。

4. 用韦达定理求解椭圆的问题:韦达定理是椭圆考试中的一个重要知识点,通常会在第 2 问或第 3 问中使用。

5. 与三角形相关的问题:椭圆通常会与三角形联系起来,涉及到三角形的面积、周长、角度等问题。

6. 探究椭圆与其他图形的关系:例如椭圆与圆的关系、椭圆与直线的关系等。

针对以上题型,有一些常用的方法和技巧,例如:
1. 画图是一个必不可少的步骤,有助于更好地理解题意和解决问题。

2. 熟悉椭圆的定义和性质,有助于更好地解答题目。

3. 韦达定理是椭圆考试中的一个重要知识点,需要熟练掌握。

4. 注意椭圆与其他图形的关系,例如椭圆与直线的关系、椭圆与圆的关系等,可能需要使用勾股定理、余弦定理等知识。

5. 考试中需要仔细阅读题目,理解题意,抓住关键信息,有针
对性地解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a by a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a Θ (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =r rg2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

3、中点坐标公式:1212,y 22x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB =或者AB =第二部分:椭圆常考题型解题方法典例一、椭圆定义相关题目例1、已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例2、已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.解:方程可化为1cos 1sin 122=+ααy x . 因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b .(3)求α的取值范围时,应注意题目中的条件πα<≤0.例3、 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须用点直线对称就可解决.解:如图所示,焦点为()031,-F ,()032,F .F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c , ∴()3635322222=-=-=c a b.因此,所求椭圆的方程为1364522=+y x . 二、椭圆与直线的位置关系及弦长相关题目 例4、 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m . 解得0=m .方程为x y =.说明:对比直线与椭圆和直线与圆的位置关系问题及有关弦长问题的解题方法?.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 例5、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 解:(法1)利用直线与椭圆相交的弦长公式求解.1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x , 设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中, 用余弦定理得346+=n ,所以1348=+=n m AB . (法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.三、轨迹方程相关题目例6、 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 例7、 已知椭圆1222=+y x , (1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQOP k k ,求线段PQ中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则(1)将21=x ,21=y 代入⑤,得212121-=--x x y y , (2)故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y, 0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求. (2)将22121=--x x y y 代入⑤得所求轨迹方程为:04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤ 得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得:()2222212221=+++y y x x , ⑦, 将③④平方并整理得212222124x x x x x -=+, ⑧,212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得:221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x . 例8、 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹. 解:1422=+y x .说明:此题是利用相关点法求轨迹方程的方法,具体做法:首先设动点的坐标为),(y x , 设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系,从而由这些等式关系求出0x 和0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程,化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例9、 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程. 分析:“设而不求”法解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程, 整理 036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根, ∴14)24(8221+-=+k k k x x ∵)2,4(P 为AB 中点, ∴14)24(424221+-=+=k k k x x ,21-=k .∴所求直线方程为082=-+y x .方法二:(点差法)设直线与椭圆交点),(11y x A ,),(22y x B . ∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y . 又∵A ,B 在椭圆上,∴3642121=+y x ,3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x ,即0))((4))((21212121=-++-+y y y y x x x x .∴21)(4)(21212121-=++-=--y y x x x x y y .∴直线方程为082=-+y x .方法三:(数形结合)设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --. ∵A 、B 在椭圆上,∴36422=+y x ①。

相关文档
最新文档