统计学 《独立性检验》

合集下载

第1章 1.1 独立性检验

第1章 1.1 独立性检验

上一页
返回首页
下一页
(2)由 2×2 列联表中数据,计算得到 χ2 的观测值为
2 1 500 × 982 × 17-493 × 8 χ2= ≈13.097>10.828, 990×510×1 475×25
因此在犯错误的概率不超过 0.001 的前提下, 认为质量监督员甲是否在生产 现场与产品质量有关.
上一页
返回首页
下一页
[再练一题] 1.某电视公司为了研究体育迷是否与性别有关,在调查的 100 人中,体育迷 75 人,其中女生 30 人,非体育迷 25 人,其中男生 15 人,请作【解】 体育迷 非体育迷 合计 男 女 合计 45 30 75 15 10 25 60 40 100
1.在 2×2 列联表中,若每个数据变为原来的 2 倍,则 χ2 的值变为原来的 ________倍.
【提示】 两种说法均正确.P(χ2≥6.635)≈0.01 的含义是在犯错误的概率不 超过 0.01 的前提下认为两个变量相关;而 P(χ2≥7.879)≈0.005 的含义是在犯错 误的概率不超过 0.005 的前提下认为两个变量相关.
上一页
返回首页
下一页
为了调查某生产线上质量监督员甲对产品质量好坏有无影响, 现统 计数据如下:甲在生产现场时,990 件产品中有合格品 982 件,次品 8 件;甲不 在生产现场时,510 件产品中有合格品 493 件,次品 17 件.试分别用列联表、独 立性检验的方法分析监督员甲对产品质量好坏有无影响 .能否在犯错误的概率不 超过 0.001 的前提下,认为质量监督员甲是否在生产现场与产品质量有关?
无关系的可能性就越小.
【答案】 (2)
上一页 返回首页 下一页
2.式子|ad-bc|越大,χ2 的值就越________.(填大或小) 【解析】 由 χ2 的表达式知|ad-bc|越大,(ad-bc)2 就越大,χ2 就越大. 【答案】 大

《独立性检验》

《独立性检验》

《独立性检验》一、内容与内容解析《独立性检验》为新课标教材中新增加的内容. 虽然本节是新增内容,理论比较复杂,教学时间也不长(1-2课时),但由于它贴近实际生活,在整个高中数学中,地位不可小视.在近几年各省新课标高考试题中,本节内容屡屡出现,而且多以解答题的形式呈现,其重要性可见一斑.该内容是前面学生在《数学3》(必修)中的统计知识的进一步应用,并与本册课本前面提到的事件的独立性一节关系紧密,此外还涉及到与《数学2-2》(选修)中讲到的“反证法”类似的思想.本小节的知识内容如右图。

“独立性检验”是在考察两个分类变量之间是否具有相关性的背景下提出的,因此教材上首先提到了分类变量的概念,并给出了考察两个分类变量之间是否相关的一种简单的思路,即借助等高条形图的方法,随后引出相对更精确地解决办法——独立性检验。

独立性检验的思想,建立在统计思想、假设检验思想(小概率事件在一次试验中几乎不可能发生)等基础之上,通常按照如下步骤对数据进行处理:明确问题→确定犯错误概率的上界α及2K 的临界值0k →收集数据→整理数据→制列联表→计算统计量2K 的观测值k →比较观测值k 与临界值0k 并给出结论.本节的重点内容是通过实例让学生体会独立性检验的基本思想,掌握独立性检验的一般步骤.二、目标与目标解析本节课的教学目标是主要有:1.理解分类变量(也称属性变量或定性变量)的含义,体会两个分类变量之间可能具有相关性;2.通过对典型案例(吸烟和患肺癌有关吗?)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法、步骤及应用。

3.鼓励学生体验用多种方法(等高条形图法与独立性检验法)解决同一问题,并对各种方法进行比较。

4.让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性(如统计可能犯错误,原因可能是收集的数据样本容量小或样本采集不合理,也可能是理论上的漏洞,如在一次实验中,我们假设小概率事件不发生,这一点本身就值得质疑). 其中第2条是重点目标,也是《课程标准》中明确指出的教学要求之一. 三、教学问题诊断分析基于对学生已有数学水平的分析,在本节新学内容时,有以下几点是初学者不易理解或掌握的:1.2K 的结构比较奇怪,来的也比较突然,学生可能会提出疑问.关于这个问题的处理,要首先利用好前面对“比例”或者两个分类变量“独立”的分析。

独立性检验资料

独立性检验资料
250 200 150 100
50 0
不患患肺病癌 患患病肺癌
吸烟 不吸烟
三维柱 状图
不吸烟 吸烟
2) 经过图形直观判断
350 300 250 200 150 100
50 0 不吸烟
吸烟
二维条 形图
患肺病癌 不患患肺病癌
3)经过图形直观判断
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
5、下结论
已知在 H0成立旳情况下,
P( 2 11.8634) 0.001以下
故有99.9%旳把握以为H0不成立,即有99.9% 旳把握以为“患呼吸道疾病与吸烟有关系”。
网络链接——检验成果
DNA亲子鉴定旳原理和程序
DNA是从几滴血,腮细胞或培养旳组织纤内提取而 来.用畴素将DNA样本切成小段,放进喱胶内,用电泳槽推动 DNA小块使之分离--最细旳在最远,最大旳近来. 之後, 分 离开旳基因放在尼龙薄膜上,使用尤其旳DNA探针去寻找基 因, 相同旳基因会凝聚于一,然後,利用尤其旳染料,在X光 旳环境下,便显示由DNA探针凝聚于一旳黑色条码.小孩这 种肉眼可见旳条码很尤其 ----二分之一与母亲旳吻合,二 分之一与爸爸旳吻合.这过程重覆几次,每一种探针用于寻 找DNA旳不同部位并影成独特旳条码,用几组不同旳探针, 可得到超出99,9%旳父系或然率或辨别率.
患其他病 175 597 772
总计 389 1048 1437
600 500 400 300 200 100
0 患心脏病 患其他病
不秃顶 秃顶
秃顶 不秃顶
2 1437 (214 597 175 451)2 16.373 6.635
3891048 665 772 有99%旳把握以为“秃顶与患心脏病有关”

统计学中的独立性检验

统计学中的独立性检验

统计学中的独立性检验统计学中的独立性检验(Test of Independence)是一种常用的统计方法,用于研究两个或多个分类变量之间是否存在相互独立的关系。

通过对随机抽样数据进行分析,可以判断不同变量之间是否有关联,并衡量关联的强度。

本文将介绍独立性检验的基本原理、常用的检验方法以及实际应用。

一、独立性检验的基本原理独立性检验的基本原理是基于统计学中的卡方检验(Chi-Square Test)。

卡方检验是一种非参数检验方法,用于比较观察值频数与期望频数之间的差异。

在独立性检验中,我们首先建立一个原假设,即所研究的两个或多个变量之间不存在关联,然后通过计算卡方统计量来判断观察值与期望值之间的差异是否显著。

二、常用的独立性检验方法1. 皮尔逊卡方检验(Pearson's Chi-Square Test):这是最常见的独立性检验方法,适用于有两个以上分类变量的情况。

它基于观察频数和期望频数之间的差异,计算出一个卡方统计量,并根据卡方分布表给出显著性水平。

2. Fisher精确检验(Fisher's Exact Test):当样本量较小或者某些期望频数很小的情况下,皮尔逊卡方检验可能存在一定的偏差。

在这种情况下,可以使用Fisher精确检验来代替皮尔逊卡方检验,得到更准确的结果。

3. McNemar检验:适用于配对数据比较的独立性检验,例如一个样本在两个时间点上的观察结果。

三、独立性检验的实际应用独立性检验在各个领域都有广泛的应用,以下是几个常见的实际应用场景:1. 医学研究:独立性检验可以用于研究某种药物治疗方法是否具有显著的疗效,或者判断不同年龄组和性别之间是否存在患病率的差异。

2. 教育领域:独立性检验可用于研究学生成绩与家庭背景、教育水平之间是否存在关联。

3. 市场调研:在市场调研中,可以通过独立性检验来分析不同年龄、性别、收入水平等因素对消费者购买习惯的影响。

4. 社会科学研究:独立性检验可以帮助社会科学研究人员探索个体特征与社会行为之间的关系,例如政治倾向与不同年龄群体之间的关联性等。

高中数学选修课件第一章:独立性检验

高中数学选修课件第一章:独立性检验

注意事项与误区提示
在进行独立性检验前,需要确保样本 的随机性和代表性,以避免因样本偏 差导致结果失真。
需要注意的是,独立性检验只能判断 两个变量之间是否存在统计上的独立 性,并不能说明它们之间是否存在因 果关系或其他形式的关联。
在解读结果时,需要注意概率值(p 值)或临界值表的具体含义和适用条 件,避免误用或滥用。
高中数学选修课件第一 章:独立性检验
汇报人:XX 20XX-01-30
contents
目录
• 独立性检验基本概念 • 独立性检验基本思想解读 • 独立性检验方法介绍及应用场景分析 • 独立性检验结果解读与注意事项 • 独立性检验在统计学中地位和作用 • 高中数学选修课程中其他相关知识点回
顾与拓展
01
在实际应用中,还需要结合其他统计 方法和专业知识进行综合分析和判断 。
05
独立性检验在统计学中地位和作用
独立性检验在统计学中地位
独立性检验是统计学 中一种重要的假设检 验方法。
在数据分析、市场调 研、医学研究等领域 具有广泛应用。
它用于判断两个或多 个分类变量之间是否 相互独立。
独立性检验对后续统计分析影响
高中数学选修课程中其他相关知识点梳理
排列组合与二项式定理
回顾排列组合的基本概念、计算公式及应用,掌握二项式定理的展开式及通项公式的应 用。
概率与统计的综合应用
梳理概率与统计在高中数学选修课程中的综合应用,如概率与统计在解决实际问题中的 结合,以及概率与统计在其他数学知识点中的交叉应用等。
数学建模与数学探究
独立性检验的基本思想
通过抽样调查获取数据,根据样本数据来判断两个分类变量 是否独立。
独立性检验的方法
通常采用列联表的形式整理数据,然后计算相关统计量的值 (如χ²值),并根据统计量的值及给定的显著性水平作出判 断。

《独立性检验》课件

《独立性检验》课件
第三章 统计案例
3.2独立性检验的 基本思想及其初 步应用
两种变量:
定量变量:体重、身高、温度、考试成绩等等。
变量 分类变量:性别、是否吸烟、是否患肺癌、
宗教信仰、国籍等等。
研究两个变量的相关关系:
定量变量——回归分析(画散点图、相关系数r、
变量
相关指数R 2、残差分析)
分类变量—— 独立性检验
1%把握认为A与B无关
99%把握认为A与B有关
5%把握认为A与B无关
95%把握认为A与B有关
10%把握认为A与B无关 90%把握认为A与B有关
没有充分的证据判定A与B有关,可以认为A与B无关
独立性检验的步骤
第一步:设H0: 吸烟和患病之间没有关系
第二步:列出2×2列联表
吸烟 不吸烟
总计
患病 a c
366
874
K 2 2486.1225.
合计 360 880
1240
本 小 节 的 知 识 内 容 如 右 图
其中说法正确的个数为( )
A.0
B.1
C.2
D.3
[答案] B
[解析] 根据独立性检验的意义,知③正确.
2.下列关于 χ2 的说法中正确的是( ) A.χ2 越大,“变量 A、B 有关联”的可信度越小 B.χ2 越大,“变量 A、B 无关”的可信度越大 C.χ2 越小,“变量 A、B 有关联”的可信度越小 D.χ2 越小,“变量 A、B 无关”的可信度越小 [答案] C [解析] χ2 越大,“变量 A,B 有关联”的可信度越大,“变 量 A,B 无关”的可信度越小;相反,χ2 越小,“变量 A,B 有 关联”的可信度越小,“变量 A,B 无关”的可信度越大.
(1)列出数学与物理优秀的2x2列联表如下

《独立性检验》同步课件

《独立性检验》同步课件
A.%
B.%
C.. %
D.. %
解析:由于. > . ,故在犯错误的概率不超过0.025的前提下认为
“文化程度与月收入有关系”,即有. %的把握认为“文化程度与月收入
有关系”.
答案: D
4.为了解某班学生是否喜爱打篮球与性别是否有关,对该班50名学生进行
了问卷调查,得到了如下的 × 列联表,
表:
将列联表中数据代入
×(×−×)
×××
=
(−)
计算得观测值
(+)(+)(+)(+)
≈ . .附表:
=
参考附表,得到的结论正确的是( )
A.有%以上的把握认为“是否爱好该项运动与性别有关”
B.有%以上的把握认为“是否爱好该项运动与性别无关”
根据关于智商的表中的数据计算得
=
×(×−×)
×××
=
×(×−×)
×××
=
×(×−×)
×
=
=


=


≈ . .
=


= . .
C.在犯错误的概率不超过. %的前提下,认为“是否爱好该项运动与性别有关”
D.在犯错误的概率不超过. %的前提下,认为“是否爱好该项运动与性别无关”
解析:由 ≈ . 及 ⩾ . = . 可知,在犯错误的概率不超过
%的前提下认为“是否爱好该项运动与性别有关”,也就是有%以上的
×(×−×)
×××
=


因为. < . < . < . ,
所以与性别有关联的可能性最大的变量是阅读量. 答案:
≈ . .
≈ . .

《独立性检验》课件

《独立性检验》课件
ad bc
独立性检验 ad bc 0.
ad - bc 越小,说明吸烟与患肺癌之间的关系越弱, ad - bc 越大,说明吸烟与患肺癌之间的关系越强
引入一个随机变量:卡方统计量
K
2
n ad bc a b c d a c b d 其中n a b c d
结论的可靠 程度如何?
吸烟与呼吸道疾病列联表 患呼吸道疾 不患呼吸道 病 疾病 吸烟 不吸烟 总计 a c a+c b d b+d
总计
a+b c+d a+b+c+d
a 吸烟的人中患肺癌的比例: a b c 不吸烟的人中患肺癌的比例: cd
若H0成立
a c ≈ , a+b c+d
a c+d ≈c a + b ,
类2
b
总计 a+b
c
a+c
d
b+d
c+d
a+b+c+d
要推断“Ⅰ和Ⅱ有关系”,可按下面的步骤进行:
(1)提出假设H0 :Ⅰ和Ⅱ没有关系;
2 K (2)根据2× 2列表与公式计算 的值;
(3)查对临界值,作出判断。
由于抽样的随机性,由样本得到的推断 有可能正确,也有可能错误。利用 K 2 进 行独立性检验,可以对推断的正确性的概 率作出估计,样本量n越大,估计越准确。
7)如果P(m≤2.706),就认为没有充分的证据显示”X与Y”有关系;
用K 统计量研究这类问题的方法称为独立性检验。
2
一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类 取值,即类A和B(如吸烟与不吸烟);Ⅱ也有两类 取值,即类1和2(如患病与不患病)。于是得到 下列联表所示的抽样数据:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
未感冒 使用血清 未使用血清 合 计 感冒 合 计
258 216 474
242 284 526
500 500 1000
数据处理
为研究不同的给药方式( 例2 为研究不同的给药方式(口服与注 和给药的效果(有效与无效) 射)和给药的效果(有效与无效)是否有 进行了相应的抽样调查, 关,进行了相应的抽样调查,调查结果如 下表,根据所选择的193个病人的数据, 个病人的数据, 下表,根据所选择的 个病人的数据 能否作出药的效果与给药方式有关的结论。 能否作出药的效果与给药方式有关的结论。
有 效 口 服 注 射 合 计 无 效 合 计
58 64 122
40 31 71
98 95 193
数据处理
小 结
1.独立性检验的基本思想类似于反证法.即 1.独立性检验的基本思想类似于反证法. 检验要判断的是: 检验要判断的是:样本数据是否提供了不 利于断言的证据; 利于断言的证据; 2.掌握独立性检验的基本方法; 2.掌握独立性检验的基本方法; 3.独立性检验得出的是结论成立的把握程 3.独立性检验得出的是结论成立的把握程 度,是纯统计上的关系,里面不存在因果关 是纯统计上的关系, 系.
成立的条件下,患病且吸烟的人数为 在H0成立的条件下 患病且吸烟的人数为
a + b a + c (a + b)(a + c) n × P ( AB ) ≈ n ⋅ ⋅ = n n n
行总和 表总和 列总和
独立性检验定义: 独立性检验定义:
用 χ 统计量研究上述这类问
2
题的方法称为独立性检验
独立性检验的基本方法 一般地,对于两个研究对象Ⅰ 一般地,对于两个研究对象Ⅰ 和Ⅱ, Ⅰ有两类取值,既类A和 有两类取值,既类A 也有类1和类2两类, 类B, Ⅱ也有类1和类2两类,由 下表: 下表: Ⅱ 类1 类2
独立性检验
(了解即可) ♣ χ 2检验的自由度 = (行数 − 1) × (列数 − 1)
为什么2×2列联表只有一个自由度?
患 病 吸 烟 不吸烟 合 计 未患病 合 计 220 295 515
58
457
对于丢失的四个数据,需要知道几个就可补 齐这张表?
例1 在500人身上试验某种血清预防感冒 500人身上试验某种血清预防感冒 的作用, 的作用,把他们一年中的感冒记录与另外 500名未用血清的人的感冒记录作比较 500名未用血清的人的感冒记录作比较, 名未用血清的人的感冒记录作比较, 结果如表所示, 结果如表所示,问:该种血清能否起到预 防感冒的作用? 防感冒的作用?
根据这些数据能否断定:患呼吸道疾病与吸烟有关? 根据这些数据能否断定:患呼吸道疾病与吸烟有关?
独立性检验
♣ 有无关系?——直观判断 有无关系?
患 病 吸 烟 不吸烟 合 计 37 21 58 患 病 吸 烟 不吸烟 16.82% 7.12% 未患病 183 274 457 未患病 83.18% 92.88% 合 计 220 295 515 合 计(n) 100%(220) 100%(295)
沙洲中学数学组
1 .1
独立性检验
某医疗机构为了了解呼吸道疾病与吸烟是否有 进行了一次抽样调查,共调查了515个成年人 个成年人, 关,进行了一次抽样调查,共调查了515个成年人, 其中吸烟者220人 不吸烟者295人 调查结果是: 其中吸烟者220人,不吸烟者295人,调查结果是: 吸烟的220人中有 人患呼吸道疾病 人中有37人患呼吸道疾病( 吸烟的220人中有37人患呼吸道疾病(以下简称患 ),183人未患呼吸道疾病 以下简称未患病); 人未患呼吸道疾病( 病),183人未患呼吸道疾病(以下简称未患病); 不吸烟的295人中有 人患病 274人未患病 人中有21人患病, 人未患病。 不吸烟的295人中有21人患病,274人未患病。
结论:吸烟者与不吸烟者患病的可能性存在差异 结论:

独立性检验
吸 烟 不吸烟 患 病 a c 未患病 b d 合 计 a+b c+d
合 计
a+c
b+d
n(=a + b + c + d) =
事件A——某人吸烟 某人吸烟 事件 事件 A ——某人不吸烟 某人不吸烟 事件B——某人患病 事件 某人患病 事件 B ——某人未患病 某人未患病 a+b a+c P ( A) ≈ P( B) ≈ n n 假设 H 0 :患病与吸烟没有关系 P ( AB) = P ( A) ⋅ P ( B )
推断Ⅰ与Ⅱ有关系, 推断Ⅰ 有关系 按如下步骤: 按如下步骤 ⑴提出假设 H0: Ⅰ与Ⅱ没有关系 ⑵根据2×2列联表 根据 × 列联表 χ 2的值 与公式计算
合计
a b a+b 类 ⑶查对临界值,作出 查对临界值 作出 Ⅰ A 判断. 判断 c d c+d 类 B 合计 a+c b+d a+b+c+d
相关文档
最新文档