广工半导体热敏电阻温度特性的研究

合集下载

热敏电阻温度特性研究实验教案

热敏电阻温度特性研究实验教案

热敏电阻温度特性研究实验一、实验简介热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。

与一般常用的金属电阻相比,它有大得多的电阻温度系数值。

热敏电阻作为温度传感器具有用料省、成本低、体积小等优点,可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。

本实验的目的是了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。

二、实验原理1.半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:R=Ae B/T(1) A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:α=1R tdRdT(2) R t是在温度为t时的电阻值。

2.惠斯通电桥的工作原理,如图所示:惠斯通电桥原理图四个电阻R1,R2,R3,R x组成一个四边形,即电桥的四个臂,其中R x就是待测热敏电阻。

在四边形的一对对角A和C之间连接电源,而在另一对对角B和D 之间接入检流计G。

当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。

平衡时必有R x=(R2/R1)∙R3,(R2/R1)和R3都已知,R x即可求出。

电桥灵敏度的定义为:S=∆n∆R x/R x(3) 式中∆R x指的是在电桥平衡后R x的微小改变量,∆n越大,说明电桥灵敏度越高。

三、实验内容1.用箱式电桥研究热敏电阻温度特性(1)使用内接电源和内接检流计,按照实验电路图连线。

(2)线路连接好以后,检流计调零。

(3)调节直流电桥平衡。

(4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/ R0),计算出室温时直流电桥的电桥灵敏度。

(5)调节适当的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻值R t;再将自耦调压器输出电压值调为0V,使水慢慢冷却,降温过程中每隔5℃测量一次热敏电阻值R t,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。

半导体热敏电阻实验报告

半导体热敏电阻实验报告

半导体热敏电阻实验报告一、实验目的1、了解半导体热敏电阻的基本特性。

2、掌握测量半导体热敏电阻阻值与温度关系的方法。

3、学会使用数据处理软件分析实验数据,得出热敏电阻的温度特性曲线。

二、实验原理半导体热敏电阻是利用半导体材料的电阻率随温度变化而显著变化的特性制成的温度敏感元件。

其电阻率随着温度的升高而迅速减小,具有负温度系数。

半导体热敏电阻的电阻值与温度的关系可以用以下经验公式表示:\(R_T = R_0 e^{B(1/T 1/T_0)}\)其中,\(R_T\)为温度\(T\)时的电阻值,\(R_0\)为温度\(T_0\)时的电阻值,\(B\)为材料的热敏常数。

在实验中,通过改变温度,测量不同温度下热敏电阻的电阻值,然后对数据进行处理和分析,得出其温度特性曲线。

三、实验仪器1、恒温箱:用于提供不同的温度环境。

2、数字万用表:用于测量热敏电阻的电阻值。

3、半导体热敏电阻:实验所研究的对象。

四、实验步骤1、连接电路将半导体热敏电阻与数字万用表连接成测量电路,确保连接牢固,接触良好。

2、设定温度打开恒温箱,设定起始温度,并设置温度间隔,如每隔 5°C 或10°C 改变一次温度。

3、测量电阻值在每个设定的温度稳定后,使用数字万用表测量半导体热敏电阻的电阻值,并记录下来。

4、重复测量为了提高实验数据的准确性,在每个温度点进行多次测量,并取平均值。

5、改变温度按照设定的温度间隔,逐步升高或降低恒温箱的温度,重复步骤 3 和 4,直到完成所需温度范围内的测量。

五、实验数据记录|温度(°C)|电阻值(Ω)|||||_____|_____||_____|_____||_____|_____||||六、数据处理与分析1、绘制曲线以温度为横坐标,电阻值为纵坐标,使用绘图软件绘制出半导体热敏电阻的温度特性曲线。

2、拟合曲线根据实验数据,选择合适的函数形式对温度特性曲线进行拟合,如指数函数或幂函数。

半导体热敏电阻的电阻—温度特性实验讲义

半导体热敏电阻的电阻—温度特性实验讲义

∞ 半导体热敏‎电阻的电阻‎—温度特性实验原理1. 半导体热敏‎电阻的电阻‎—温度特性某些金属氧‎化物半导体‎(如:Fe3O4‎、MgCr2‎O 4 等)的电阻与温‎度的关系满‎足式(1):B R = R e T (1) T ∞式中 R T 是温度为T ‎ 时的热敏电‎阻阻值,R ∞ 是T 趋于无穷时‎热敏电阻的‎阻值阻的材料常‎数,T 为热力学温‎度。

①,B 是热敏电热敏电阻对‎温度变化反‎应的灵敏度‎一般由电阻‎温度系数α‎来表示。

根据定义,电阻温 度系数可由‎式(2)来决定:α = 1 R T dR TdT (2)由于这类热‎敏电阻的α‎ 值为负,因此被称为‎负温度系数‎(NTC )热敏电阻,这也是最 常见的一类‎热敏电阻。

2. 惠斯通电桥‎的工作原理‎半导体热敏‎电阻的工作‎阻值范围一‎般在 1~106Ω,需要较精确‎测量时常用‎电桥法,惠斯 通电桥是一‎种应用很广‎泛的仪器。

惠斯通电桥‎的原理如图‎ 1 所示。

四个电阻 R 0 、R 1 、R 2 和 R x 组成一个四‎边形,其中 R x就是待测电‎阻。

在四边形的‎一对对角 A 和 C 之间连接电‎源;而在另一对‎对角 B 和D 之间接 入检流计 G 。

当 B 和 D 两点电势相‎等时,G 中无电流通‎过,电桥便达到‎了平衡。

平衡时必CR b 图 1 惠斯通电桥‎原理图 图 2 惠斯通电桥‎面板图① 由于(1)式只在某一‎温度范围内‎才适用,所以更确切‎的说 R 仅是公式的‎一个系数,而并非实际‎ T 趋于无穷时热敏电‎阻的阻值。

R R 1 有 R x = R 2 R 1 R 0 , 2 和 R 0 都已知, R x 即可求出。

R 0 为标准可变‎电阻,由有四个旋‎钮的电R 阻箱组成,最小改变量‎为 1Ω。

1 R2 称电桥的比‎率臂,由一个旋钮‎调节,它采用十进‎制固定值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告半导体热敏电阻特性研究实验报告引言:半导体热敏电阻是一种基于半导体材料的温度敏感性元件,其电阻值随温度的变化而变化。

本实验旨在研究半导体热敏电阻的特性,并探索其在温度测量和控制中的应用。

实验一:热敏电阻与温度关系的测量在本实验中,我们选择了一种常见的热敏电阻材料,并使用了恒流源和数字温度计来测量其电阻值与温度之间的关系。

首先,我们将热敏电阻与恒流源相连,并将电流保持在恒定值。

然后,我们使用数字温度计测量不同温度下的电阻值。

通过多次测量,我们得到了一组电阻-温度数据。

根据实验数据,我们绘制了电阻-温度曲线。

结果显示,热敏电阻的电阻值随温度的升高而下降,呈现出明显的负温度系数特性。

这意味着热敏电阻在高温下具有较低的电阻值,在低温下具有较高的电阻值。

实验二:热敏电阻在温度测量中的应用在实验一的基础上,我们进一步探索了热敏电阻在温度测量中的应用。

我们设计了一个简单的温度测量电路,将热敏电阻与电压源和电压测量仪相连。

通过测量电压测量仪的输出电压,我们可以间接地推算出热敏电阻的电阻值,从而得知温度。

实验结果表明,该方法能够较准确地测量温度,且具有较高的灵敏度和稳定性。

实验三:热敏电阻在温度控制中的应用除了温度测量,热敏电阻还可以应用于温度控制。

我们设计了一个简单的温度控制电路,其中包括热敏电阻、比较器和加热元件。

当温度超过设定阈值时,热敏电阻的电阻值会下降,导致比较器输出高电平信号,进而控制加热元件的工作。

当温度降低到设定阈值以下时,热敏电阻的电阻值上升,比较器输出低电平信号,停止加热。

实验结果表明,该温度控制电路能够实现对温度的自动控制,具有较高的精度和稳定性。

这种基于热敏电阻的温度控制方法在实际应用中具有广泛的潜力。

结论:通过本次实验,我们研究了半导体热敏电阻的特性,并探索了其在温度测量和控制中的应用。

实验结果表明,热敏电阻具有良好的温度敏感性能,可广泛应用于各种温度相关的领域。

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。

因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。

国产的主要是指MF91~MF96型半导体热敏电阻。

由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。

大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。

这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。

载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。

应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。

实验4.10半导体热敏电阻特性研究

实验4.10半导体热敏电阻特性研究

半导体热敏电阻特性研究【实验简介】热敏电阻是由半导体材料制成的一种电阻对温度变化非常敏感的热敏元件,利用这一特性可以将它作为感温元件制成热敏电阻温度计、温度传感器,实现测温、控温等功能。

热敏电阻作为感温元件具有灵敏度高、体积小、热惯性小等特点,在自动控温、测温等方面应用很广。

热敏电阻的温度特性曲线是热敏电阻的基本特性,本实验主要测量负温度系数、正温度系数热敏电阻的温度特性曲线,了解其测温原理实验原理【实验目的】1. 了解热敏电阻的温度特性及其测温、控温原理。

2. 测量热敏电阻的温度特性曲线。

3. 掌握作图法和最小二乘法(曲线拟合法)处理实验数据。

【预习思考题】1. 负温度系数(NTC)热敏电阻的特性是什么?2. 怎样用电桥测电阻?3.如何用作图法和最小二乘法(曲线拟合法)处理实验数据?【实验仪器】QJ-23型单臂电桥,DHT-2型热学实验仪。

【实验原理】1. 热敏电阻温度特性热敏电阻是其电阻值随温度显著变化的一种热敏元件,按照电阻随温度变化特性可以分为负温度系数热敏电阻(NTC)、正温度系数热敏电阻(PTC)、临界温度系数热敏电阻(CTC)。

负温度系数热敏电阻其电阻随着温度的升高而降低,主要用于测温和控温;正温度系数热敏电阻其电阻在达到某一温度后随着温度的升高而升高,在这一温度之前有一很小的负温度系数,在某一温度范围内,其电阻值会产生急剧变化。

适用于某些狭窄温度范围内的一些特殊应用;临界温度系数热敏电阻其电阻在达到临界温度点时急剧变化,主要用作开关。

热敏电阻的电阻-温度特性曲线如图4.10.1所示。

图4.10.1温度系数是反映热敏电阻对温度的敏感程度,是热敏电阻作为感温元件的一个重要参数,用表示,其定义为温度升高1ºC,热敏电阻的相对变化量,即(4.10.1)2. NTC型热敏电阻温度特性及其温度系数测量NTC半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。

热敏电阻温度特性的研究

热敏电阻温度特性的研究

热敏电阻温度特性的研究一、实验目的:了解和测量热敏电阻阻值与温度的关系二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理热敏电阻是其电阻值随温度显著变化的一种热敏元件。

热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。

PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。

适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。

热敏电阻的电阻-温度特性曲线如图1所示。

图1NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。

与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点:1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量;3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适用于远距离的温度测量和控制;4.制造工艺比较简单,价格便宜。

半导体热敏电阻的缺点是温度测量范围较窄。

NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示)/exp(T B A R T = (1)式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。

由式(1)可得到当温度为0T 时的电阻值R ,即)/exp(00T B A R = (2)比较式(1)和式(2),可得)]11(exp[00T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为T 时的电阻值R ,就可以利用式(3)计算在任意温度T 时的T R 值。

热敏电阻温度特性的研究带实验数据处理

热敏电阻温度特性的研究带实验数据处理

本科实验报告实验名称:热敏电阻温度特性的研究(略写)实验15 热敏电阻温度特性的研究【实验目的和要求】1.研究热敏电阻的温度特性。

2.用作图法和回归法处理数据。

【实验原理】1.金属导体电阻金属导体的电阻随温度的升高而增加,电阻值R t与温度t间的关系常用以下经验公式表示:23R t R0(1 t bt2 ct3)(1)式中R t是温度为t时的电阻,R o为t 00C时的电阻,,b,c为常系数。

在很多情况下,可只取前三项:R t R0(1 t bt2)(2)因为常数b比小很多,在不太大的温度范围内,b可以略去,于是上式可近似写成:R t R o(1 t)(3)式中称为该金属电阻的温度系数。

2.半导体热敏电阻热敏电阻由半导体材料制成,是一种敏感元件。

其特点是在一定的温度范围内,它的电阻率T随温度T的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。

一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T随热力学温度T的关系为B/TT A o e(4)式中A0与B为常数,由材料的物理性质决定。

也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。

其电阻率的温度特性为:Ae B T式中A、B为常数,由材料物理性质决定。

对(5)式两边取对数,得InR r B丄In AT(6)可见1nR T与T成线性关系,若从实验中测得若干个R T和对应的T值,通过作图法可求出A(由截距In A求出)和B (即斜率)。

3.实验原理图(5)4.单臂电桥的基本原理用惠斯通电桥测量电阻时,电桥应调节到平衡状态,此时I g 0。

但有时被测电阻阻值变化很快(如热敏电阻),电桥很难调节到平衡状态,此时用非平衡电桥测量较为方便。

非平衡电桥是指工作于不平衡状态下的电桥,(如图二所示)。

我们知道,当电桥处于平衡状态时G中无电流通过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档