直线与面平行的判定
直线、平面平行的判定和性质

∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.
直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.
直线、平面平行的判定与性质

⇒a∥b
线面平行⇒线线平行 ).
例1.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的 一 点,在四棱锥P-ABCD中,M是PC的中点, 证明:PA//平面BDM
P M D
O
证明:连接 AC, 交BD于点O, 连接OM , 在PAC中, C M , O分别为PC, AC的中点,
A
OM // PA 又OM 平面BDM, PA 平面BDM
∴AP∥GH.
二、平面与平面平行
1.判定定理
文字语言
图形
语言
符号语言
判 定 定 理
如果一个平面内有两条 相交的直线 都平行于另一
个平面,那么这两个平面
平行(简记为 “线面平行⇒面面平行 ”)
⇒α∥β
2.两平面平行的性质定理
文字语言 图形语言 符号语言
如果两平行平面
性质 同时和第三个平
定理 面 相交 ,那么它 们的 交线 平行
直线、平面平行 的判定与性质
一、直线与平面平行 1.判定定理
文字语言 图形语言 符号语言
判
如果平面外的一条直线 和这个平面内的一条直 线平行,那么这条直线 和这个平面平行(简记为 ⇒l∥α
定
定 理
线线平行⇒线面平行 ).
2.性质定理
文字语言 图形语言 符号语言
如果一条直线和一个平
性 面平行,经过这条直线 质 的平面和这个平面相交, 定 那么这条直线就和交线 理 平行(简记
O
D
B
A
练习3.如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E 为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面 A′DE⊥平面BCDE,F为线段A′C的中点.求证:BF∥平面A′DE.
直线与平面平行性质定理

长方体ABCD-A1 B1C1D1中,点P BB (异于 B、B1) 例 3: 1 PA BA1 M , PC BC1 N , 求证: (1)AC // 平面A1C1B (2)MN // 平面ABCD
D1 C1 A1
分析 证法1
B1 P M D N C
A
B
10
例3:证法1 (1) 连结AC、AC ,在长方体中A1 A//C1C 1 1
又 a与b都在平面内 且没有公共点
b
a // b
5
直线和平面平行的性质定理
如果一条直线和一个平面平行,经过这 条直线的平面和这个平面相交,那么这 条直线和交线平行。
a , a , b
注意:
a // b
a b
1、定理三个条件缺一不可。
2、简记:线面平行线线平行。
MN // 面ABCD
11
AC // MN
MN 平面ABCD AC 平面ABCD
证法1的思路是
(1) (2)
线//线
线//面
线//线
D1
线//面
线//面
C1
A1
B1 P M D N C
A
B
12
长方体ABCD-A1 B1C1D1中,点P BB (异于 B、B1) 例 3: 1 PA BA1 M , PC BC1 N , 求证: (1)AC // 平面A1C1B (2)MN // 平面ABCD
推理形式: b a // a // b
简记:线线平行线面平行。
b
2
思考: 如果一条直线与平面平行,那么 由直线与平面平行可知,这条直线与这个平面内
总结证明线面平行的常用方法

BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。
线线线面平行的判定定理

A
求证:EF∥平面BCD.
F
分析:要证明线面平行 E D
只需证明线线平行,即
在平面BCD内找一条直 B
C
变式1
1.如图,在空间四边形ABCD中,E、F 分别为AB、AD上的点,若 AE AF ,
EB FD
则EF与平面BCD的位置关系是
________________.
练习
1. 棱长为a的正方体AC1中,设M、N、E、F 分别为棱A1B1、A1D1、C1D1、B1C1的中点. (1)求证:E、F、B、D四点共面;
(2)求证:面AMN∥ 面EFBD.
D1
N
A1
M
E B1
C1 F
D A
C B
课堂小结
1. 直线和平面平行的判定 2. 平面和平面平行的判定及推论
F
ED
B
C
定理的应用
例1. 如图,空间四边形ABCD中,E、F
分别是AB,AD的中点.
A
求证:EF∥平面BCD.
F
分析:要证明线面平行 E D
只需证明线线平行,即
在平面BCD内找一条直 B
C
线平行于EF,由已知的
条件怎样找这条直线?
定理的应用
例1. 如图,空间四边形ABCD中,E、F
分别是AB,AD的中点.
b
平面与平面平行的判定定理 一个平面内的两条相交直线与另一个
平面平行,则这两个平面平行. 符号语言:
如果一个平面内
有两条相交直线分别
P
a b
平行于另一个平面内
的两条直线,那么这 两个平面平行.
c d
平面与平面平行的判定定理 一个平面内的两条相交直线与另一个
高中数学 线面、面面平行的判定与性质(教师版)

线面、面面平行的判定与性质(教师版)知识回顾1.线面平行的判定(1)直线与平面平行的定义:直线与平面无公共点. (2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 用符号表示为:a ⊄α,b ⊂α,且a ∥b ⇒a ∥α. 2.线面平行的性质直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言描述:⎭⎪⎬⎪⎫a ∥αa ⊂ββ∩α=b ⇒a ∥b . 3. 面面平行的判定(1)平面α与平面β平行的定义:两平面无公共点. (2)直线与平面平行的判定定理:下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m ,n 为直线,α,β为平面),则此条件应为m ,n 相交.⎭⎪⎬⎪⎫m ⊂αn ⊂αm ∥βn ∥β⇒α∥β 4.面面平行的性质平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号表示为:⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . 题型讲解题型一 利用三角形中位线证明线面平行例1、如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点.求证:SA∥平面MDB.答案:证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.例2、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,求证:MN∥平面PB1C.答案证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.例3、如图所示,P是▱ABCD所在平面外一点,E、F分别在PA、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.证明连接AF延长交BC于G,连接PG.在▱ABCD中,易证△BFG∽△DFA.∴GFFA=BFFD=PEEA,∴EF∥PG.而EF⊄平面PBC,PG⊂平面PBC,∴EF∥平面PBC.练习在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______.答案:平行题型二利用平行四边形证明线面平行例1、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.证明:取D1B1的中点O,连接OF,OB.∵OF 12B1C1,BE12B1C1,∴OF BE.∴四边形OFEB是平行四边形,∴EF∥BO.∵EF⊄平面BDD1B1,BO⊂平面BDD1B1,∴EF∥平面BDD1B1.例2、如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1、BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.证明方法一过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连接MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN,∵AB1=BC1,B1E=C1F,∴AE=BF,又∠B1AB=∠C1BC=45°,∴Rt△AME≌Rt△BNF,∴EM=FN.∴四边形MNFE是平行四边形,∴EF∥MN.又MN⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD.方法二过E作EG∥AB交BB1于G,连接GF,∴B1EB1A=B1GB1B,B1E=C1F,B1A=C1B,∴C1FC1B=B1GB1B,∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.又EF⊂平面EFG,∴EF∥平面ABCD.题型三利用面面平行证明线面平行例. 如图,在四棱锥中,是平行四边形,,分别是,的中点.求证:平面.答案:证明:如图,取的中点,连接,,分别是,的中点,,,P ABCDABCD M N AB PCMN//PADCD E NE ME∵M N AB PCNE PD∴//ME AD//可证明平面,平面.又,平面平面,又平面,平面.题型四面面平行的证明例1、如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?解:当Q为CC1的中点时,平面D1BQ∥平面PAO.∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P、O为DD1、DB的中点,∴D1B∥PO.又PO∩PA=P,D1B∩QB=B,D1B∥平面PAO,QB∥平面PAO,∴平面D1BQ∥平面PAO.题型五平行性质NE//PAD ME//PADNE ME E=∴MNE//PADMN⊂MNE∴MN//PAD例1、如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是()A.平行 B.相交C.异面 D.平行和异面答案:A例2、ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明如图所示,连接AC交BD于O,连接MO,∵ABCD是平行四边形,∴O是AC中点,又M是PC的中点,∴AP∥OM.根据直线和平面平行的判定定理,则有PA∥平面BMD.∵平面PAHG∩平面BMD=GH,根据直线和平面平行的性质定理,∴AP∥GH.练习、如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.证明 ∵平面AB 1M ∥平面BC 1N , 平面ACC 1A 1∩平面AB 1M =AM , 平面BC 1N∩平面ACC 1A 1=C 1N , ∴C 1N ∥AM ,又AC ∥A 1C 1, ∴四边形ANC 1M 为平行四边形, ∴AN 綊C 1M =12A 1C 1=12AC ,∴N 为AC 的中点.跟踪训练1.如右图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于直线DE ,则DE 与AB 的位置关系是( )A .异面B .平行C .相交D .以上均有可能 答案:B[解析] ∵A 1B 1∥AB ,AB ⊂平面ABC ,A 1B 1⊄平面ABC , ∴A 1B 1∥平面ABC.又A 1B 1⊂平面A 1B 1ED ,平面A 1B 1ED∩平面ABC =DE ,∴DE ∥A 1B 1. 又AB ∥A 1B 1,∴DE ∥AB.2.已知直线l ,m ,平面α,β,下列命题正确的是( ) A .l ∥β,l ⊂α⇒α∥βB .l ∥β,m ∥β,l ⊂α,m ⊂α⇒α∥βC .l ∥m ,l ⊂α,m ⊂β⇒α∥βD .l ∥β,m ∥β,l ⊂α,m ⊂α,l ∩m =M ⇒α∥β 答案:D3、直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A.至少有一条 B.至多有一条C.有且只有一条 D.没有答案:B4、给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个 B.2个 C.3个 D.4个答案:B5.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案:A6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案:平行四边形[解析]∵平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH的形状是平行四边形.7. 如图所示,在三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点,求证:BC1∥平面CA1D.证明:如图所示,连接AC1交A1C于点O,连接OD,则O是AC1的中点.∵点D是AB的中点,∴OD∥BC1.又∵OD⊂平面CA1D,BC1⊄平面CA1D,∴BC1∥平面CA1D.8.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD 1B1.证明如图所示,连接SB,SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1,又∵EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.9.(本小题满分12分)在四棱锥S-ABCD中,底面ABCD是正方形, M、N分别为AB、SC的中点,SA⊥底面ABCD.求证://MN平面SAD;答案.证明(Ⅰ): E 为SD 中点,连接AE ,NE ,因为M 、N 分别为AB 、SC 的中点,所以AM//EN ,AM=EN ,即四边形AMNE 是平行四边形,所以MN//AE ,可得//MN 平面SAD ;10. 一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A -CDEF 的体积.答案 由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且AB =BC =BF=2,DE =CF=2,∴∠CBF =. (1)证明:取BF 的中点G ,连结MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF ,又MN ⊂平面MNG ,∴MN ∥平面CDEF .(2)取DE 的中点H .∵AD =AE ,∴AH ⊥DE , 在直三棱柱ADE-BCF 中,平面ADE ⊥平面CDEF ,平面A DE ∩平面CDEF=DE .∴AH ⊥平面CDEF.∴多面体A-CDEF 是以AH 为高,以矩形CDE F 为底面的棱锥,在△ADE 中,AH =. S 矩形CDEF =DE ·EF =4,∴棱锥A-CDEF 的体积为2222V=·S 矩形CDEF ·AH =×4×= 解法2:13218222323A CDEF AED BFC A BFCAED V V V S AB S AB ---=-=⨯-⨯⨯=⨯⨯⨯⨯=△△BFC 11如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB 上是否存在一点F ,使平面C 1CF ∥平面ADD 1A 1?若存在,求点F 的位置;若不存在,请说明理由.答案 存在这样的点F ,使平面C 1CF ∥平面ADD 1A 1,此时点F 为AB的中点,证明如下:∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,∴四边形AFCD 是平行四边形,∴AD ∥CF ,又AD ⊂平面ADD 1A 1,CF ⊄平面ADD 1A 1,∴CF ∥平面ADD 1A 1.又CC 1∥DD 1,CC 1⊄平面ADD 1A 1,DD 1⊂平面ADD 1A 1,∴CC 1∥平面ADD 1A 1,又CC 1、CF ⊂平面C 1CF ,CC 1∩CF =C ,∴平面C 1CF ∥平面ADD 1A 1.12. 如图,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.答案 存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .13132283∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF ∥平面AEC .又BF ⊂平面BMF ,∴BF ∥平面AEC .13. (北京)如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.答案 (1)证明:因为D ,E 分别为AP ,AC 的中点,所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE ∥平面BCP .(2)证明:因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点所以DE ∥PC ∥FG ,DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG ,所以四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理可证四边形MENG 为矩形,其对象线交点为EG 的中点Q ,且QM =QN =12EG ,所以EG 的中点Q 是满足条件的点.。
立体几何线面平行的判定

立体几何线面平行的判定
在立体几何中,线面平行的判定可以通过多种方法来进行。
首先,我们可以使用平行线的性质来判定线面的平行关系。
如果一条
直线与一个平面内的另一条直线平行,那么这两条直线与该平面平行。
这是因为平行线与同一平面的相交直线之间的对应角相等。
这
个性质可以帮助我们判定线面的平行关系。
另外,我们也可以利用垂直平分线的性质来判定线面的平行关系。
如果一条直线垂直于一个平面,并且平面内的另一条直线与这
条直线垂直,则这两条直线与该平面平行。
这是因为垂直平分线的
性质保证了这种平行关系成立。
此外,我们还可以利用平行四边形的性质来判定线面的平行关系。
如果一个四边形是平行四边形,那么它的对边是平行的。
因此,如果我们能够构造出一个平行四边形,就可以通过其性质来判定线
面的平行关系。
总之,线面平行的判定可以通过平行线的性质、垂直平分线的
性质以及平行四边形的性质来进行。
这些方法可以帮助我们在立体
几何中判定线面的平行关系,从而解决相关的几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例感受 门扇转动的一边与门框所在的平面之间的位置关系.
实例感受
将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位 置关系?
A B
A B
直线与平面平行
b a 如果平面 内有直线 与直线 平行,那么直线 与平面 的位置关系如何?
a
a 是否可以保证直线 与平面 平行?
,点P是a与b的公共点,这与
a//.
2.直线与平面平行判定方法 (1)定义法:证明直线与平面无公共点; (2)判定定理:证明平面外直线与平面内 直线平行.
说明:证明线面平行一般用判定定理.
例题讲练 例1.求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.
已知:空间四边形ABCD中,E,F 分别AB,AD的中点.
(2)如果直线a、b和平面α 满足a ∥ α, b ∥ α,那么a ∥ b ;( )
(3)如果直线a、b和平面α 满足a ∥ b,a ∥ α,b α, 那么 b ∥ α;( )
(4)过平面外一点和这个平面平行的直线只有一条.( )
谢谢观赏!
2020/11/26
22
(2)简述:线线平行 线面平行. (3)思想:空间问题转化为平面问题.
直线与平面平行判定定理证明
已知: a,b,a//b .
求证: a // .
证明:
a // b,
经过a,b确定一个平面
a,a,
, 是两个不同的平面
a
b
p
b,b,b.
a 假设 与 有公共点P,则
矛盾,
Pb
a // b
2.数学思想方法:转化的思想
空间问题
平面问题
随堂练习
1.如图,长方体
中,AB A B C C D D
(1)与AB平行的平面是
AA (2)与 平行的平面是
(3)与AD平行的平面是
;平面 ABCD 平面
;平面 BBC 平面
;平面
平面
ABCD
D
C
CCDD CCDD BBC
A
B
D A
C B
2.以下命题(其中a,b表示直线,表示平面)
线线平行
线面平行
反思2:能够运用定理的条件是要满足六个字: “面外、面内、平行”
a
b b // a
a //
反思3:运用定理的关键是找平行线;找平行线又经常 会用到三角形中位线定理.
变式训练:四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点. 求证: AB//平面DCF.
A F
①若a∥b,b,则a∥
②若a∥,b∥,则a∥b
③若a∥b,b∥,则a∥
④若a∥,b,则a∥b
其中正确命题的个数是 ( )
(A)0个 (B)1个 (C)2个
(D)3个
3.判断下列命题是否正确,若正确,请简述理由,若不正确,请给出反例.
(1)如果a、b是两条直线,且a∥b,那么a 平行于经过b的任何平面;( )
D
E
O
B
C
变式训练:四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点. 求证: AB//平面DCF.
分析:
连结OF,
△ABE的中位线, 所以得到AB//OF.
A F
D
E
O
B
C
随堂练习
如图,正方体
BD
AB A B C C D D DD 中,E为 的中点,试判断 与平面AEC的位置关系,并说明理由.
证明:连接BD交AC于点O,
连接OE,
在 DD B中,E,O分别是
D
A
E
DD,BD的中点.
D
O
A
EO //BD
EO平面 ACE BDD'//平面AEC
BBDD'平面 ACE
C
B
C
B
知识小结 1.证明直线与平面平行的方法:
(1)利用定义; (2)利用判定定理.
线线平行
直线与平面没有公共点 线面平行
求证:EF//平面BCD.
证明:连接BD.
因为 AE=EB,AF=FD, 所以 EF//BD(三角形中位线的性质)
.
.A F
E
D
B C
因为 E F 平B面 C ,BD D 平B面 CD
由直线与平面平行的判断定理得: EF//平面BCD.
解后反思:通过本题的解答,你可以总结出什么解题思想和方法?
反思1:要证明直线与平面平行可以运用判定定理;
直线与面平行的判定
1
1、理解掌握直线与平面平行的判定定理; 2、掌握直线与平面平行的判定定理的应用。
怎样判定直线与平面平行呢? 根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限延长,平 面无限延展,如何保证直线与平面没有公共点呢?
a
实例感受
在生活中,注意到门扇的两边是平行的.当门扇绕着一边转动时,另一边始终与门框所在的平面没有公 共点,此时门扇转动的一边与门框所在的平面给人以平行的印象.
a
b
直线与平面平行
a 平面 外有直线 平行于平面 内的直线 .
(1)这两条直线共面吗?
a (2)直线 与平面 相交吗?
a
b
共面
不可能相交
b
1.直线与平面平行判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
a
b
a
b
a
//
a // b
说明:(1)证明直线与平面平行,三个条件必须 具备,才能得到线面平行的结论.