高二物理选修_3-2知识点总结(全)

合集下载

(完整版)高二物理选修3-2知识点复习

(完整版)高二物理选修3-2知识点复习

2010年高二物理 选修3-2知识点复习知识点一:电磁感应现象Ⅰ只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

知识点二:感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。

如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。

从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

三、法拉第电磁感应定律 楞次定律Ⅱ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

(完整版)高中物理选修3-2知识点总结

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。

③电源内部的电流从负极流向正极。

3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。

8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。

这种现象叫互感。

9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。

另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。

10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

高二物理选修3-2知识点

高二物理选修3-2知识点

高二物理选修3-2知识点
推荐文章
高中物理选修3-1电场强度知识点总结热度:高二物理选修3-3知识点总结热度:人教版高中物理选修3-4笔记热度:高中物理选修3-4相对论知识点热度:人教版高中物理选修3-3分子动理论知识点热度:
在高二物理学习过程中,选修3-2知识点的巩固和记忆至关重要,下面是店铺给大家带来的高二物理选修3-2知识点,希望对你有帮助。

高二物理选修3-2知识点(一)
传感器的及其工作原理
有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。

我们把这种元件叫做传感器。

它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。

光照越强,光敏电阻阻值越小。

金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。

金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。

传感器的应用:
1. 光敏电阻
2. 热敏电阻和金属热电阻
3. 电容式位移传感器
4. 力传感器————将力信号转化为电流信号的元件。

5. 霍尔元件
霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。

高二物理选修3-2知识点(二) 高二物理选修3-2知识点(三)。

物理选修3 2知识点总结

物理选修3 2知识点总结

物理选修3 2知识点总结第一章电荷与电场1.1 电荷的基本性质1.1.1 电荷的定义电荷是构成物质的一种基本性质,有正负之分。

相同电荷相斥,不同电荷相吸。

1.1.2 电荷的守恒封闭系统中的总电荷守恒,即电荷不会增加或减少。

1.1.3 电荷的离散化电荷是离散的,它们只能是整数倍的基本电荷。

1.2 电场的产生1.2.1 电荷产生电场电荷周围存在电场,电场由正电荷指向负电荷,大小与电荷的大小和距离有关。

1.2.2 电场的定义电场是空间中某一点单位正电荷所受的力,大小为F=qE。

1.2.3 电场的叠加原理多个电荷产生的电场可以叠加,合成电场为各个电场矢量和。

1.2.4 电场的三种表达形式电场可以用电场线、电场强度分布图和电场力线图来表示。

1.3 电荷在电场中的运动1.3.1 电荷在电场中受力电荷在电场中受到电场力F=qE。

1.3.2 电荷在电场中的加速度电荷在电场中受到的电场力会导致电荷产生加速度a=qE/m。

1.3.3 电荷在电场中的运动轨迹电荷在电场中运动的轨迹依赖于开始的初速度和角度,可以是直线、椭圆、抛物线或者双曲线。

1.4 高中物理常见问题探究1.4.1 电场强度的方向问题1.4.2 电势能公式的导出1.4.3 电势差和电势能的关系第二章电容器2.1 电容的定义2.1.1 电容的概念电容是指某两导体之间存储电荷的能力,记为C。

2.1.2 电容的基本单位电容的基本单位是法拉(F)。

2.2 平行板电容器2.2.1 平行板电容器的构成平行板电容器由两块平行金属板组成。

2.2.2 平行板电容器的电容公式平行板电容器的电容公式为C=ε0S/d。

2.2.3 平行板电容器的等效电容连接在串联或并联平行板电容器的等效电容可以根据串联与并联的原理求出。

2.3 圆板电容器2.3.1 圆板电容器的构成圆板电容器由两块圆形金属板组成。

2.3.2 圆板电容器的电容公式圆板电容器的电容公式为C=πε0R。

2.3.3 圆板电容器的等效电容串联或并联连接的圆板电容器的等效电容可以根据串联与并联的原理求出。

高中物理选修32知识点总结.doc

高中物理选修32知识点总结.doc

高中物理选修3-2知识点总结第四章 电磁感应1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁2.感应电流的产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则(2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同)④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

B 、表达式:tnE ∆∆=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ∆=∆φ ②S 不变,B 变,BS ∆=∆φ ③B 和S 同时变,12φφφ-=∆ (3)计算感应电动势的公式①求平均值:tn E ∆∆=φ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω221BL E = 5.感应电流的计算: 瞬时电流:总总R BLvR E I ==(瞬时切割) 6.安培力的计算:瞬时值:rR vL B BIL F +==227.通过截面的电荷量:rR n t I q +∆=∆=φ注意:求电荷量只能用平均值,而不能用瞬时值 8.自感:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。

另外,有铁芯的线圈自感系数比没有铁芯时大得多。

(3)类型:通电自感和断电自感(4)单位:亨利(H )、毫亨(mH)、微亨(H μ)(5)涡流及其应用①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。

一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿接通电源的瞬间,灯泡A 1较慢地亮起来。

高中物理选修3-2知识点汇总

高中物理选修3-2知识点汇总

高中物理选修3-2知识点汇总高中物理选修3-2知识点汇总高中物理选修3-2主要涵盖了电磁学的内容,以电磁感应为核心,探究了电磁场的产生和作用。

本文将对选修3-2的内容进行汇总,重点介绍电磁感应、电磁波等重要知识点。

1. 电磁感应:电磁感应是指当导体中的磁通量发生变化时,导体中会产生感应电动势,导致产生感应电流。

电磁感应的重要性在于它是发电原理的基础,也是变压器和电动机等电器的工作原理。

- 导体中感应电动势的大小与导体中的磁通量变化率成正比,即U = -dΦ/dt,其中U为电动势,Φ为磁通量,t为时间。

- 感应电动势的方向由三个规律确定:法拉第电磁感应定律、楞次定律和楞次-菲阻抗定律。

2. 法拉第电磁感应定律:法拉第电磁感应定律规定了感应电动势的大小和方向。

- 当导体中的磁通量Φ发生变化时,电动势U将引起感应电流流动。

- 感应电动势的大小与磁通量的变化率成正比,方向由右手螺旋法确定。

3. 楞次定律:楞次定律是电磁感应的基本规律,主要包括两个方面的内容:- 感应电动势的方向总是使产生它的磁通量发生变化的原因趋于减弱。

- 通过改变线圈中的磁场大小或方向,可以实现电磁感应。

4. 楞次-菲阻抗定律:楞次-菲阻抗定律描述了感应电动势由于电流的存在而受到的阻碍。

- 线圈中的感应电动势会导致感应电流的产生,在电路中形成闭合回路。

- 感应电流会产生磁场,使感应电动势遭到阻碍,即电阻的作用。

5. 电感、自感和互感:电感是指通过导体形成的闭合线圈中,由于电流产生的磁场而导致的自感作用。

- 自感可以通过比例系数L来表示,L=dΦi/di,其中Φi为线圈的磁通量,i为线圈的电流。

- 互感是指两个线圈之间由于彼此磁场的相互作用而产生的感应。

6. 电磁场和电磁波:电磁场是由电荷或电流产生的磁场和电场相互作用而形成的。

- 磁场是由电流形成的,符号为B,单位为特斯拉(T);电场是由电荷形成的,符号为E,单位为牛顿/库仑(C/N)。

高中物理选修32知识点总结

高中物理选修32知识点总结

高中物理选修3-2知识点总结高中物理选修3-2知识点总结高中3-2知识点总结第一章电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化注意:①产生感应电动势的市场条件是只具备②产生感应电动势的那部分导体相当于电源。

③电源内部的电流从负极流向正极。

3.假若方向的叛定:(1).方法一:右手定则(2).方法二:楞次定律:(理解四种阻碍)①阻碍原磁通量的变化(增反减同)②抑止导体间的相对运动(来拒去留)③阻碍原电流的变化(增反减同)④面积有扩充与缩小的趋势(增缩减扩)4.感应式电动势大小的计算:(1).法拉第电磁感应定律:a.内容:b.表达式:Ent(2).计算感应电动势的公式_①求平均值:Ent②求瞬时值:E=BLV(导线切割类)③法拉第电机:E12BL2④闭合电路殴姆运动定律:EI感(Rr)5.感应电流的计算:_平均电流:IERr(Rr)t瞬时电流:IERrBLVRr6.安培力计算:(1)平均值:F_BI_LBLBLq(Rr)tt(2).瞬时值:FBILB2L2VRr7.通过的电荷量:qItRr注意:求电荷量只能用平均值,而不能用瞬时值。

8.互感:由于线圈A中电流的变化,它产生的饱和电流发生变化,磁通量的变化在线圈B中凝聚了感应电动势。

这种现象叫互感。

9.自感现象:(1)定义:是指由于导体本身的导体发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。

另外,有铁心的线圈的自感系数比没有铁心时要大得多。

(3)类型:通电自感和断电自感(4)单位:亨利(H)、毫亨(mH),微亨(H)。

10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中感应电流。

一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种电偶极子叫做涡流(2)应用:a.新型炉灶电磁炉。

物理选修3-2知识点归纳

物理选修3-2知识点归纳

物理选修3-2知识点归纳一、电磁感应与发电机1. 电磁感应现象- 法拉第电磁感应定律:变化的磁场会在导体中产生电动势。

- 楞次定律:感应电流的方向总是试图抵消引起它的磁场变化。

- 感应电动势的大小与磁通量变化率成正比。

2. 电磁感应的应用- 发电机原理:利用导体在磁场中运动产生感应电动势来发电。

- 交流发电机与直流发电机的区别:交流发电机产生的是交流电,直流发电机通过换向器输出直流电。

3. 电磁感应的计算- 磁通量的计算:Φ = B·A·cosθ,其中B是磁场强度,A是面积,θ是磁场与面积法线之间的夹角。

- 感应电动势的计算:ε = -dΦ/dt,其中ε是感应电动势,dΦ/dt是磁通量的变化率。

二、交变电流1. 交流电的基本概念- 交流电:电流的方向和大小随时间周期性变化的电流。

- 正弦交流电:电流随时间的变化符合正弦规律。

2. 交流电的基本参数- 最大值(峰值):电流或电压在一个周期内的最大值。

- 有效值(RMS):交流电的热效应等效的直流电值。

- 周期和频率:周期是交流电完成一个循环的时间,频率是周期的倒数。

- 相位:描述交流电波形上某点位置的度量。

3. 交流电的计算- 交流电功率的计算:P = Vrms·Irms,其中P是功率,Vrms是电压有效值,Irms是电流有效值。

- 功率因数:表示电路中实际功率与视在功率的比值。

三、电磁波1. 电磁波的产生- 麦克斯韦方程组:描述电磁场的基本规律。

- 电磁波的产生:变化的电场产生磁场,变化的磁场产生电场,相互垂直并向外传播。

2. 电磁波的性质- 电磁波的传播:不需要介质,可以在真空中传播。

- 电磁波的速度:在真空中的速度等于光速,约为3×10^8 m/s。

- 电磁波的能量:电磁波携带能量,与频率成正比。

3. 电磁波的应用- 无线电通信:利用电磁波传输信息。

- 微波炉:利用微波加热食物。

- 医疗成像:如X射线、MRI等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修3-2知识点56.电磁感应现象Ⅰ只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

57.感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。

58.法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

∴ε=BIv ,M 点电势高,N 点电势低。

此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。

εφ=n t·∆∆, 公式 εφ=n t ∆∆/。

注意: 1)该式普遍适用于求平均感应电动势。

2)ε只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

公式二: εθ=Blv sin 。

要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。

2)θ为v 与B 的夹角。

l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。

公式εφ=nt∆∆中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时ε=n B t S ∆∆, 此式中的∆∆Bt叫磁感应强度的变化率, 若∆∆Bt是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。

2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。

严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率∆∆φt, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率∆∆φt表示磁通量变化的快慢,公式ε=Blv 一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故εω=122B l 。

(超经典的,我们有次考试考到过关于这个、)εω=122BL ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为ε。

如图所示,AO 导线长L ,以O 端为轴,以ω角速度匀速转动一周,所用时间∆t =2πω,描过面积∆S L =π2,(认为面积变化由0增到πL 2)则磁通变化∆φπ=B L ·2。

在AO 间产生的感应电动势εφππωω===∆∆t B L BL 22212/且用右手定则制定A 端电势高,O 端电势低。

εωm n B S =···——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势εm 。

如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度为v d=ω·2(圆运动半径为宽边d 的一半)产生感应电动势 εωω===BL v BL d BS (21)2,a 端电势高于b 端电势。

cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势εω=12BS 。

c 端电势高于e 端电势。

bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为εωm BS =。

如果线圈n 匝,则εωm n B S =···,M 端电势高,N 端电势低。

参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值εm ,如从图示位置转过一个角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值εεθ=m .cos .即作最大值方向的投影,εωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。

总结:计算感应电动势公式:εεε=BLvv v 如是即时速度,则为即时感应电动势。

如是平均速度,则为平均感应电动势。

εφε=→n t t t o ∆∆∆∆是一段时间,为这段时间内的平均感应电动势。

,为即时感应电动势。

εω=122BLεωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

()()⎩⎨⎧==夹角是线圈平面与磁场方向瞬时值公式,····有感应电动势最大值线圈平面与磁场平行时··θθωεωεcos S B nBS nm 注意:公式中字母的含义,公式的适用条件及使用图景。

区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在∆t 内迁移的电量(感应电量)为Rn t t R n t Rt I q φφε∆=∆∆∆=∆=∆=, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。

因此, 当用一磁棒先后两次从同一处用不同速度插至线圈中同一位置时, 线圈里聚积的感应电量相等, 但快插与慢插时产生的感应电动势、感应电流不同, 外力做功也不同。

②楞次定律:1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化产生−→−−感应电流建立−→−−感应电流磁场阻碍−→−−磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。

通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。

这样一个复杂的过程,可以用图表理顺如下:(这个不太好理解、不过很好用口诀:增缩减扩,来拒去留)楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表述);(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;(3)使线圈面积有扩大或缩小的趋势;(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。

如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。

若按常规方法,应先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。

若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。

因此环将向右摆动。

显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:(1)查明原磁场的方向及磁通量的变化情况;(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。

用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。

反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。

如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

(“因电而动”用左手,“因动而电”用右手)59.互感自感涡流Ⅰ互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势。

这种现象叫互感。

自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。

所产生的感应电动势叫做自感电动势。

自感系数简称自感或电感, 它是反映线圈特性的物理量。

线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。

另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

自感现象分通电自感和断电自感两种, 其中断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题, 如图2所示, 原来电路闭合处于稳定状态, L与LA 并联, 其电流分别为I IL A和, 方向都是从左到右。

相关文档
最新文档