电磁场与电磁波试题及答案

合集下载

电磁场与电磁波试题与答案

电磁场与电磁波试题与答案

电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号。

每小题2分,共20分)1.设一个矢量场=x x+2y y+3z z,则散度为()A. 0B. 2C. 3D. 62.人们规定电流的方向是()运动方向。

A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为()A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是()A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为()A. •B.E2C.εE2D. εE26.电容器的大小()A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为()A.=0,Tq= •B.=0, = ×C.= •,= ×D.= •,=08.在=0的磁介质区域中的磁场满足下列方程()A.× =0, • =0B.×≠0, •≠0C.×≠0, • =0D.× =0, •≠09.洛伦兹条件人为地规定的()A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?()A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。

2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。

3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。

4.矢量场的性质由它的______决定。

5.在静电场中,电位相同的点集合形成的面称为______。

6.永久磁铁所产生的磁场,称之为______。

7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。

A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。

电磁场与电磁波单元测试题及答案

电磁场与电磁波单元测试题及答案

《电磁场与电磁波》单元测试一(适用于电子、电科2009级本科)1.在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。

2.计算)1(3rr ∇⋅∇。

3.试由微分形式麦克斯韦方程组,导出电流连续性方程。

4.求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算∇⨯A 对此圆面积的积分。

5.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

(提示:无限长窄条,可看成无限长的线电荷)第5题图6.真空中一半径为a 的无限长圆柱体中,电流沿轴向流动,电流分布为220aJ J ρz e =,求磁感应强度。

7.证明=0A ∇⋅∇⨯在普遍意义下成立。

答案1、在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。

解:高斯通量定理和磁通连续性原理分别是两个标量方程:0 , =∂∂+∂∂+∂∂=∂∂+∂∂+∂∂zB y B x Bz D y D x D z y x z y x ρ 法拉第电磁感应定律可以写成3个标量方程:tB y E x E t B x E z E t B z E y E z x y y z x x y z ∂∂-=∂∂-∂∂∂∂-=∂∂-∂∂∂∂-=∂∂-∂∂ ,, 全电流定律也可以写成3个标量方程:tH J y H x H t D J x H z H t D J z H y H zz x y y y z x x x y z ∂∂+=∂∂-∂∂∂∂+=∂∂-∂∂∂∂+=∂∂-∂∂ ,, 共8个标量方程。

2、解:4343333)1(rr rr rr rr r r ⋅∇-=⎪⎭⎫ ⎝⎛⋅-⋅-∇=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⋅∇=∇⋅∇ ⎪⎭⎫⎝⎛⋅∇--=⎪⎭⎫ ⎝⎛⋅∇+⋅∇-=r r r r r r r r 5444433113444543433433r r r r r r =⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛⋅--=r r3、试由微分形式麦克斯韦方程组,导出电流连续性方程解:麦克斯韦方程组中微分形式的全电流定律为t∂∂+=⨯∇DJ H 对上式等号两边进行散度运算,由题1-2知,等号左边的散度为零,等号右边的散度亦应为零,即0)(=∇∂∂+∇=⎪⎭⎫ ⎝⎛∂∂+∇⋅⋅⋅D J D J t t把微分形式的高斯通量定理 ∇ ⋅ D = ρ 代入上式,考虑到坐标变量和时间变量是相互独立的自变量,可得0=∂∂+∇⋅tρJ 4、求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算∇⨯A 对此圆面积的积分。

电磁场与电磁波:练习题参考答案

电磁场与电磁波:练习题参考答案

一、填空题1、电荷守恒定律的微分形式是,其物理意义是[任何一点电流密度矢量的散度等于该点电荷体密度随时间的减少率];2、麦克斯韦第一方程=⨯∇HDJ t ∂+∂,它的物理意义是[电流与时变电场产生磁场];对于静态场,=⨯∇H[J ]];3、麦克斯韦第二方程E⨯∇B ∂,它表明[时变磁场产生电场];对于静态场,E⨯∇=[0],它表明静态场是[无旋场];4、坡印廷矢量S 是描述时变电磁场中电磁功率传输的一个重要的物理量,S=[E H ⨯],它表示[通过垂直于功率传输方向单位面积]的电磁功率;5、在两种不同物质的分界面上,[电场强度,(或E )]矢量的切向分量总是连续的, [磁感应强度,(或B )]矢量的法向分量总是连续的;6、平面波在非导电媒质中传播时,相速度仅与[媒质参数,(或μ、ε)]有关,但在导电媒质中传播时,相速度还与[频率,(或f ,或ω)],这种现象称为色散;7、两个同频率,同方向传播,极化方向互相垂直的线极化波合成为圆极化波时,它们的振幅[相等],相位差为[2π,(或-2π,或90)];8.均匀平面波在良导体中传播时,电场振幅从表面值E 0下降到E 0/e 时 所传播的距离称为[趋肤深度],它的值与[频率以及媒质参数]有关。

二、选择题1、能激发时变电磁场的源是[c]a.随时间变化的电荷与电流 b 随时间变化的电场与磁场c.同时选a 和b2、在介电常数为ε的均匀媒质中,电荷体密度为ρ的电荷产生的电场为),,(z y x E E =,若E Dε=成立,下面的表达式中正确的是[a]a. ρ=⋅∇Db. 0/ερ=⋅∇Ec. 0=⋅∇D3、已知矢量)()23(3mz y e z y e x e B z y x +--+=,要用矢量B 描述磁感应强度,式中 必须取[c(0=⋅∇B )] a. 2 b. 4 c. 64、导电媒质中,位移电流密度d J 的相位与传导电流密度J的相位[a]a.相差2πb.相同或相反c.相差4π5、某均匀平面波在空气中传播时,波长m 30=λ,当它进入介电常数为04ε=ε的介质中传播时,波长[b] a.仍为3m b.缩短为1.5m c. 增长为6m6、空气的本征阻抗π=η1200,则相对介电常数4=εr ,相对磁导率1=μr ,电导率0=σ的媒质的本征阻抗为[c].a.仍为)(120Ωπb. )(30Ωπc. )(60Ωπ 7、z j y z j x e j e e e E π-π-+=2242,表示的平面波是 [b] a.圆极化波 b.椭圆极化波 c.直线极化波8、区域1(参数为0,,10101===σμμεε)和区域2(参数为0,20,520202===σμμεε)的分界面为0=z 的平面。

电磁场与电磁波波试卷3套含答案

电磁场与电磁波波试卷3套含答案

电磁场与电磁波波试卷3套含答案电磁场与电磁波》试卷1一、填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场无漩涡流动。

另一个是环流量不为0,表明矢量场的流体沿着闭合回路做漩涡流动。

2.带电导体内静电场值为常数,从电势的角度来说,导体是一个等电位体,电荷分布在导体的表面。

3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为三个函数的乘积,而且每个函数仅是一个坐标的函数,这样可以把偏微分方程化为常微分方程来求解。

4.求解边值问题时的边界条件分为三类,第一类为整个边界上的电位函数为已知,这种条件称为XXX条件。

第二类为已知整个边界上的电位法向导数,称为诺伊曼条件。

第三类条件为部分边界上的电位为已知,另一部分边界上电位法向导数已知,称为混合边界条件。

在每种边界条件下,方程的解是唯一的。

5.无界的介质空间中场的基本变量B和H是连续可导的,当遇到不同介质的分界面时,B和H经过分界面时要发生突变,用公式表示就是n·(B1-B2)=0,n×(H1-H2)=Js。

6.亥姆霍兹定理可以对Maxwell方程做一个简单的解释:矢量场的旋度和散度都表示矢量场的源,Maxwell方程表明了电磁场和它们的源之间的关系。

二、简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。

(10分)答:均匀导波系统上传播的电磁波有三种模式:横电磁波(TEM波)、横磁波(TM波)和横电波(TE波)。

其中,横电磁波在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内;横磁波在电磁波传播方向上有电场但没有磁场分量,即磁场在横平面内;横电波在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内。

从Maxwell方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。

2.写出时变电磁场的几种场参量的边界条件。

(完整版)电磁场与电磁波试题及答案.

(完整版)电磁场与电磁波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。

2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。

1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。

2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。

(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。

2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。

库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。

1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。

若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。

若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。

1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。

2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。

电磁场和电磁波练习(有答案)

电磁场和电磁波练习(有答案)

电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场与电磁波》试题2
一、填空题(每小题1分,共10分)
1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ϖ和电场E ϖ
满足的
方程为: 。

2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位
所满足的方程为 。

3.时变电磁场中,坡印廷矢量的数学表达式为 。

4.在理想导体的表面,电场强度的 分量等于零。

5.表达式()S
d r A S
ϖ
ϖϖ⋅⎰称为矢量场)(r A ϖ
ϖ穿过闭合曲面S 的 。

6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。

7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。

8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。

9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。

二、简述题 (每小题5分,共20分)
11.试简述磁通连续性原理,并写出其数学表达式。

12.简述亥姆霍兹定理,并说明其意义。

13.已知麦克斯韦第二方程为S d t B l d E S
C ϖϖϖϖ⋅∂∂-=⋅⎰⎰,试说明其物理意义,并写出方程的微
分形式。

14.什么是电磁波的极化?极化分为哪三种?
三、计算题 (每小题10分,共30分)
15.矢量函数
z x e yz e
yx A ˆˆ2+-=ϖ
,试求
(1)A ϖ
⋅∇
(2)A ϖ
⨯∇
16.矢量
z x e e
A ˆ2ˆ2-=ϖ

y x e e
B ˆˆ-=ϖ
,求
(1)B A ϖ
ϖ-
(2)求出两矢量的夹角
17.方程2
22),,(z y x z y x u ++=给出一球族,求
(1)求该标量场的梯度;
(2)求出通过点()0,2,1处的单位法向矢量。

四、应用题 (每小题10分,共30分)
18.放在坐标原点的点电荷在空间任一点r ϖ
处产生的电场强度表达式为
r e
r
q E ˆ42
0πε=
ϖ
(1)求出电力线方程;(2)画出电力线。

19.设点电荷位于金属直角劈上方,如图1所示,求 (1) 画出镜像电荷所在的位置
(2) 直角劈任意一点),,(z y x 处的电位表达式
20.设时变电磁场的电场强度和磁场强度分别为:
)
cos(0e t E E φω-=ϖ
ϖ
)
cos(0m t H H φω-=ϖ
ϖ
(1) 写出电场强度和磁场强度的复数表达式
(2) 证明其坡印廷矢量的平均值为:)
cos(2100m e av H E S φφ-⨯=ϖ
ϖϖ
五、综合题 (10分)
21.设沿z +方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场只有x 分量即
z j x e E e
E β-=0ˆϖ
(1) 求出反射波电场的表达式; (2) 求出区域1 媒质的波阻抗。

图1
《电磁场与电磁波》试题(2)参考答案
二、简述题 (每小题 5分,共 20 分)
11. 答:磁通连续性原理是指:磁感应强度沿任一闭合曲面的积分等于零,或者是从闭合曲面S 穿出去的通量等于由S 外流入S 的通量。

(3分)
其数学表达式为:0=⋅⎰
S
S d B ϖ
ϖ (2分)
12.答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。

(3分)
亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究。

(2分) 13.答:其物理意义:随时间变化的磁场可以产生电场。

(3分)
方程的微分形式:t
B
E ∂∂-=⨯∇ϖ
ϖ (2分)
14.答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。

(2分)
极化可以分为:线极化、圆极化、椭圆极化。

(3分)
三、计算题 (每小题10分,共30分)
15.矢量函数z x e yz e
yx A ˆˆ2+-=ϖ
,试求 (1)A ϖ⋅∇
(2)A ϖ
⨯∇
解:(1)分)
(分)
(223y
xy z
A y A x A A z y x +-=∂∂+
∂∂+∂∂=⋅∇ϖ
区域1 区域2
图2
(2)
分)
(分)
2ˆˆ3(0ˆˆˆ22
x e z e
yz
yx z y x e e
e A z x z y x +=-∂∂∂∂∂∂=
⨯∇ϖ
16.矢量z x e e A ˆ2ˆ2-=ϖ
,y x e e B ˆˆ-=ϖ,求 (1)B A ϖ
ϖ-
(2)求出两矢量的夹角 解:(1)
()分)
(分)
2ˆ2ˆˆ3(ˆˆˆ2ˆ2z y x y x z x e e e
e e e e B A -+=---=-ϖ
ϖ
(2)根据θcos AB B A =⋅ϖ
ϖ (2分)
()()2ˆˆˆ2ˆ2=-⋅-=⋅y x z x e e e e
B A ϖ
ϖ 2
1
2
222cos =
=
θ (2分) 所以ο60=θ (1分)
17.解:(1)
分)
(分)(22ˆ2ˆ2ˆ3ˆˆˆz e y e x e
z u
e y u e x u e
u z y x z y x ++=∂∂+∂∂+∂∂=∇
(2)u
u
n
∇∇=ˆ (2分) 所以5
2ˆˆ16
44ˆ2ˆˆy x y x e e
e e n
+=++= (3分)
四、应用题 (每小题 10分,共30分)
18.放在坐标原点的点电荷在空间任一点r ϖ
处产生的电场强度表达式为 r e
r
q E ˆ42
0πε=
ϖ
(1)求出电力线方程;(2)画出电力线。

解:(1)()z e y e x e r q r r q e r q
E z y x r
ˆˆˆ44ˆ43
03020++===
πεπεπεϖϖ
(2分)
由力线方程得
dz
z dy y dx x == (2分) 对上式积分得
y
C z x C y 21== (1分)
式中,21,C C 为任意常数。

(2)电力线图18-2所示。

(注:电力线正确,但没有标方向得3分)
19.设点电荷位于金属直角劈上方,如图1所示,求 (3) 画出镜像电荷所在的位置
(4) 直角劈任意一点),,(z y x 处的电位表达式 解:(1)镜像电荷所在的位置如图19-1所示。

(注:画对一个镜像得2分,三个全对得5分)
(2)如图19-2所示任一点),,(z y x 处的电位为
图1
图18-2
图19-1
图19-2
q -
q
+q -
⎪⎪⎭
⎫ ⎝⎛-+-=
4321011114r r r r q πεφ (3分) 其中,
()()()()()()()()2
2242
2232
2222
22121212121z y x r z y x r z y x r z y x r +-++=
++++=+++-=+-+-=
(2分)
20.设时变电磁场的电场强度和磁场强度分别为:
)cos(0e t E E φω-=ϖϖ )cos(0m t H H φω-=ϖ
ϖ
(3) 写出电场强度和磁场强度的复数表达式
(4) 证明其坡印廷矢量的平均值为:)cos(2
100m e av H E S φφ-⨯=ϖ
ϖϖ
解:(1)电场强度的复数表达式
e j e E E φ-=0ϖϖ (3分)
电场强度的复数表达式
m j e H H φ-=0ϖ
ϖ (2分)
(2)根据 ()
*Re 2
1
H E S av ϖϖϖ
⨯=得 (2分)
()
)cos(2
1Re 2100)(00m e m e j av H E e H E S φφφφ-⨯=⨯=--ϖϖϖϖϖ (3分)
五、综合题 (共10分)
21.设沿z +方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场
只有x 分量即 z j x e E e
E β-=0ˆϖ
(3) 求出反射波电场的表达式; (4) 求出区域1 媒质的波阻抗。

解:(1)设反射波电场
z j r x r e E e
E βˆ=ϖ
区域1中的总电场为
区域1 区域2
图2
)(ˆ0z j r z j x r e E e E e
E E ββ+=+-ϖ
ϖ (2分) 根据0=z 导体表面电场的切向分量等于零的边界条件得 0E E r -= (2分) 因此,反射波电场的表达式为
z j x r e E e
E β0ˆ-=ϖ
(1分) (2)媒质1的波阻抗
εμη=
(3分) 因而得 )(377120Ω==πη (2分)。

相关文档
最新文档