北师大版高中数学必修3期末练习试题
【北师大版】高中数学必修三期末模拟试卷带答案

一、选择题1.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .382.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2C .3D .2π4.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( )A .815 B .715 C .45 D .35 5.当4n =时,执行如图所示的程序框图,则输出的S 值为 ( )A .9B .15C .31D .636.执行如图所示的程序框图,输出S 的值等于( )A .1111238+++⋅⋅⋅+ B .1111237+++⋅⋅⋅+ C .11111237+++++ D .11111238++++⋅⋅⋅+ 7.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤8.执行如图所示的程序框图,输出的结果为( )A.2019-D.2020-2221 21-C.2020-B.2019229.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量10.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸11.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,4 12.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-. A .①②③B .①③④C .①②④D .②③④二、填空题13.某种饮料每箱装6听,若其中有2听不合格,质检员从中随机抽出2听,则含有不合格品的概率为________.14.甲、乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去12,;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上12,这样就得到一个新的实数2a ,对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当31a a >时,甲获胜,否则乙获胜,若甲获胜的概率为34,则1a 的取值范围是________15.在区间[]0,2中随机地取出一个数x ,则sin 6x π>的概率是__________.16.执行如图所示的程序框图,若1ln 2a =,22b e =,ln 22c =(其中e 是自然对数的底),则输出的结果是__________.17.如图所示的程序框图,输出S 的结果是__________.18.已知下列程序 INPUTt IFt≤3THEN C=0.2 ELSEC=0.2+0.1*(t-3) ENDIF PRINTC END当输入t=5时,输出结果是____.19.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=20.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..三、解答题21.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y bx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?22.某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试的平均分;(2)假设分数在[90,100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,76,97,88,69,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.23.运行如下图的程序框图:(1)若输入3x =,求输出的k 的值; (2)若输出4k =,求输人的实数x 的取值范围.24.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:()()()0.5350=500.53+-500.8550f ωωωω⎧≤⎪⎨⨯⨯>⎪⎩.其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f 的算法,并画出相应的程序框图.25.2019年2月13日《西安市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数;(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7.5),[7.5,8.5)的学生中抽取9名参加座谈会.(i )你认为9个名额应该怎么分配?并说明理由;(ii )座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的22⨯列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?(精确到0.1)阅读时间不足8.5小时 阅读时间超过8.5小时 理工类专业 4060非理工类专业附:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++).临界值表:20()P K k ≥ 0.1500.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82826.某企业广告费支出与销售额(单位:百万元)数据如表所示: 广告费x 6 4 8 2 5 销售额y5040703060(1)求销售额y 关于广告费x 的线性回归方程;(2)预测当销售额为76百万元时,广告费支出为多少百万元. 回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫ ⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.2.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】因为四棱锥的体积为423,设球半径为R ,则4211222332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.4.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.5.C解析:C 【解析】由程序框图可知,1,3,2,7,3,15k s k s k s ======,4,31,54k s k ===>,退出循环,输出s 的值为31,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C解析:C 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,k S 的值,当8k时不满足条件8k <,退出循环,输出S 的值为11111237S +++=++,即可得解. 【详解】模拟执行程序框图,可得1,1k S ==, 执行循环体,11,2S k =+=, 满足条件18,11,32k S k <=++=; 满足条件118,11,423k S k <=+++=; …观察规律可知,当7k =时,满足条件,11111,8237S k ++++=+=; 此时,不满足条件8k <,退出循环,输出11111237S +++=++. 故选C . 【点睛】本题主要考查了循环结构的程序框图,解题时应模拟程序框图的运行过程,即可得出正确的结论,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0; 当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S=+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S=+++⋯+的值,由于()2019232019202021222222212S-=+++⋯+==--.故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【解析】试题分析:由表中数据可得表1:()25262210140.00916362032K⨯⨯-⨯=≈⨯⨯⨯;表2:()25242012161.76916362032K⨯⨯-⨯=≈⨯⨯⨯;表3:()2528241281.316362032K⨯⨯-⨯=≈⨯⨯⨯;表4:()25214302623.4816362032K⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D正确.考点:独立性检验.10.A解析:A【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.11.C解析:C 【解析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A :根据b 的正负即可判断正负相关关系.线性回归方程为0.47.6y x =-+,b=﹣0.7<0,负相关.对于B :根据表中数据:x =9.可得y =4.即()16+3244m ++=,解得:m=5. 对于C :相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D :由线性回归方程一定过(x ,y ),即(9,4). 故选:C .点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.12.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确; ③设定圆C 的方程为(x ﹣a )2+(x ﹣b )2=r 2,其上定点A (x 0,y 0),设B (a +r cosθ,b +r sinθ),P (x ,y ),由12OP =(OA OB +)得0022x a rcos x y b rsin y θθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x ﹣x 0﹣a )2+(2y﹣y 0﹣b )2=r 2,即动点P 的轨迹为圆, ∴故③不正确;④由22143x y +=,得a 2=4,b 2=3,∴1c ==.则F (﹣1,0),如图:过F 作垂直于x 轴的直线,交椭圆于A (x 轴上方),则x A =﹣1,代入椭圆方程可得32A y =.当P 为椭圆上顶点时,P (0FP k =32OA k =-, ∴当直线FP 时,直线OP 的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,.当P 为椭圆下顶点时,P (0,∴当直线FP 时,直线OP 的斜率的取值范围是(8,32),综上,直线OP (O 为原点)的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,∪,32). 故选C 【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.二、填空题13.【分析】含有不合格品分为两类:一件不合格和两件不合格分别利用组合公式即可得到答案【详解】质检员从中随机抽出2听共有种可能而其中含有不合格品共有种可能于是概率为:【点睛】本题主要考查超几何分布的相关计解析:35【分析】含有不合格品分为两类:一件不合格和两件不合格,分别利用组合公式即可得到答案. 【详解】质检员从中随机抽出2听共有2615C =种可能,而其中含有不合格品共有1122429C C C +=种可能,于是概率为:93155=. 【点睛】本题主要考查超几何分布的相关计算,难度不大.14.【分析】按要求操作一次产生一个新的实数列举得到新的实数的途径列出不等式根据所给的甲获胜的概率为解出a1的结果【详解】a3的结果有四种每一个结果出现的概率都是1a1→2a1﹣12→2(2a1﹣12)﹣ 解析:(][),1224,-∞⋃+∞【分析】按要求操作一次产生一个新的实数,列举得到新的实数的途径,列出不等式,根据所给的甲获胜的概率为34,解出a 1的结果. 【详解】a 3的结果有四种,每一个结果出现的概率都是14, 1.a 1→2a 1﹣12→2(2a 1﹣12)﹣12=4a 1﹣36=a 3, 2.a 1→2a 1﹣12→12122a -+12=a 1+6=a 3, 3.a 1→12a +12→11222a ++1214a =+18=a 3,4.a 1→12a +12→2(12a+12)﹣12=a 1+12=a 3, ∵a 1+18>a 1,a 1+36>a 1,∴要使甲获胜的概率为34, 即a 3>a 1的概率为34, ∴4a 1﹣36>a 1,14a +18≤a 1, 或4a 1﹣36≤a 1,14a +18>a 1, 解得a 1≤12或a 1≥24. 故选:D . 【点睛】本题考查新定义问题,考查概率综合,意在考查学生的读题审题能力,考查转化能力,是中档题15.【解析】分析:根据几何概型的概率公式即可得到结论详解:区间的两端点间距离是2在区间内任取一点该点表示的数都大于故在区间中随机地取出一个数这个数大于的概率为故答案为:点睛:本题主要考查概率的计算根据几解析:34【解析】分析:根据几何概型的概率公式即可得到结论. 详解:区间[]0,2的两端点间距离是2,在区间1,22⎛⎤ ⎥⎝⎦内任取一点,该点表示的数都大于1sin62π=, 故在区间中随机地取出一个数,这个数大于12的概率为1232.204-=- , 故答案为:34.点睛:本题主要考查概率的计算,根据几何概型的概率公式是解决本题的关键.16.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该解析:ln 22(注:填c 也得分). 【解析】分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.17.【解析】阅读流程图可得该流程图计算的数值为: 解析:【解析】阅读流程图可得,该流程图计算的数值为:13sin 0sin 1sin 5262626S ππππππ+⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.4【分析】由已知中的程序语句可知该程序的功能是计算分段函数 的值将t=5代入即可得到答案【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 的值 故答案为04【点睛】算法是新课标高考的一大解析:4 【分析】由已知中的程序语句可知该程序的功能是计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值,将t =5代入即可得到答案. 【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值 50.20.1(53)0.4t C =∴=+-=,故答案为0.4. 【点睛】算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.19.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解. 【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误 (4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误. 故答案为; (2) 【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知: (1)对任意的a ,有()()P X a P X a μμ<->+=; (2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.20.5000【分析】由题意其他年级抽取200人其他年级共有学生2000人根据题意列出等式即可求出该校学生总人数【详解】由题意其他年级抽取200人其他年级共有学生2000人则该校学生总人数为人故答案是:5解析:5000 【分析】由题意,其他年级抽取200人,其他年级共有学生2000人,根据题意列出等式,即可求出该校学生总人数. 【详解】由题意,其他年级抽取200人,其他年级共有学生2000人, 则该校学生总人数为20005005000200⨯=人,故答案是:5000. 【点睛】该题考查的是有关分层抽样的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,属于简单题目.三、解答题21.(1)13(2)1830ˆ77yx =-(3)该小组所得线性回归方程是理想的 【详解】(1)设抽到相邻两个月的数据为事件.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种, ∴.(2)由数据求得,由公式,得,所以关于的线性回归方程为1830ˆ77yx =-. (3)当时,,有; 同样,当时,,有;所以,该小组所得线性回归方程是理想的. 22.(1)72;(2)15. 【分析】(1)利用频率分布直方图各组的中值估计平均分.(2)这是一个古典概型,先求得从95,76,97,88,69,100这6个数中任取2个数基本事件的总数,再根据在[90,100]的人数是600.053⨯=,求得从95,97,100这3个数中任取2个数基本事件数,然后代入公式求解. 【详解】(1)平均分为:450.05+550.15+650.2+750.3+850.25+950.05=72⨯⨯⨯⨯⨯⨯;(2)从95,76,97,88,69,100这6个数中任取2个数,共有2615C =种,在[90,100]的人数是600.053⨯=,从95,97,100这3个数中任取2个数,共有233C =种,所以这2个数恰好是两个学生的成绩的概率是. 31155p ==. 【点睛】本题主要考查平均数的求法,古典概型的概率,还考查了运算求解的能力,属于中档题. 23.(1)5;(2)2527(,]42. 【分析】(1)按照程序框图直接执行即可求出k 的值;(2)按照程序框图观察执行的结果x 与k 的关系,解不等式即可. 【详解】(1)按照程序框图依次执行得:3,0,7,1x k x k ====; 15,2x k ==;31,3x k ==; 63,4x k ==;123,5x k ==;此时,123115x =>,跳出循环,此时5k =, 所以输出的k 的值为5; (2)按照程序框图依次执行得:21,1x x k =+=;2(21)143,2x x x k =++=+=;2(43)187,3x x x k =++=+=;2(87)11615,4x x x k =++=+=;此时跳出循环,所以有871151615115x x +≤⎧⎨+>⎩,解得252742x <≤, 所以输人的实数x 的取值范围为2527(,]42. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,根据框图输出结果求参数的取值范围,属于简单题目.24.见解析【解析】【分析】根据分段函数的解析式,设置判断框并设置出判断条件,确定好判断框的“是”与“否”,由此可得出程序框图,即可求解.【详解】解算法如下:第一步:输入物品重量ω;第二步:如果50ω≤,那么0.53f ω=,否则,(500.535)500.8f ω⨯⨯=+-;第三步:输出物品重量ω和托运费f .程序框图如下:【点睛】本题主要考查了算法与程序框图的实际应用,解答中根据分段函数的解析式,设置出判断框,并设置出判断条件是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.25.(1)9, (2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由见解析, (ii )有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【分析】(1)取各区间中点值乘以频率再相加即得;(2)(i )两组差异明显,用分层抽样计算.(ii )求出两组的人数,填写列联表,计算2K 可得.【详解】(1)60.0370.180.290.35100.19110.09120.049⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6.5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配(ii )22⨯列联表为:2K 200(40742660) 4.4 3.84166134100100⨯⨯-⨯=≈>⨯⨯⨯, 所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【点睛】本题考查频率分布直方图,分层抽样,考查独立性检验.属于基础题.26.(1)17.5 6.5y x =+;(2)9百万元.【分析】 (1)由已知求得ˆb 与ˆa 的值,可得销售额y 关于广告费x 的线性回归方程; (2)在(1)中求得的线性回归方程中,取76y =求得x 值即可.【详解】(1)6482555x ++++==,5040703060505y ++++==. 61621()()10(1)(10)320(3)(20)010130ˆ 6.51199020()ii i ii x x y y b x x ==--⨯+-⨯-+⨯+-⨯-+⨯====++++-∑∑, 50 6.5517.5ˆˆay bx =-=-⨯=. ∴销售额y 关于广告费x 的线性回归方程为ˆ17.5 6.5yx =+; (2)当ˆ76y=时,代入回归方程ˆ17.5 6.5y x =+,求得9x =. 故预测当销售额为76百万元时,广告费支出为9百万元.【点睛】本题考查线性回归方程的求法,考查回归方程的应用,考查了计算能力,是中档题.。
【北师大版】高中数学必修三期末试题(附答案)

一、选择题1.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是()A.518B.718C.716D.5162.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.7163.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( )A.19B.164C.18D.1164.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为()A.184B.142C.128D.1145.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n项和的程序框图.执行该程序框图,输入10m=,则输出的S=()A .100B .140C .190D .2506.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S 7.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k 8.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥? 9.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是( )A .24B .48C .56D .64 10.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 11.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64 B .96 C .144 D .16012.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1n n P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数A .呈下降趋势B .呈上升趋势C .摆动变化D .不变二、填空题13.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:488 932 812 458 989 431 257 390 024 556734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________.14.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为________.15.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________ 16.执行如图所示的算法框图,若输入的x 的值为2,则输出的n 的值为__________.17.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin 3f x x π=, ()2cos 3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.18.如果执行如图所示的程序框图,那么输出的值k = .19.对具有线性相关关系的变量x ,y ,有一组观察数据(,)(1,2,9)i i x y i =⋅⋅⋅,其回归直线方程是:2y x a =+,且919i i x==∑,9118i i y ==∑,则实数a 的值是__________. 20.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88,若B 样本数据恰好是A 样本数据每个都加2后所得数据,则,A B 两样本的数字特征(众数、中位数、平均数、方差)对应相同的是__________.三、解答题21.某校为了诊断高三学生在市“一模”考试中文科数学备考的状况,随机抽取了50名学生的市“一模”数学成绩进行分析,将这些成绩分为九组,第一组[60,70),第二组[70,80),……,第九组[140,150],并绘制了如图所示的频率分布直方图.(1)试求出a 的值并估计该校文科数学成绩的众数和中位数;(2)现从成绩在[120,150]的同学中随机抽取2人进行谈话,那么抽取的2人中恰好有一人的成绩在[130,140)中的概率是多少?22.某大学综合评价面试测试中,共设置两类考题:A 类题有4个不同的小题,B 类题有3个不同的小题.某考生从中任抽取3个不同的小题解答.(1)求该考生至少抽取到2个A 类题的概率;(2)设所抽取的3个小题中B 类题的个数为X ,求随机变量X 的分布列与均值. 23.已知辗转相除法的算法步骤如下:第一步:给定两个正整数m ,n ;第二步:计算m 除以n 所得的余数r ;第三步:m n =,n r =;第四步:若0r =,则m ,n 的最大公约数等于m ;否则,返回第二步.请根据上述算法画出程序框图.24.设计算法求111112233499100++++⨯⨯⨯⨯的值,要求画出程序框图,并用基本的算法语句编写程序. 25.据了解,温带大陆性气候,干燥,日照时间长,昼夜温差大,有利于植物糖分积累.某课题研究组欲研究昼夜温差大小()/x ℃与某植物糖积累指数()/y GI 之间的关系,得到如下数据: 组数第一组 第二组 第三组 第四组 第五组 第六组 昼夜温差/℃x10 11 13 12 8 6 某植物糖积累指数/y GI 20 24 30 28 18 15该课题研究组确定的研究方案是先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验,假设这剩下的2组数据恰好是第一组与第六组数据.(1)求y 关于x 的线性回归方程ˆˆˆybx a =+ (2)若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2.58,则认为得到的线性回归方程是理想的,试问(1)中所得线性回归方程是否理想?(参考公式:回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计()()()211ˆˆˆ,i ii ni n i x x y y b ay bx x x ==--==--∑∑ 26.零部件生产水平是评判一个国家高端装备制造能力的重要标准之一,其中切割加工技术是一项重要技术某精密仪器制造商研发了一种切割设备,用来生产高精度的机械零件,经过长期生产检验,可以认为该设备生产的零件尺寸服从正态分布N (μ,σ2).某机械加工厂购买了该切割设备,在正式投入生产前进行了试生产,从试生产的零件中任意抽取10件作为样本,下面是样本的尺寸x i (i =1,2,3,…,10,单位:mm ):用样本的平均数x 作为μ的估计值,用样本的标准差s 作为σ的估计值.(1)按照技术标准的要求,若样本尺寸均在(μ﹣3σ,μ+3σ)范围内,则认定该设备质量合格,根据数据判断该切割设备的质量是否合格.(2)该机械加工厂将该切割设备投入生产,对生产的零件制定了两种销售方案(假设每种方案对销售量没有影响):方案1:每个零件均按70元定价销售;方案2:若零件的实际尺寸在(99.7,100.3)范围内,则该零件为A 级零件,每个零件定价100元,否则为B 级零件,每个零件定价60元.哪种销售方案的利润更大?请根据数据计算说明.附:1021i i x =∑≈100601.8,样本方差()22221111n n i i i i s x x x nx n n ==⎛⎫=-=- ⎪⎝⎭∑∑. 若X ~N (μ,σ2),则P (μ﹣σ<X <μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)=0.9545【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率.【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除,所以所求概率为516P=.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.2.B解析:B【分析】求出4名同学去旅游的所有情况种数,再求出恰有一个地方未被选中的种数,由概率公式计算出概率.【详解】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有2113424322144C CC AA⋅⋅=种情况;所以恰有一个地方未被选中的概率:144925616 p==;故选:B.【点睛】本题考查古典概型,解题关键是求出基本事件的个数,本题属于中档题.3.C解析:C【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可.【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1,所以向下数字为1和2的概率21168P ==, 故选:C【点睛】 本题主要考查随机事件概率的计算,难度较低.4.D解析:D【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案.【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C 种可能,而3套题年份和编号都各不相同共有336A =种可能,于是所求概率为61=8414.选D. 【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.5.C解析:C【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果.【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行; 第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行, 第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行, 第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行, 第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行, 第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行, 第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行, 第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行,第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行, 第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =. 故选:C【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题.6.C解析:C【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件.【详解】第一次循环:1S =,不满足条件,2i =;第二次循环:3S =,不满足条件,3i =;第三次循环:6S =,不满足条件,4i =;第四次循环:10S =,不满足条件,5i =;第五次循环:15S =,不满足条件,6i =;第六次循环:21S =,不满足条件,7i =;第七次循环:28S =,满足条件,输出的值为7.所以判断框中的条件可填写“28S ”.故选C .【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.7.C解析:C【解析】【分析】模拟程序的运行过程,即可得出输出y 的值时判断框中应填入的是什么.【详解】模拟程序的运行过程如下, 输入114,1,11333x k y ===⨯+=, 41132,1339k y ==⨯+=,131403,19327k y ==⨯+=, 4011214,127381k y ==⨯+=, 此时不满足循环条件,输出12181=y ; 则判断框中应填入的是4?k ≤.故选:C . 【点睛】本题考查了算法与程序框图的应用问题,理解框图的功能是解题的关键,是基础题.8.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7= 此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.B解析:B 【分析】根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解. 【详解】 由直方图可知,从左到右的前3个小组的频率之和为1(0.01250.0375)510.250.75-+⨯=-=, 又前3个小组的频率之比为1:2:3, 所以第二组的频率为20.750.256⨯=,所以学生总数120.2548n =÷=,故选B. 【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.10.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.511.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题12.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.二、填空题13.3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数根据概率公式得到结果【详解】由题意知模拟三天的下雨情况经随机模拟产生了20组随机数在20组随机数中表示三天中恰有两天下雨解析:3 【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数,根据概率公式,得到结果. 【详解】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,∴所求概率为60.320P ==. 故答案为:0.3 【点睛】本题主要考查了模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用,属于中档题.14.【分析】利用对立事件的概率公式计算即可【详解】解:设至少有一种新产品研发成功的事件为事件事件为事件的对立事件则事件为一种新产品都没有成功因为甲乙研发新产品成功的概率分别为和则再根据对立事件的概率之间 解析:1315【分析】利用对立事件的概率公式,计算即可, 【详解】解:设至少有一种新产品研发成功的事件为事件m ,事件n 为事件m 的对立事件,则事件n 为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为23和35. 则()232(1)(1)3515p n =--=,再根据对立事件的概率之间的公式可得()()213111515P m P n =-=-=, 故至少有一种新产品研发成功的概率1315. 故答案为:1315. 【点睛】本题主要考查了对立事件的概率,考查学生的计算能力,属于基础题.15.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.16.2【解析】当x=2时x2﹣4x+3=﹣1<0满足继续循环的条件故x=3n=1;当x=3时x2﹣4x+3=0满足继续循环的条件故x=4n=2;当x=4时x2﹣4x+3=3>0不满足继续循环的条件故输出解析:2 【解析】当x=2时,x 2﹣4x+3=﹣1<0,满足继续循环的条件,故x=3,n=1; 当x=3时,x 2﹣4x+3=0,满足继续循环的条件,故x=4,n=2; 当x=4时,x 2﹣4x+3=3>0,不满足继续循环的条件, 故输出的n 值为2; 故答案为2.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.17.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++= ⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.18.4【分析】模拟执行程序框图依次写出每次循环得到的S 的值当S=2059k=4时不满足条件S <100退出循环输出k 的值为4【详解】模拟执行程序框图可得k=0S=0满足条件S <100S=1k=1满足条件S解析:4 【分析】模拟执行程序框图,依次写出每次循环得到的S 的值,当S =2059,k =4时,不满足条件S <100,退出循环,输出k 的值为4. 【详解】模拟执行程序框图,可得 k =0 S =0满足条件S <100,S =1,k =1 满足条件S <100,S =3,k =2 满足条件S <100,S =11,k =3 满足条件S <100,S =2059,k =4不满足条件S <100,退出循环,输出k 的值为4. 故选B . 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.0【解析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值详解:根据回归直线方程过样本中心点即答案为0点睛:本题考查了线性回归方程过样本中心点的应用问题是基础题解析:0 【解析】分析:根据回归直线方程过样本中心点x y (,), 计算平均数代入方程求出a 的值. 详解:根据回归直线方程ˆ2y x a =+过样本中心点x y (,),191191,99i i x x ==∑=⨯=191118299i i y y ==∑=⨯=,22210a y x ∴=-=-⨯=;即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.20.方差【解析】根据样本数字特征样本数据都加上2后新数据的众数中位数和平均数都增加2只有方差计算公式为结果不变故答案为方差解析:方差 【解析】根据样本数字特征,样本数据都加上2后新数据的众数、中位数和平均数都增加2,只有方差计算公式为2211()n i i S x x n ==-∑,结果不变,故答案为方差.三、解答题21.(1)a =0.014,众数95,中位数2903; (2)815. 【分析】(1)根据所有频率和为1求a 的值,根据组中值以及频率确定众数,根据频率为0.5求中位数;(2)先确定成绩在[120,150]的同学人数以及成绩在[130,140)中人数,再利用古典概型概率公式求解. 【详解】 (1)(0.0020.00420.0060.0120.0160.0180.024)1010.014a a +⨯++++++⨯=∴=由频率分布直方图得区间[90,100]对应人数最多,所以众数为901002+=95, 设中位数为x ,则90290(0.0040.0140.0160.024)100.5103x x -+++⨯⨯=∴= 所以中位数为2903; (2)成绩在[120,150]的同学人数有50(0.0020.0040.006)106⨯++⨯=, 成绩在[130,140)中人数500.004102⨯⨯=,从6人抽取2人共有15种方法,其中抽取的2人中恰好有一人的成绩在[130,140)中的抽法有248⨯=种,因此所求概率为815. 【点睛】本题考查频率分布直方图以及古典概型概率概率公式,考查基本分析求解能力,属基础题. 22.(1)2235;(2)分布列见解析,97EX = 【分析】(1)利用古典概率与互斥事件概率计算公式即可得出.(2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.利用超几何分布列计算公式即可得出. 【详解】(1)该考生至少抽取到2个A 类题的概率213434372235P +==. (2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.34374(0)35P X ===, 21433718(1)35P X ===, 12433712(2)35P X ===, 33371(3)35P X ===, ∴随机变量X 的分布列为:均值0123353535357EX =⨯+⨯+⨯+⨯=.【点睛】本题考查古典概率与互斥事件概率计算公式、超几何分布列计算公式及其数学期望计算公式,考查推理能力与计算能力.23.详见解析【分析】根据辗转相除法的算法步骤画出程序框图得到答案.【详解】如图【点睛】本题考查了辗转相除法的程序框图,意在考查学生对于程序框图的理解和掌握.24.见解析【解析】【分析】根据已知条件,程序的功能可以利用循环结构来解答。
【北师大版】高中数学必修三期末试题(含答案)

一、选择题1.在OMN 中,1OM =,3ON =,2MN =,在OMN 内任取一点,该点到点M 的距离大于1的概率为( )A .39π B .319π-C .318π D .3118π-2.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为( ) A .435B .635C .1235D .18353.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4134.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .1275.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .156.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x 值为0,则输出的x 值为( )A .5740B .13380C .5732D .5893207.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S8.执行如图的程序框图,则输出x 的值是 ( )A .2018B .2019C .12D .29.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .210.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,811.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .2912.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数( )A .40B .45C .48D .50二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.15.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.16.根据如图所示算法流程图,则输出S 的值是__.17.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出的i =________.18.执行如图所示的流程图,则输出的的值为___________.19.某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元),根据下表求出y关于x的线性回归方程为 6.517.5y x=+,x24568y304057a69则表中a的值为__________.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.为了研究玉米品种对产量的,某农科院对一块试验田种植的一批玉米共10000株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:高茎 矮茎 总计 圆粒 11 19 30 皱粒 13 7 20 总计242650(1)现采用分层抽样的方法,从该样本所含的圆粒玉米中取出6株玉米,再从这6株玉米中随机选出2株,求这2株之中既有高茎玉米又有矮茎玉米的概率;(2)根据玉米生长情况作出统计,是否有95%的把握认为玉米的圆粒与玉米的高茎有关?附:()()()()()22n ad bc K a b c d a c b d -=++++()20P K k ≥ 0.05 0.01 0k3.8416.63522.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:min)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40 min 的学生评价为“课外体育达标”.(1)请根据频率分布直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标总计男 60女 110 总计(2)现从“课外体育达标”学生中按分层抽样抽取5人,再从这5名学生中随机抽取2人参加体育知识问卷调查,求抽取的这2人课外体育锻炼时间都在[40,50)内的概率.附参考公式与数据:K 2=2(-)()()()()n ad bc a b c d a c b d ++++P (K 2≥k 0) 0.10 0.05 0.010 0.005 0.001k 02.7063.841 6.635 7.879 10.82823.根据下面的要求,求满足123500n +++⋅⋅⋅+>的最小的自然数n ,并画出执行该问题的程序框图.24.已知函数y=21,0,1,0,x xx x ⎧>⎪⎪⎨⎪<⎪⎩设计一个算法的程序框图,计算输入x 的值,输出y 的值.25.2020年新冠肺炎疫情肆虐全球,各地医疗部门迅速进行防控意识宣传和流行病学调查.某疫区随机抽取100人调查其外出时佩戴口罩的情况,结果如下表.(1)是否有99.5%的把握认为“是否佩戴口罩与年龄有关”;(2)该疫区某新冠肺炎定点治疗医院统计了确诊患者中年龄x (单位:岁)的重症患者比例(单位:%),得到下表:若y 与x 之间具有线性相关关系,请用最小二乘法求出y 关于x 的线性回归方程y bx a =+,并预测该医院76岁确诊患者中的重症比例.参考公式和数据:用最小二乘法求线性回归方程系数公式:1221ni ii nii x y nx yb xn x=-=-=-∑∑,a y bx =-.817010.5657.5637.553 5.552 4.545 3.540 1.5320.52454i ii x y==⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=∑.82222222217065635345403223256i i x==++++++=∑.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.26.某湿地公园占地约44万2m ,风景优美,吸引了大批市民前来游玩、健身.当地政府为了开展全民健身活动,组织了跑步队,并给每位队员发放统一服装,吸引了越来越多的市民加入跑步队.组织者统计了跑步队成立一个月内每一天队员的人数,用x 表示跑步队成立的天数,y 表示当天跑步队的人数,给出部分数据如下表所示:经研究发现,可以用y c =+y 关于x 的回归方程类型. (1)根据表中的数据,建立y 关于x 的回归方程; (2)请预测第36天跑步队的人数. 参考数据:其中5115i i x x ==∑,5115i i y y ==∑,i t =5115i i t t ==∑.参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v a u β=+的斜率和截距的最小二乘法估计公式分别为:1221ni i i nii u v nuvunuβ==-=-∑∑,a v u β=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】在OMN ∆内任取一点,该点到点M 的距离大于1的区域是OMN ∆中去掉扇形MOC 的剩余部分,由几何概型能求出该点到点M 的距离大于1的概率. 【详解】解:以M 为原点,以1为半径作圆,交MN 于点C , 在OMN ∆中,1OM =,ON =,2MN =, MO NO ∴⊥,60OMC ∠=︒,21166OMC S ππ∴=⨯⨯=扇形,112MON S ∆=⨯.在OMN ∆内任取一点,该点到点M 的距离大于1的区域是OMN ∆中去掉扇形MOC 的剩余部分,∴由几何概型得该点到点M 的距离大于1的概率为:1MON OMCMONS S P S π∆∆--===扇形故选:B .【点睛】本题考查概率的求法,考查几何概型等基础知识,考查运算求解能力,是基础题.2.C解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035= 故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.3.A解析:A 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF 的面积为1S ,ABC 的面积为2S因为DEF 与ABC 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A 【点睛】1.本题考查的是几何概型中的面积型,较简单2.相似三角形的面积之比等于相似比的平方.4.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C . 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.C解析:C 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.6.C解析:C 【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210xx、1i i =+”,然后进行运算并结合条件“4i ”得出结果。
【北师大版】高中数学必修三期末模拟试卷(含答案)(1)

一、选择题1.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.512.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 3.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I 卷,全国II 卷,全国III 卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为( )A .184B .142 C .128 D .1144.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n =B .3n =C .4n =D .6n =5.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203 B .72C .165D .1586.执行如图所示的程序框图,则输出的a=( )A .-9B .60C .71D .817.如图所给的程序运行结果为41S ,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?8.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k 9.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+10.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为( )A .1167B .365C .36D .67511. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日 12.已知x ,y 的取值如表: x 2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .二、填空题13.设每门高射炮命中飞机的概率为0.06,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______门高射炮射击,才能以至少99%的概率命中它.14.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.15.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.16.如图是某算法流程图,则程序运行后输出S 的值为____.17.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的a,b的值分别为7,3,则输出的n的值为____________.18.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.19.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示:学校A高中B高中C高中D高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在D高中中抽取的学生人数为_______.20.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在 的人数为__________.7078()kg三、解答题21.某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表:年龄段20~2930~3940~4950~60频数1218155经常使用共享单车61251(1)由以上统计数据完成下面的22⨯列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率.22.绝大部分人都有患呼吸系统疾病的经历,现在我们调查患呼吸系统疾病是否和所处环境有关.一共调查了500人,患有呼吸系统疾病的350人,其中150人在室外工作,200人在室内工作.没有患呼吸系统疾病的150人,其中50人在室外工作,100人在室内工作.(1)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.(2)你能否在犯错误率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关; 附表:()()()()()22n ad bc K a b c d a c b d -=++++23.如图,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,APB △的面积为y ,求y 与x 之间的函数关系式,并画出程序框图.24.已知华氏温度与摄氏温度的转换公式是(华氏温度532)9-⨯=摄氏温度.编写一个程序,输入一个华氏温度,输出其相应的摄氏温度.25.2020年新冠肺炎疫情肆虐全球,各地医疗部门迅速进行防控意识宣传和流行病学调查.某疫区随机抽取100人调查其外出时佩戴口罩的情况,结果如下表. 分类 佩戴口罩人数/人 不佩戴口罩人数/人 年轻人 45 25 中老年人1020(1)是否有99.5%的把握认为“是否佩戴口罩与年龄有关”;(2)该疫区某新冠肺炎定点治疗医院统计了确诊患者中年龄x (单位:岁)的重症患者比例(单位:%),得到下表: 年龄x /岁 70 65 63 53 52 45 40 32 重症比例y /%10.57.57.55.54.53.51.50.5若y 与x 之间具有线性相关关系,请用最小二乘法求出y 关于x 的线性回归方程y bx a =+,并预测该医院76岁确诊患者中的重症比例.参考公式和数据:用最小二乘法求线性回归方程系数公式:1221ni ii nii x y nx yb xn x=-=-=-∑∑,a y bx =-.817010.5657.5637.553 5.552 4.545 3.540 1.5320.52454i ii x y==⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=∑.82222222217065635345403223256i i x==++++++=∑.()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.26.零部件生产水平是评判一个国家高端装备制造能力的重要标准之一,其中切割加工技术是一项重要技术某精密仪器制造商研发了一种切割设备,用来生产高精度的机械零件,经过长期生产检验,可以认为该设备生产的零件尺寸服从正态分布N (μ,σ2).某机械加工厂购买了该切割设备,在正式投入生产前进行了试生产,从试生产的零件中任意抽取10件作为样本,下面是样本的尺寸x i (i =1,2,3,…,10,单位:mm ):用样本的平均数x 作为μ的估计值,用样本的标准差s 作为σ的估计值.(1)按照技术标准的要求,若样本尺寸均在(μ﹣3σ,μ+3σ)范围内,则认定该设备质量合格,根据数据判断该切割设备的质量是否合格.(2)该机械加工厂将该切割设备投入生产,对生产的零件制定了两种销售方案(假设每种方案对销售量没有影响):方案1:每个零件均按70元定价销售;方案2:若零件的实际尺寸在(99.7,100.3)范围内,则该零件为A 级零件,每个零件定价100元,否则为B 级零件,每个零件定价60元. 哪种销售方案的利润更大?请根据数据计算说明.附:1021ii x =∑≈100601.8,样本方差()22221111n n i i i i s x x x nx n n ==⎛⎫=-=- ⎪⎝⎭∑∑.若X ~N (μ,σ2),则P (μ﹣σ<X <μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)=0.9545【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【分析】由几何概型中的面积型得:1 277210.511010SPS⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y,则010x<≤,010y<≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A,则事件A为:3x y-≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010SPS⨯⨯⨯==-=⨯阴正.故选:D.【点睛】本题考查了几何概型中的面积型,属于基础题.2.C解析:C【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y+=内,进一步得到211411+mm nπ⨯=⨯,则答案可求。
【北师大版】高中数学必修三期末试卷含答案(3)

一、选择题1.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C .3224π- D .14π-2.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .383.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .234.下列命题中正确的是( )A .事件A 发生的概率()P A 等于事件A 发生的频率()n f AB .一个质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C .掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =D .对于两个事件A 、B ,若()()()P AB P A P B =+,则事件A 与事件B 互斥5.若执行如图所示的程序框图,则输出S 的值是( )A.63 B.15 C.31 D.32n ,则输入整数p的最大值是( )6.执行如图的程序框图,若输出的6A.15 B.16 C.31 D.327.我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几个?程序框图反映了对此题的一个求解算法,则输出n的值为()A.20B.25C.75D.808.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A .28B .10C .4D .29.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.7510.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差 11.小明同学在做市场调查时得到如下样本数据x1 3 6 10 y 8a42他由此得到回归直线的方程为ˆ 2.115.5yx =-+,则下列说法正确的是( ) ①变量x 与y 线性负相关 ②当2x =时可以估计11.3y = ③6a = ④变量x 与y 之间是函数关系 A .① B .①②C .①②③D .①②③④12.通过实验,得到一组数据如下:2,5,8,9,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .3.2B .4C .6D .6.5二、填空题13.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______14.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.15.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.16.某程序框图如图所示,则该程序运行后输出的S 值是_____________.17.执行如图所示的程序框图,输出S 的值为___________.18.程序框图如下图所示,其输出的结果是__________________________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.20.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________.三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下: 甲种生产方式:乙种生产方式:(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?23.写出一个求解任意二次函数()20y ax bx c a =++≠的最值的算法.24.相传古代印度国王在奖赏他聪明能干的宰相达依尔(国际象棋发明者)时,问他需要什么,达依尔说:“国王只要在国际象棋棋盘的第一格子上放一粒麦子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64格(国际象棋棋盘格数是8×8=64),我就感恩不尽,其他什么也不要了.”国王想:“这才有多少,还不容易!”于是让人扛来一袋小麦,但不到一会儿就用完了,再来一袋很快又没有了,结果全印度的粮食用完还不够,国王很奇怪,怎么也算不清这笔账.请你设计一个程序框图表示其算法,来帮国王计算一下需要多少粒小麦. 25.探索浩瀚宇宙是全人类的共同梦想,我国广大科技工作者、航天工作者为推动世界航天事业发展付出了艰辛的努力,为人类和平利用太空、推动构建人类命运共同体贡献了中国智慧、中国方案、中国力量.(1)某公司试生产一种航空零件,在生产过程中,当每小时次品数超过90件时,产品的次品率会大幅度增加,为检测公司的试生产能力,同时尽可能控制不合格品总量,抽取几组一小时生产的产品数据进行次品情况检查分析,已知在x (单位:百件)件产品中,得到次品数量y (单位:件)的情况汇总如下表所示,且y (单位:件)与x (单位:百件)线性相关:根据公司规定,在一小时内不允许次品数超过90件,请通过计算分析,按照公司的现有生产技术设备情况,判断可否安排一小时试生产10000件的任务?(2)“战神”太空空间站工作人员需走出太空站外完成某项试验任务,每次只派一个人出去,且每个人只派出一次,工作时间不超过10分钟,如果有人10分钟内不能完成任务则撤回,再派下一个人.现在一共有n 个人可派,工作人员123,,,,n a a a a 各自在10分钟内能完成任务的概率分别依次为123,,,,n p p p p ,且1230.5n p p p p =====,*N n ∈,各人能否完成任务相互独立,派出工作人员顺序随机,记派出工作人员的人数为X ,X 的数学期望为()E X ,证明:()2E X <.(参考公式:用最小二乘法求线性回归方程ˆˆybx a =+的系数公式 1122211()()=ˆ()n ni iiii i nnii i i x y nx y x x y y bxnx x x ====-⋅--=--∑∑∑∑;ˆa y bx=-.) (参考数据:515220143524403550404530i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222215203540505750ii x==++++=∑.)26. 2.5PM 是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与 2.5PM 的浓度是否相关,现采集到某城市周一至周五某时间段车流量与2.5PM 浓度的数据如下表:时间周一周二 周三 周四 周五 车流量x (万辆)50 51 54 57 58 2.5PM 的浓度y (微克/立方米) 3940424445(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标; (2)用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时2.5PM 的浓度是多少?(参考公式:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S PS π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.2.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点, 则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.3.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.4.C解析:C 【分析】根据频率与概率的关系判断即可得A 选项错误;根据概率的意义即可判断B 选项错误;根据古典概型公式计算即可得C 选项正确;举例说明即可得D 选项错误. 【详解】解:对于A 选项,频率与实验次数有关,且在概率附近摆动,故A 选项错误; 对于B 选项,根据概率的意义,一个质地均匀的骰子掷一次得到3点的概率是16,表示一次实验发生的可能性是16,故骰子掷6次出现3点的次数也不确定,故B 选项错误; 对于C 选项,根据概率的计算公式得()1112222P A =⨯⨯=,()111224P B =⨯=,故()()2P A P B =,故C 选项正确;对于D 选项,设[]3,3x ∈-,A 事件表示从[]3,3-中任取一个数x ,使得[]1,3x ∈的事件,则()13P A =,B 事件表示从[]3,3-中任取一个数x ,使得[]2,1x ∈-的事件,则()12P A =,显然()()()511632P A B P A P B ==+=+,此时A 事件与B 事件不互斥,故D 选项错误. 【点睛】 本题考查概率与频率的关系,概率的意义,互斥事件等,解题的关键在于D 选项的判断,适当的举反例求解即可.5.C解析:C 【分析】根据程序框图模拟程序计算即可求解. 【详解】模拟程序的运行,可得1S =,1i =; 满足条件5i <,执行循环体,3S =,2i =; 满足条件5i <,执行循环体,7=S ,3i =;满足条件5i <,执行循环体,15S =,4i =; 满足条件5i <,执行循环体,31S =,5i =; 此时,不满足条件5i <,退出循环,输出S 的值为31. 故选:C 【点睛】本题主要考查了程序框图,循环结构,属于中档题.6.C解析:C 【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可. 【详解】根据程序框图可知,1,0n S == 则11021,2S n -=+==21123,3S n -=+== 31327,4S n -=+== 417215,5S n -=+== 5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31 故选:C 【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.7.B解析:B 【分析】根据程序的运行过程,依次得到,,n m S 的值,然后判断是否满足100S =,结合循环结构,直至得到符合题意的n . 【详解】执行程序框图,8026020,1002080,32010033n m S ==-==⨯+=≠; 则7926821,1002179,6310033n m S ==-==+=≠; 则7822,1002278,66921003n m S ==-==+=≠; 则7728423,1002377,6910033n m S ==-==+=≠;则7629224,1002476,7210033n m S ==-==+=≠; 则7525,1002575,751003n m S ==-==+=成立, 故输出25n =. 故答案为B. 【点睛】本题主要考查了程序框图,考查了学生的逻辑推理能力,属于基础题.8.C解析:C 【分析】x 的变化遵循以2-为公差递减的等差数列的变化规律,到0x <时结束,得到1x =-,然后代入解析式,输出结果. 【详解】0x ≥时,每次赋值均为2x -x 可看作是以2019为首项,2-为公差的等差数列{}n x()()20191220212n x n n ⇒=+-⨯-=-当0x <时输出,所以0n x <,即202120n -< 20212n ⇒>即:10100x >,10110x < 10112021210111x ⇒=-⨯=-1314y ∴=+=本题正确选项:C 【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.9.C解析:C 【分析】求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解. 【详解】由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a , 故选:C . 【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.10.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 11.C解析:C 【解析】 【分析】根据数据和回归方程对每一个选项逐一判断得到答案. 【详解】① 2.1b =-⇒变量x 与y 线性负相关,正确 ②将2x =代入回归方程,得到11.3y =,正确 ③将(,)x y 代入回归方程,解得6a =,正确 ④变量x 与y 之间是相关关系,不是函数关系,错误 答案为C 【点睛】本题考查了回归方程的相关知识,其中中心点(,)x y 一定在回归方程上是同学容易遗忘的知识点.12.C解析:C 【解析】分析:利用平均数的公式,求得6x =,得到数据2,5,8,9,6,再利用方差的计算公式,即求解数据的方差.详解:由题意,一组数据2,5,8,9,x 的平均数为6,即258924655x xx +++++===,解得6x =,所以数据2,5,8,9,6的方差为2222221[(26)(56)(86)(96)(66)]65s =-+-+-+-+-=,故选C.点睛:本题主要考查了数据的数字特的计算,其中熟记数据的平均数的公式和数据的方差的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【详解】解:从1234这四个数中一次随机取两个数有(12)(13)(14)(23)(24)(34)共6种情况;其中其中一个数是另一个的两倍的有两种即(12)(24);则其概率为;故答案为解析:13【详解】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况; 其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4); 则其概率为2163=; 故答案为13. 简单考察古典概型的概率计算,容易题.14.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础15.【解析】【分析】以正方体的中心为球心1为半径做球若点在球上或球内时符合要求求其体积根据几何概型求概率即可【详解】当正方体内的点落在以正方体中心为球心1为半径的球上或球内时此点到正方体中心的距离不大于解析:6π【解析】 【分析】以正方体的中心为球心,1为半径做球,若点在球上或球内时,符合要求,求其体积,根据几何概型求概率即可. 【详解】当正方体内的点落在以正方体中心为球心,1为半径的球上或球内时,此点到正方体中心的距离不大于1, 因为344133V ππ=⨯⨯=球,2228V =⨯⨯=正方体 因此正方体内点到正方体中心的距离不大于1的概率24132226V P V 球正方体ππ⨯⨯===⨯⨯, 故填6π. 【点睛】本题主要考查了几何概型,球的体积,正方体的体积,属于中档题.16.【分析】按照程序框图运行程序可确定输出结果利用裂项相消法可求得结果【详解】由程序框图运行程序输入则循环;循环;……输出结果故答案为:【点睛】本题考查根据程序框图计算输出结果涉及到裂项相消法求和的问题 解析:20152016【分析】按照程序框图运行程序可确定输出结果111122320152016S =++⋅⋅⋅+⨯⨯⨯,利用裂项相消法可求得结果. 【详解】由程序框图运行程序,输入1k =,0S =则112S =⨯,2k =,循环;111223S =+⨯⨯,3k =,循环;……111122320152016S =++⋅⋅⋅+⨯⨯⨯,2016k =,输出结果 11111111112232015201622320152016S ∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-⨯⨯⨯12015120162016=-=故答案为:20152016【点睛】本题考查根据程序框图计算输出结果,涉及到裂项相消法求和的问题,属于基础综合题.17.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48 【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立 第2次运行,2,2,224,4i S S i ===⨯=<成立 第3次运行,3,4,3412,4i S S i ===⨯=<成立 第3次运行,4,12,41248,4i S S i ===⨯=<不成立, 故输出S 的值为4818.127【分析】根据题意按照程序框图的顺序进行执行然后输出结果即可【详解】解:由程序框图知循环体被执行后a 的值依次为37153163127故输出的结果是127故答案为127【点睛】本题考查程序框图的识解析:127 【分析】根据题意,按照程序框图的顺序进行执行,然后输出结果即可 【详解】解:由程序框图知,循环体被执行后a 的值依次为3、7、15、31、63、127,故输出的结果是127. 故答案为127. 【点睛】本题考查程序框图的识别,通过对已知框图的分析与执行,写出运算结果,属于基础题.19.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.20.5【解析】将样本中心代入回归方程得到m=55故答案为:55解析:5 【解析】19.5,15,5my x +== 将样本中心代入回归方程得到m=5.5. 故答案为:5.5. 三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318. 【解析】 试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为1718. (Ⅱ)这位挑战者回答这三个问题的总得分X 的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X 的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为1318. 试题(Ⅰ)设至少回答对一个问题为事件A ,则()11117133218P A =-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X 的所有可能取值为10,0,10,20,30,40-. 根据题意,()11111033218P X =-=⨯⨯=, ()2112023329P X ==⨯⨯⨯=,()2212103329P X==⨯⨯=, ()11112033218P X==⨯⨯=, ()21123023329 P X==⨯⨯⨯=, ()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B,则()212213 9189918P B=+++=.22.(1)①优等品3件,合格品2件;②35;(2)选择乙生产方式.【分析】(1)①根据频数分布表知:甲的优等品率为0.6,合格品率为0.4,即可得到抽去的件数;②记3件优等品为A,B,C,2件合格品分别为a,b,从中随机抽2件,列举出基本事件的总数,利用古典概型及其概率的计算公式,即可求解;(2)分别计算出甲、乙种生产方式每生产100件所获得的利润为1T元2T元,比较即可得到结论.【详解】(1)①由频数分布表知:甲的优等品率为0.6,合格品率为0.4,所以抽出的5件产品中,优等品3件,合格品2件.②记3件优等品为A,B,C,2件合格品分别为a,b,从中随机抽2件,抽取方式有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab共10种,设“这2件中恰有1件是优等品的事件”为M,则事件M发生的情况有6种,所以()63 105P M==.(2)根据样本知甲种生产方式生产100件农产品有60件优等品,40件合格品;乙种生产方式生产100件农产品有80件优等品,20件合格品.设甲种生产方式每生产100件所获得的利润为1T元,乙种生产方式每生产100件所获得的利润为2T元,可得()()16055154025152800T =-+-=(元),()()28055202025202900T =-+-=(元),由于12T T <,所以用样本估计总体知乙种生产方式生产的农产品所获得的利润较高,该扶贫单位要选择乙生产方式来帮助该扶贫村来脱贫较好. 【点睛】本题主要考查了频率分布直方表与频率分布直方图的应用,其中解答中熟记在频率分布直方图中,各小长方形的面积表示相应各组的频率,且所有小长方形的面积的和等于1,合理利用古典概型及其概率的计算公式求解概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 23.见解析 【分析】由二次函数的性质知,当0a >时,二次函数()20y ax bx c a =++≠开口方向向上,函数有最小值为244ac b a -;当0a <时, 二次函数()20y ax bx c a =++≠开口方向向下,函数有最大值为244ac b a-. 【详解】第一步,输入a ,b ,c第二步,计算244ac b m a-=;第三步,若0a >,min y m =,否则, max y m =. 【点睛】本题考查算法步骤的书写和一元二次函数的最值问题;同时让学生体会算法在解决数学问题中的作用;求解本题的关键是对一元二次函数最值情况必须熟悉;属于中档题. 24.见解析. 【解析】试题分析:依题目可知,问题是求1+2+22 +…+263 的和的问题,我们引入一个累加变量S ,一个计数变量i ,累加64次就能求其和 试题点睛:本题考查的是算法与流程图,对算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.25.(1)可以安排一小时试生产10000件的任务;(2)证明见解析. 【分析】(1)根据表中数据,分别求得:,x y ,利用公式求得ˆˆ,ab ,写出回归直线方程,然后将 100x =代入求值与90比较即可.(2)根据题意,随机变量的可能取值为1,2,3,,X n =,且1111()(1)222k k P X k -==-⨯=,1,2,3,,1k n =-;1111()(1)22n n P X n --==-=,由期望公式得到2321123221() (22222)n n n n E X ----=+++++,然后利用数列的错位相减法求解即可. 【详解】(1)由已知可得:520354050305x ++++==; 214243540235y ++++==;又因为522222215203540505750ii x==++++=∑;515220143524403550404530i ii x y==⨯+⨯+⨯+⨯+⨯=∑;由回归直线的系数公式知:51522222222154530530231080ˆ0.864(520354050)53012505i ii ii x y x ybxx ==-⋅-⨯⨯====++++-⨯-∑∑ˆ230.86430 2.92a y bx=-=-⨯=- 所以ˆˆ0.864 2.92ybx a x =+=- 当100x =(百件)时,864100 2.92083.4890.y ⨯-=<=,符合有关要求所以按照公司的现有生产技术设备情况,可以安排一小时试生产10000件的任务. (2)由题意知:1,2,3,,X n =,1111()(1)222k k P X k -==-⨯=,1,2,3,,1k n =-; 1111()(1)22n n P X n --==-= 所以2321123221() (22222)n n n n E X ----=+++++ 2341()123221 (222222)n n E X n n ---=+++++ 两式相减得:2321()1111121 (2222222)n n n E X n n --+-=+++++- 211111...2222n n -=++++ 112n =- 故11()222n E X -=-< 【点睛】 本题主要考查回归直线方程的求法,离散型随机变量的期望的求法以及独立重复实验的应用数列的错位相减法求和的方法,还考查了运算求解的能力,属于中档题.26.(1)()54,42(2)0.72 3.12y x =+(3)75.12微克/立方米【分析】(1)求出,x y 从而得到样本点的中心;(2)利用参考公式求出()52150ii x x =-=∑,()()136n i ii x x y y =--=∑,从而得到b ,再将样本中心坐标代入求得a ,从而得到回归方程;(3)将100x =代入回方程,求出y 的值,即可得到答案.【详解】(1)5051545758394042444554,4255x y ++++++++====, 所以样本中心坐标为()54,42.(2)因为()52116991650i i x x =-=+++=∑,()()1(4)(3)(3)(2)324336ni ii x x y y =--=-⋅-+-⋅-+⋅+⋅=∑, 所以360.7250b ==, 3.12a =, 线性回归方程为0.72 3.12y x =+.(3)0.72100 3.1275.12y =⨯+=(微克/立方米)此时 2.5PM 的浓度是75.12微克/立方米.【点睛】本题考查回归直线方程的最小二乘法求解及回归方程的应用,考查数据处理能力,求解时注意运算的准确性.。
【北师大版】高中数学必修三期末试题(带答案)(1)

一、选择题1.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅2.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到如下数据:x4681012y12356由表中数据求得y关于x的回归方程为ˆˆ0.65y x a=+落在回归直线下方的概率为()A.25B.35C.34D.123.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是()A.16B.13C.12D.234.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为()A.184B.142C.128D.1145.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.126.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.3n ,则输入的整数p的最小值是()7.执行如图的程序框图,若输出的48.执行如图所示的程序框图,输出的结果为()A .201921-B .201922-C .202022-D .202021-9.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元10.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是 A .81.2,4.4 B .40.6,1.1 C .48.8,4.4D .78.8,1.111.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元12.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.91二、填空题13.现有五个分别标有A、B、C、D、E的小球,随机取出三个小球放进三个盒子,每个盒子只能放一个小球,则D、E至少有一个在盒子中的概率为______.14.疫情防控期间,口罩的需求量很大,某地区有A.B两家小型口罩加工厂,A厂每天生产口罩4万到6万只,B厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.某程序框图如图所示,则该程序运行后输出的S的值为________.17.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.18.如图所示的伪代码,最后输出的S 值为__________.19.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示: 学校 A 高中B 高中C 高中D 高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在D 高中中抽取的学生人数为_______.20.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
【北师大版】高中数学必修三期末试卷带答案(3)

一、选择题1.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为()A.13B.49C.59D.232.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A.13B.47C.23D.563.在一个棱长为3cm的正方体的表面涂上颜色,将其适当分割成棱长为1cm的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A.49B.827C.29D.1274.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间不多于15分钟的概率为()A.13B.14C.15D.165.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()A .3B .4C .5D .66.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .20i <,1S S i=-,2i i = B .20i ≤,1S S i=-,2i i = C .20i <,2SS =,1i i =+ D .20i ≤,2SS =,1i i =+ 7.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤8.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020219.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,810.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是( )A .24B .48C .56D .6411.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定12.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.两个男生一个女生并列站成一排,其中两男生相邻的概率为_____14.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.15.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是________ .16.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.17.已知流程图如图,则输出的i =________.18.已知下列程序INPUTtIFt≤3THENC=0.2ELSEC=0.2+0.1*(t-3)ENDIFPRINTCEND当输入t=5时,输出结果是____.19.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示:学校A高中B高中C高中D高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在D高中中抽取的学生人数为_______.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试的平均分;(2)假设分数在[90,100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,76,97,88,69,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.22.将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为a,第二次出的点数为b,且已知关于x、y的方程组322 ax byx y+=⎧⎨+=⎩.(1)求此方程组有解的概率;(2)若记此方程组的解为0x x y y =⎧⎨=⎩,求00x >且00y >的概率.23.编写一个程序,要求输入两个正数a 和b 的值,输出a b 和b a 的值,并画出程序框图. 24.如图,已知单位圆x 2+y 2=1与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针方向旋转一周回到P 点后停止运动设OQ 扫过的扇形对应的圆心角为xrad,当0<x<2π时,设圆心O 到直线PQ 的距离为y,y 与x 的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式(Ⅰ)写出程序框图中①②处的函数关系式; (Ⅱ)若输出的y 值为2,求点Q 的坐标.25.经营费用指流通企业对在经营过程中发生除经营成本以外的所有费用,如管理费用、财务费用、法律费用等,这些费用没有直接用于生产产品或提供服务,但它是影响公司收益的重要因素.某创业公司从2014年开始创业到2019年每年的经营费用y (万元)、年份及其编号t ,有如下统计资料: 年份 2014 2015 2016 2017 2018 2019 t 1 2 3 4 5 6 y9.512.214.617.419.6m已知该公司从2014年到2019年年平均经营费用为16万元,且经营费用y 与年份编号t 呈线性相关关系.(1)求2019年该公司的经营费用;(2)y 关于t 的回归方程为 2.6y t a =+,求a ,并预测2020年所需要支出的经营费用; (3)该公司对2019年卖出的产品进行质量指标值检测,由检测结果得如图所示频率分布直方图:预计2020年生产产品质量指标值分布与上一年一致,将图表中频率作为总体的概率.当每件产品质量指标值不低于215时为优质品,指标值在185到215之间是合格品,指标值低于185时为次品.出售产品时,每件优质品可获利1.5万元,每件合格品可获利0.7万元,次品不仅全额退款,还要对客户进行赔付,所以每件次品亏损1.3万元.若2020年该公司的产量为500台,请你预测2020年该公司的总利润(总利润=销售利润-经营费用).26.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据. 得分(百分制) [0,20) [20,40) [40,60) [60,80) [80,100] 人数1020302515地抽取2人,求恰有1人预赛成绩优良的概率;(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z 服从正态分布()2,N μσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组数据的中间值代替),且2361σ=.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于72分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下: ①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n ,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k 题时“花”掉的分数为()0.21,2,k k n =;③每答对一题得2分,答错得0分;④答完n 题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每题答对与否都相互独立,则当他的答题数量n 为多少时,他的复赛成绩的期望值最大?参考数据:若()2~,Z Nμσ,则() 6.827P Z μσμσ-<<+≈,()220.9545P Z μσμσ-<<+≈,()330.9973P Z μσμσ-<<+≈【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.2.B解析:B 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.3.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C . 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B 【分析】由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于15分钟的事件包含的时间长度是15,利用时间的长度比即可求出所求. 【详解】解:由题意知这是一个几何概型, ∵电台整点报时,∴事件总数包含的时间长度是60,∵满足他等待的时间不多于15分钟的事件包含的时间长度是15, 由几何概型公式得到151604P ==, 故选B . 【点睛】本题主要考查了几何概型,本题先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.5.B解析:B 【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B. 考点:1、程序框图;2、循环结构.6.D解析:D 【分析】先由第一天剩余的情况确定循环体,再由结束条件确定循环条件即可. 【详解】根据题意可知,第一天12S =,所以满足2S S =,不满足1S S i=-,故排除AB ,由框图可知,计算第二十天的剩余时,有2SS =,且21i =,所以循环条件应该是20i ≤. 故选D. 【点睛】本题考查了程序框图的实际应用问题,把握好循环体与循环条件是解决此题的关键,属于中档题.7.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.8.C解析:C 【解析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果.【详解】 由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯, 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭, 111113355720172019S ∴=++++⨯⨯⨯⨯ 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-= ⎪⎝⎭. 本题选择C 选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.9.D 解析:D 【分析】 根据平均数的性质,方差的性质直接运算可得结果.【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==, 1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=, (也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.10.B解析:B根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【详解】由直方图可知,从左到右的前3个小组的频率之和为1(0.01250.0375)510.250.75-+⨯=-=, 又前3个小组的频率之比为1:2:3, 所以第二组的频率为20.750.256⨯=, 所以学生总数120.2548n =÷=,故选B.【点睛】 本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.11.A解析:A【解析】【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定.【详解】由茎叶图知, 甲的平均数是110210410511413391.65x ++++==, 乙的平均数是2108115116122123116.85x ++++==, 所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定故选:A .【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.12.A解析:A【解析】分析:根据分层抽样的总体个数和样本容量,做出女生和男生各应抽取的人数,得到女生要抽取2人,男生要抽取1人,根据分步计数原理得到需要抽取的方法数.详解:∵8名女生,4名男生中选出3名学生组成课外小组,∴每个个体被抽到的概率是14, 根据分层抽样要求,应选出8×14=2名女生,4×14=1名男生, ∴有C 82•C 41=112.故答案为:A .点睛:本题主要考查分层抽样和计数原理,意在考查学生对这些知识的掌握水平.二、填空题13.【分析】基本事件总数n 两名男生相邻包含的基本事件个数m4由此能求出两名男生相邻的概率【详解】两名男生和两名女生随机站成一排照相基本事件总数n 两名男生相邻包含的基本事件个数m4则两名男生相邻的概率为p 解析:23【分析】基本事件总数n 336A ==,两名男生相邻包含的基本事件个数m 2222A A ==4,由此能求出两名男生相邻的概率.【详解】两名男生和两名女生随机站成一排照相,基本事件总数n 336A ==,两名男生相邻包含的基本事件个数m 2222A A ==4则两名男生相邻的概率为p 23m n ==. 故答案为:23【点睛】 本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.14.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角 解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率.【详解】由1cos x x -≤+≤π12sin 6x ⎛⎫-≤+≤ ⎪⎝⎭1πsin 262x ⎛⎫-≤+≤ ⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭. 【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.15.98【解析】设甲闹钟准时响为事件A 乙闹钟准时响为事件B 则两个闹钟没有一个准时响为事件事件A 与事件B 相互独立得两个闹钟至少有一个准时响与事件对立故两个闹钟至少有一个准时响的概率为解析:98【解析】设甲闹钟准时响为事件A ,乙闹钟准时响为事件B ,则两个闹钟没有一个准时响为事件,事件A 与事件B 相互独立,得,,.两个闹钟至少有一个准时响与事件对立,故两个闹钟至少有一个准时响的概率为.16.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程序框图的解析:78【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果.【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =,执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.9【解析】根据流程图可得:否;否;否;否;是输出故答案为9 解析:9【解析】根据流程图可得:1,3S i ==,否,133S =⨯=,3i =;否339S =⨯=,5i =; 否9545S =⨯=,7i =;否457315S =⨯=,9i =;是输出9i =,故答案为9. 18.4【分析】由已知中的程序语句可知该程序的功能是计算分段函数 的值将t=5代入即可得到答案【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 的值 故答案为04【点睛】算法是新课标高考的一大解析:4【分析】由已知中的程序语句可知该程序的功能是计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值,将t =5代入即可得到答案.【详解】由已知中程序语句可知该程序的功能是:计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值 50.20.1(53)0.4t C =∴=+-=, 故答案为0.4.【点睛】算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.19.24【分析】计算出高中人数占总人数的比例乘以得到在高中抽取的学生人数【详解】应在高中抽取的学生人数为【点睛】本小题主要考查分层抽样考查频率的计算属于基础题解析:24【分析】计算出D 高中人数占总人数的比例,乘以144得到在D 高中抽取的学生人数.【详解】应在D 高中抽取的学生人数为6001442480012001000600⨯=+++.【点睛】本小题主要考查分层抽样,考查频率的计算,属于基础题.20.【解析】三、解答题21.(1)72;(2)15. 【分析】(1)利用频率分布直方图各组的中值估计平均分.(2)这是一个古典概型,先求得从95,76,97,88,69,100这6个数中任取2个数基本事件的总数,再根据在[90,100]的人数是600.053⨯=,求得从95,97,100这3个数中任取2个数基本事件数,然后代入公式求解.【详解】(1)平均分为:450.05+550.15+650.2+750.3+850.25+950.05=72⨯⨯⨯⨯⨯⨯;(2)从95,76,97,88,69,100这6个数中任取2个数,共有2615C =种, 在[90,100]的人数是600.053⨯=,从95,97,100这3个数中任取2个数,共有233C =种,所以这2个数恰好是两个学生的成绩的概率是. 31155p ==. 【点睛】本题主要考查平均数的求法,古典概型的概率,还考查了运算求解的能力,属于中档题. 22.(1)1112;(2)1336. 【分析】(1)先根据方程组有解得a b ,关系,再确定,a b 取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得a b ,关系,进而确定,a b 取法种数,最后根据古典概型概率公式求结果.【详解】(1)因为方程组322ax by x y +=⎧⎨+=⎩有解,所以0212a b a b ≠∴≠ 而2b a =有123,,,246a a a b b b ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩这三种情况,所以所求概率为31116612-=⨯; (2)006232,2022232b x ax by a b a b x y a y a b -⎧=⎪+=⎧⎪-∴-≠⎨⎨+=-⎩⎪=⎪-⎩因为00x >且00y >,所以6223200,022b a a b a b a b---≠>>--, 因此12,,33a ab b =≥⎧⎧⎨⎨><⎩⎩即有35213+⨯=种情况,所以所求概率为13136636=⨯; 【点睛】本题考查古典概型概率以及二元一次方程组的解,考查综合分析求解能力,属中档题. 23.见解析;【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值试题程序和程序框图分别如下:24.(1)见解析;(2)见解析.【解析】试题分析:(1)根据题意得到函数解析式为f(x)=(]()x ,0,π,2x ,,22cos x cos x ππ⎧∈⎪⎪⎨⎪-∈⎪⎩,根据这一条件可得到结果;(2)当0<x<2π时x=2π3,π<x<2π时, x=4π3,分别求得点的坐标. (I)当0<x≤π时,y=cos 2x ;, 当π<x<2π时,y=cos(π-2x )=-cos 2x 综上可知,函数解析式为f(x)=(]()x ,0,π,2x ,,22cos x cos x ππ⎧∈⎪⎪⎨⎪-∈⎪⎩. 所以框图中①②处应填充的式子分别为y=cos2x ,y=-cos 2x , (Ⅱ)若输出的y 值为,则当0<x<2π时由cos 2x =12,得x=2π3,此时点Q 的坐标为(-12,2;当π<x<2π时,由-cos=2x =12,得x=4π3,此时点Q 的坐标为(-12 25.(1)22.7万元;(2)6.9;25.1万元;(3)254.9万元.【分析】(1)根据均值定义列式计算; (2)求出t ,代入方程可得a ,令7t =代入可得估计值;(3)由频率分布直方图是三种产品的概率,得三种产品的件数,根据各产品赢利可计算出总赢利,注意减去(2)中估计的经营费用.【详解】(1)9.512.214.617.419.6166m y +++++==. 解得22.7m =,即2019年该公司的经营费用为22.7万元.(2) 3.5t =,16y =,所以 2.6 6.9a y t =-=,取7t =,代入得25.1y =,预测2020年所需要支出的经营费用为25.1万元. (3)由图可得生产优质品的概率是0.1,生产合格品的概率是0.79,生产次品的概率是0.11,则预测该公司2020年的总利润为1.50.15000.70.79500 1.30.1150025.1254.9⨯⨯+⨯⨯-⨯⨯-=(万元).【点睛】本题考查线性回归方程及其应用,考查频率分布直方图及其期望,考查学生的数据处理能力,运算求解能力,属于中档题.26.(1)2552;(2)3173;(3)当他的答题数量7n =时,他的复赛成绩的期望值最大. 【分析】(1)由表可知,样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,再结合排列组合与古典概型即可得解;(2)先求出样本中的100名学生预赛成绩的平均值,即为μ,从而推出~(53Z N ,219),再根据正态分布的性质即可得解;(3)以随机变量ξ表示甲答对的题数,则~B ξ(,0.75)n ,记甲答完n 题所得的分数为随机变量X ,则2X ξ=,为了获取答n 道题的资格,甲需要“花”掉的分数为20.1()n n +,设甲答完n 题后的复赛成绩的期望值为()f n ,则2()1000.1()()f n n n E X =-++,最后利用配方法即可得解.【详解】解:(1)由题意得样本中成绩不低于60分的学生共有40分,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则()1125152402552C C P A C == 答:“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”的概率为2552(2)由题意知样本中的100名学生预赛成绩的平均值为:100.1300.2500.3700.25900.1533x =⨯+⨯+⨯+⨯+⨯=,则53μ=,由2361σ=得19σ=,所以()()()()17210.158652P Z P Z P Z μσμσμσ≥=≥+=--<≤+≈, 所以,估计全市参加参赛的全体学生中,成绩不低于72分的人数为20000×0.15865=3173,即全市参赛学生中预赛成绩不低于72分的人数为3173.(3)以随机变量ξ表示甲答对的题数,则()~,0.75B n ξ,且()0.75E n ξ=,记甲答完n 题所加的分数为随机变量X ,则2X ξ=,∴()()2 1.5E X E n ξ==, 依题意为了获取答n 道题的资格,甲需要“花”掉的分数为:()()20.2123...0.1n n n ⨯++++=+,设甲答完n 题后的复赛成绩的期望值为()f n ,则()()()221000.1 1.50.17104.9f n n n n n =-++=--+, 由于*n N ∈,所以当7n =时,()f n 取最大值104.9.即当他的答题数量7n =时,他的复赛成绩的期望值最大.【点睛】本题考查古典概型、正态分布的性质、二项分布的性质及数学期望的实际应用,考查学生对数据的分析与处理能力,属于中档题.。
【北师大版】高中数学必修三期末试题附答案

一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π-D .2π2.已知点A 是圆M 的圆周上一定点,若在圆M 的圆周上的其他位置任取一点B ,连接AB ,则“线段AB 的长度大于圆M 的半径”的概率约为( )A .12 B .16 C .13D .233.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .234.下列命题中正确的是( )A .事件A 发生的概率()P A 等于事件A 发生的频率()n f AB .一个质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C .掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =D .对于两个事件A 、B ,若()()()P A B P A P B =+,则事件A 与事件B 互斥5.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N =,则图中①②应分别填入( )A.1Tk=,k N>B.1Tk=,k N≥C.TTk=,k N>D.TTk=,k N≥6.执行如图所示的程序框图,输出的S值为()A.511 B.512 C.1022 D.1024 7.执行如图所示的程序框图,如果输入x=5,y=1,则输出的结果是()A .261B .425C .179D .5448.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S9.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .3310.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份11.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s < D .3x >,22s >12.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .91二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________. 14.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为________.15.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.16.执行如图所示的程序框图,若输入的1,7S K ==则输出的k 的值为_______.17.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.18.如果执行下面的程序框图,那么输出的S =______.19.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版高中数学必修3期未试题数学(卷I)提示:1、考试时间:120分钟满分:150分2、请将选择题答案填写在卷n指定位置上,考试结束后,请将卷n连同草稿纸交到监考老师处,此卷由学生自己保管。
一、选择题(每题5分,共60分)1、已知一组数据为20、30、40、50、60、60、70,则这组数据的众数、中位数、平均数的大小关系为()A、中位数>平均数>众数B、众数>中位数>平均数C、众数>平均数>中位数D、平均数>众数>中位数2、某影院有60排座位,每排70个座号,一次报告会坐满了听众,会后留下座号为15的所有听众60人进行座谈,这是运用了()A、抽签法C、系统抽样法D、分层抽样法B、随机数法3、某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5: 4: 3: 1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生()A、100人B、60 人C、80 人D、20 人4、一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色”的概率是()A、1/6B、1/3C、1/2 D 5/65、下列两个变量之间的关系哪个不是函数关系()A、角度和它的正切值B、人的右手一柞长和身高C、正方体的棱长和表面积D、真空中自由落体运动物体的下落距离和下落时间6、为了解A、B两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了下面列出了每一种轮胎行驶的最远里程数(单位:1000km)轮胎A: 108、101、94、105、96、93、97、106轮胎B: 96、112、97、108、100、103、86、98你认为哪种型号的轮胎性能更加稳定()A、轮胎AB、轮胎BC、都一样稳定D、无法比较7、我们对那大中学高二(1 )班50名学生的身高进行了调查,按区间145--150,180 —185 (单位:cm)进行分组,得到的分布情况如下图所示,由图可知样本身高在的频率为()那大中学高二(1)班学生身高统计A、0.24D、0.20身高(cm)8个进行测试,150--155 ,…,165--170C、0.12B、0.16北师大版高中数学必修 3期末练习试题&一个射手进行一次射击,则事件“命中环数小于 A 、 命中环数为7、8、9、10环 B 、 命中环数为1、2、3、4、5、6环 C 、 命中环数至少为6环 D 、命中环数至多为6环9、从一副标准的52张的扑克牌中随机地抽取一张,则事件“这张牌是梅花”的概率为( )A 、1/26B 、13/54C 、1/1310、从一箱产品中随机地抽取一件,设事件 A= “抽到一等品”,事件 B = “抽到二等品”,事件C = “抽到三等品”,且已知 P (A )= 0.65 , P (B )=0.2 ,P (C )=0.1。
则事件“抽到的不是一等品”的概率为( ) A 、0.65 B 、0.35 C 、0.3D 、0.00511、 一块各面均涂有油漆的正方体被锯成 1000个小的正方体,若将这些小正方体均匀搅拌在一起,则任意取出的一个小正方体其两面均涂有油漆的概率是( )A 、3/25B 、12/125C 、1/10D 、1/1212、 对下面流程图描述正确的是 ( )6环”的对立事件是( )D 、 1/4A、是顺序结构,引进4个变量B、是选择结构,引进1个变量C、是顺序结构,引进1个变量D、是顺序结构,输出的是三数中的最小数数学(卷H)1、答题前请将密封线内的项目填写清楚。
2、请将选择题答案填入相应位置:题号123456789101112选项二、填空题(每小题4分,共16分)1、已知一组数据X1 , X2 , X3 ,…,Xn的方差是S,那么另一组数据X1-3 , X2-3 , X3-3 ,…,Xn-3的方差是___________2、有n个点:(X1,Y1 ),(X2,Y2),…,(Xn,丫n);若用最小二乘法求其线性回归方程y=ax+b,则其中a= ________________________________________________b=3、向如右图所示的正方形中随机地撒一把芝麻,假设每一粒芝麻落在正方形的每一个位置的可能性都是相同的。
则芝麻落在三角形内的概率为____________4、下列说法中正确的有__________①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等。
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型。
三、解答题(共6题,共74分)1、(共12分)某校有教职工500人,对他们进行年龄状况和受教育程度的调查,其结果如随机的抽取一人,求下列事件的概率:(1)50岁以上具有专科或专科以上学历;(4分)(2)具有本科学历;(4分)(3)不具有研究生学历。
(4分)2、(共12分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午& 00—10:00间各自的点击量,得如下所示的统计图,根据统计图:(1 )甲、乙两个网站点击量的极差分别是多少?( 4 分)(2 )甲网站点击量在[10,40]间的频率是多少?( 4 分)(2)甲、乙两个网站哪个更受欢迎?并说明理由。
(4分)甲8 5 4 081 8 5 7 6 4 32 0 012345675 62 4 916 72 2 5413、(共12分)在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组。
已知第三小组的频数是15。
(1)求成绩在50—70分的频率是多少;(4分)(2)求这三个年级参赛学生的总人数是多少;(4分)(3)求成绩在80—100分的学生人数是多少;(4分)50 60 70 80 90 100 分数4、(14分)一箱苹果,4个4个地数,最后余下1个;5个5个地数,最后余下2个;9个9个地数,最后余下7个。
请设计一种算法,求出这箱苹果至少有多少个?5、(共12分)一个学校的足球队、篮球队和排球队分别有 28, 22, 17名成员,一些成员不止参加一支球队,具体情况如图所示。
随机选取一名成员:(1) 属于不止1支球队的概率是多少? (2) 属于不超过2支球队的概率是多少?6、(共14分)一个盒子中装有 5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相 同,有放回的连续抽取两次,每次任意地取出一个球。
(1) 用列表或画树状图的方法列出所有可能结果。
(4分) (2) 求事件A= “取出球的号码之和不小于 6”的概率。
(5分)(3) 设第一次取出的球号码为 x,第二次取出的球号码为 y,求事件B= “点(x,y )落在直线 y = x+1上方”的概率。
(5分) (6分)北师大版高中数学必修3综合测试答案一、选择:BCCBB ABCDB BC二、填空:1、S2、略3、1/2 4、③三、解答题1、( 1) 设A=“50岁以上具有专科或专科以上学历”P(A)=(60+10+2)/500=0.144⑵设B= “具有本科学历”P(B)=(50+20+10)/500=0.16(3)设C=”不具有研究生学历”;P(C)=1-P(C)=1-(35+13+2)/500=0.9 或直接计算(略)2、(1)甲网站的极差为:73-8=65 ;乙网站的极差为:61-5=56(2)甲网站点击量在[10,40]间的频率为4/14=2/7=0.28571(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方。
从数据的分布情况来看,甲网站更受欢迎。
3、(1)成绩在50—70 分的频率为:0.03*10+0.04*10=0.7(2)第三小组的频率为:0.015*10=0.15这三个年级参赛学生的总人数(总数=频数濒率)为:15/0.15=100(人)(3)成绩在80—100 分的频率为:0.01*10+0.005*10=0.15则成绩在80 —100分的人数为:100*0.15=15 (人)4、算法步骤如下:1、首先确定最小的除以9余7的正整数:72、依次加9就得到所有除以9余7的正整数:7、16、25、34、43、52、…3、在第二步得到的一列数中确定最小的除以5余2的正整数:524、然后依次加上45,得到:52、97、…5、在第四步得到的一列数中找出最小的满足除以4余1的正整数:97北师大版高中数学必修3期末练习试题因此:这箱苹果至少有97个5、共50人:(1)设A= “他属于不止1支球队”P (A) = ( 5+3+4+2 ) /50=7/25=0.28或用P(A)=1-P( A )〒算(略)(2 )设B= “他属于不超过2支球队”P (B) =1-P ( B ) =1-3/50=47/50=0.94 或直接计算(略)6、 ( 1)所有可能结果数为:25 列表或树状图(略)(2)取出球的号码之和不小于6的频数为:15P (A) =15/25=3/5=0.6(3)点(x,y)落在直线y = x+1 上方的有:(1, 3) , (1, 4), (1, 5),(2, 4), (2, 5), (3, 5);共 6 种•所以:P (B) =6/25=0.2411 /11。