2017年广东省深圳市中考数学一模试卷(解析版)

合集下载

2017年(深圳版)中考模拟考试数学试题(含答案)

2017年(深圳版)中考模拟考试数学试题(含答案)

2017年深圳市初中毕业生学业考试数学模拟试题本试卷分选择题和非选择题两部分,共三大题23小题,满分100分,考试用时90分钟第一部分 选择题(本部分共12小题,每小题3分,共36分。

每小题给出4个选项,其中只有一个选项是正确的)1.20171-的相反数是( )A .2017B .﹣2017C .D .﹣ 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093、下列运算正确的是( )A 、63222a a a =⋅B 、2226)3(b a ab =C 、22=÷ab abcD 、b a ba b a 22243=+4.下面四个手机应用图标中是中心对称图形的是( )A .B .C .D .5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元 C.80元 D .60元 6.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( ) A .4,5 B .5,4C .4,4D .5,57.如图所示,向一个半径为R 、容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )A .B .C .D .8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )A .8B .6C .4D .29.已知6是关于x 的方程x 2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD 两条对角线的长,则菱形ABCD 的周长为( )A .20B .24C .32D .5610.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4 11.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C 落在斜边上的点C 处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,若折痕DE 的长是cm ,则BC 的长是( )A .3cmB .4cmC .5cmD .6cm12.如图,在圆心角为90°的扇形OAB 中,半径OA=4cm ,C 为弧AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为( )cm 2.A .4π﹣2﹣2 B .4π﹣2 C .2π+2﹣2 D .2π+2第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)13.分解因式:x x x 1512323--=__________________.14.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是 .15.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为(用含a 的式子表示).16.如图,双曲线y=(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB∥x 轴,点A 的坐标为(2,3),求△OAC 的面积是_________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:20170﹣|﹣|+1)31(--+2sin45°.18.先化简,再求值:(﹣x+1)÷,其中x=﹣2.19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)被调查的学生人数为 ;(2)把折线统计图补充完整;(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?20、如图7,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为45°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB、CD的高度。

2017年深圳市中考数学真题试卷及详细答案(word版))

2017年深圳市中考数学真题试卷及详细答案(word版))

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3分)图中立体图形的主视图是()A.B.C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×107 4.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3 7.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.(3分)因式分解:a 3﹣4a= .14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.(3分)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= .16.(3分)如图,在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,Rt △MPN ,∠MPN=90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE=2PF 时,AP= .三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.。

广东省深圳市2017年中考数学模拟试卷(一) 及参考答案

广东省深圳市2017年中考数学模拟试卷(一)    及参考答案

不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的
横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,
.其中正确的是( )
A . ②④ B . ②③ C . ①③④ D . ①②④ 12. 如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=3 0°,则下列结论正确的个数为( ) ⑴DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4)S△AOE= SABCD .
广东省深圳市2017年中考数学模拟试卷(一)
一、选择题
1. ﹣3的倒数是( ) A . ﹣ B . C . ﹣3 D . 3 2. 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )
A . 3.4×10﹣9 B . 0.34×10﹣9 C . 3.4×10﹣10 D . 3.4×10﹣11 3. 下列四个几何体中,主视图是三角形的是( )
若CD=AC,∠A=50°,则∠ACB的度数为( )
A . 90° B . 95° C . 100° D . 105° 10. 观察如图所示前三个图形及数的规律,则第四个□的数是 ( )
A. B.3C. D.
11. 点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持
A.
B.
C.
D.
4. 下列运算中,正确的是( ) A . 4x﹣x=2x B . 2x•x4=x5 C . x2y÷y=x2 D . (﹣3x)3=﹣9x3 5. 一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为( )

2017届深圳市中考一模模拟测试数学试卷含答案

2017届深圳市中考一模模拟测试数学试卷含答案

2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是() A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A 、①②B 、①④C 、②③D 、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,3/2πB 、2,πC 、2,3πD 、2,4π11. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4 B 、6 C 、8 D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论:①BE=GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( )A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图二、填空题(本题共有4小题,每小题3分,共12分) 13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=(x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60° .18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x x x x 996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。

2017年广东省深圳市福田区中考数学一模试卷

2017年广东省深圳市福田区中考数学一模试卷

2017年广东省深圳市福田区中考数学一模试卷一、选择题(每题3分,共26分)1.(3分)2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24%B.﹣2.24%C.2.24D.﹣2.24 2.(3分)很多美味的食物,它们的包装盒也很漂亮,观察banana boat、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是()A.B.C.D.3.(3分)2016年6月21日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近1.45亿股A类普通股,而京东则获得1号店第三方平台1号商城的主要资产,1.45亿用科学记数法表示为()A.1.45×1010B.0.145×109C.1.45×108D.14.5×108 4.(3分)下列计算正确的是()A.3x﹣2x=1B.(﹣a3)2=﹣a6C.x6÷x2=x3D.x3x2=x5 5.(3分)下表是全国7个城市2017年3月份某日空气质量指数(AQI)的统计结果:城市AQI指数北京25成都72深圳49长沙241上海武汉62185广州49该日空气质量指数的中位数是()(A.49B.62C.241D.976.3分)一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A.x<﹣5B.x>﹣5C.x≥﹣5D.x≤﹣5 7.(3分)某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A.B.C.D.8.(3分)如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A.(﹣4,2)B.(4,﹣2)C.(﹣1,﹣1)D.(﹣1,4)9.(3分)下列命题中,正确的是()A.对角线相等的平行四边形是菱形B.有两边及一角相等的两个三角形全等C.同位角相等D.直角三角形斜边上的中线等于斜边的一半10.(3分)如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()(A .2B .4C .D .11.(3 分)如图,正六边形 ABCDEF 内接于⊙O ,若⊙O 的半径为 6,则阴影部分的面积为()A .12πB .6πC .9πD .18π12.(3 分)在边长为 2 的正方形 ABCD 中,P 为 AB 上的一动点,E 为 AD 中点,PE 交 CD 延长线于 Q ,过 E 作 EF ⊥PQ 交 BC 的延长线于 F ,则下列结论:①△APE ≌△DQE ;②PQ=EF ;③当 P 为 AB 中点时,CF=;④若 H 为 QC 的中点,当 P 从 A 移动到 B 时,线段 EH 扫过的面积为 ,其中正确的是()A .①②B .①②④C .②③④D .①②③二、填空题(每题 3 分,共 12 分)13.(3 分)分解因式:5x 2﹣20= .14. 3 分)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接 CD ,∠B=70°,则∠DAC=.x﹣215.(3分)在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则△x(2)>3的解集为.16.(3分)如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.三、解答题(共7小题,共52分)17.(5分)计算:|﹣9|+(﹣3)0﹣(﹣)﹣+sin45°.18.(6分)分式的化简求值:•(1+),其中x=﹣2.19.(7分)原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响,小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查,把居民对《朗读者》的看法分为四个层次:A.非常喜欢;B.较喜欢;C.一般;D.不喜欢;并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:((1)本次调查的居民总人数为=人;(2)将图 1 和图 2 补充完整;(3)图 2 中“C”层次所在扇形的圆心角的度数为;(4)估计该小区 4000 名居民中对《朗读者》的看法表示喜欢(包括A 层次和 B层次)的大约有人.20.(8 分)深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长 BC 为 16 米,落在斜坡上的影长 CD 为8 米,AB ⊥BC ;同一时刻,太阳光线与水平面的夹角为 45°.1 米的标杆 EF 竖立在斜坡上的影长 FG 为 2 米,求旗杆的高度.21.8 分)为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球,已知用 800 元购买篮球的个数比购买足球的个数少 2 个,足球的单价为篮球单价的 .(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于 5200 元购买篮球、足球共 60 个,那么至少要购买多少个足球?22.(9 分)如图,在△OAB 中,OA=OB ,C 为 AB 中点,以 O 为圆心,OC 长为半径作圆,AO 与⊙O 交于点 E ,直线 OB 与⊙O 交于点 F 和 D ,连接 EF 、CF与 OA 交于点 G .(1)求证:直线 AB 是⊙O 的切线;(2)求证:OD•EG=OG•EF ;(3)若 AB=8,BD=2,求⊙O 的半径.恰23.(9分)已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C点.(1)求抛物线的解析式;(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P 顺时针旋转90°,点B的对应点B′好落在抛物线上,求点P的坐标.(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.2017年广东省深圳市福田区中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共26分)1.(3分)2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24%B.﹣2.24%C.2.24D.﹣2.24【分析】利用相反意义量的定义判断即可.【解答】解:2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作﹣2.24%,故选:B.【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.2.(3分)很多美味的食物,它们的包装盒也很漂亮,观察banana boat、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、从正面看是梯形,从上面看是圆环,故A错误;B、从正面看是三角形,从上面看是圆,故B错误;C、从正面看是长方形,从上面看是圆,故C正确;n nD 、从正面看是长方形,从上面看是长方形,故 D 错误;故选:C .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.3.(3 分)2016 年 6 月 21 日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近 1.45 亿股 A 类普通股,而京东则获得 1 号店第三方平台 1 号商城的主要资产,1.45 亿用科学记数法表示为()A .1.45×1010B .0.145×109C .1.45×108D .14.5×108【分析】科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a |<10, 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时, 是正数;当原数的绝对值<1 时, n 是负数.【解答】解:1.45 亿=1.45×108,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a |<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3 分)下列计算正确的是( )A .3x ﹣2x=1B .(﹣a 3)2=﹣a 6 C .x 6÷x 2=x 3D .x 3•x 2=x 5【分析】直接利用同底数幂的乘除运算法则和幂的乘方运算法则、合并同类项法则分别判断求出答案.【解答】解:A 、3x ﹣2x=x ,故此选项错误;B 、(﹣a 3)2=a 6,故此选项错误;C 、x 6÷x 2=x 4,故此选项错误;D 、x 3•x 2=x 5,故此选项正确.故选:D .【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握相关运算法则是解题关键.5.(3 分)下表是全国 7 个城市 2017 年 3 月份某日空气质量指数(AQI )的统计(结果:城市AQI指数北京25成都72深圳49长沙241上海武汉62185广州49该日空气质量指数的中位数是()A.49B.62C.241D.97【分析】根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.【解答】解:把这些数从小到大排列为:25,49,49,62,72,185,241,最中间的数是:62,则该日空气质量指数的中位数是62.故选:B.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.3分)一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A.x<﹣5B.x>﹣5C.x≥﹣5D.x≤﹣5【分析】根据一次函数图象即可求出该不等式的解集.【解答】解:当不等式kx+b<0时,一次函数的图象在x轴的下方,所以x<﹣5故选:A.【点评】本题考查一次函数与一次不等式的关系,解题的关键是熟练运用一次函数的图象性质,本题属于基础题型.7.(3分)某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A.B.C.D.【分析】先求出总的获奖人数,再根据概率公式列出算式,即可得出答案.【解答】解:∵诗词大会有4名女生和6名男生获奖,共10人,则选中女生的概率是=;故选:C.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A.(﹣4,2)B.(4,﹣2)C.(﹣1,﹣1)D.(﹣1,4)【分析】根据位似变换的性质计算即可.【解答】解:∵E′(2,﹣1),以原点O为位似中心,按比例尺1:2把△EFO扩大,∴E′点对应点E的坐标为(2×(﹣2),﹣1×(﹣2)),即(﹣4,2),故选:A.【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.9.(3分)下列命题中,正确的是()A.对角线相等的平行四边形是菱形B.有两边及一角相等的两个三角形全等C.同位角相等D.直角三角形斜边上的中线等于斜边的一半【分析】根据矩形的判定、全等三角形的判定、平行线的性质、直角三角形的性质进行判断,即可得出结论.【解答】解:∵对角线相等的平行四边形是矩形,∴选项A错误;∵有两边及一角相等的两个三角形不一定全等,∴选项B错误;∵两直线平行,内错角相等,∴选项C错误;∵直角三角形斜边上的中线等于斜边的一半,∴选项D正确;故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.10.(3分)如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A.2B.4C.D.【分析】如图,作DH⊥AB于H,设DM=DC=x,由S△ABC=S△ADC+S△ADB,可得AC•BC=•AB•DM+CD•AC,列出方程即可解决问题.【解答】解:如图,作DH⊥AB于H,由题意∠DAC=∠DAB,∵DC⊥AC.DM⊥AB,∴DC=DM,设DM=DC=x,在Rt△ABC中,BC==4,∵S△ABC=S △ADC+S△ADB,∴AC•BC=•AB•DM+CD•AC,∴•4•4=•8•x+•4•x,∴x=,∴DM=,故选:C.【点评】本题考查作图﹣基本作图、角平分线的性质定理,一元一次方程等知识,解题的关键是熟练掌握角平分线的性质定理,学会构建方程解决问题,属于中考常考题型.11.(3分)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.12πB.6πC.9πD.18π【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,OA,∵正六边形ABCDEF内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴S△ABC=S △OBC,∴S=S扇形OBC阴∴图中阴影部分面积为:S 故选:B.扇形OBC==6π.【点评】此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.12.(3分)在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,PE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是()A.①②B.①②④C.②③④D.①②③【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识一一判断即可;【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,则(2+x)2+12=32+x2,∴x=1,故③错误,④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B时,QC的中点H与D重合,故EH扫过的面积为△ESD的面积=,故④正确.故选:B.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,共12分)13.(3分)分解因式:5x2﹣20=5(x+2)(x﹣2).【分析】先提取公因式5,再对余下的多项式利用平方差公式继续分解.【解答】解:5x2﹣20,=5(x2﹣4),( 由 x ﹣=5(x +2)(x ﹣2). 故答案为:5(x +2)(x ﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 3分)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接 CD ,∠B=70°,则∠DAC= 20° .【分析】AD 是⊙O 的直径,得到∠ACD=90°,根据圆周角定理得到∠D=∠B=70°,于是得到结论.【解答】解:∵AD 是⊙O 的直径,∴∠ACD=90°,∵∠D=∠B=70°,∴∠DAC=20°,故答案为:20°.【点评】本题考查了圆周角定理,三角形的内角和,熟练掌握圆周角定理是解题的关键.15.(3 分)在实数范围内规定新运算“ △”其规则是:a △b=a +b ﹣1,则 △x (2)>3 的解集为 x >3 .【分析】根据新定义列出不等式,依据不等式的基本性质解之可得.【解答】解:根据题意,得:x +x ﹣2﹣1>3,即 2x ﹣3>3,∴2x >6,解得:x >3,故答案为:x >3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本b A步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.(3分)如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为8.【分析】先设点D坐标为(a,),得出点B的坐标为(2a,2b),的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.【解答】解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:8【点评】本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为3列出关系式是解题的关键.2三、解答题(共 7 小题,共 52 分)17.(5 分)计算:|﹣9|+(﹣3)0﹣(﹣ )﹣+ sin45°.【分析】本题要分清运算顺序,先把绝对值,乘方计算出来,再进行加减运算.【解答】解:原式=9+1﹣9+×=1+1=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值等考点的运算.18.(6 分)分式的化简求值: •(1+ ),其中 x= ﹣2.【分析】根据分式的加法和乘法可以化简题目中的式子,然后将 x 的值代入即可解答本题.【解答】解:•(1+ )==x +2,当 x=﹣2 时,原式= ﹣2+2= .【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(7 分)原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响,小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查,把居民对《朗读者》的看法分为四个层次:A .非常喜欢;B .较喜欢;C .一般;D .不喜欢;并将调查结果绘制了图 1 和图 2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:((1)本次调查的居民总人数为= 300 人;(2)将图 1 和图 2 补充完整;(3)图 2 中“C”层次所在扇形的圆心角的度数为 72° ;(4)估计该小区 4000 名居民中对《朗读者》的看法表示喜欢(包括A 层次和 B层次)的大约有 2800 人.【分析】 1)根据 A 层次的有 90 人,所占的百分比是 30%,据此即可求得调查的总人数;(2)利用总人数乘以对应的百分比求得 C 层次的人数,然后用总人数减去其它层次的人数求得 B 层次的人数,从而补全直方图;(3)利用 360°乘以对应的百分比求得所在扇形的圆心角的度数;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)抽查的总人数是 90÷30%=300(人);故答案为:300,;(2)C 层次的人数是 300×20%=60(人),则 B 层次的人数是 300﹣90﹣60﹣30=120(人),所占的百分比是D 层次所占的百分比是=10%.=40%,(3)“C”层次所在扇形的圆心角的度数是 360°×;=72°;故答案为:72°;(4)对“广场舞”的看法表示赞同(包括 A 层次和 B 层次)的大约 4000×=2800(人).答:估计对“广场舞”的看法表示赞同的大约有 2800 人.故答案为:2800.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在△RT AMN中利用等腰直角三角形的性质求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.∵△MCD∽△PQR,∴=,即=,CM=4(米),又∵MN∥BC,AB∥CM,∴四边形MNBC是矩形,∴MN=BC=16米,BN=CM=4米.∵在直角△AMN中,∠AMN=45°,∴AN=MN=16米,∴AB=AN+BN=20米.( (【点评】本题考查相似三角形的应用、影长等知识,解题的关键是正确添加辅助线,构造直角三角形解决问题,属于中考常考题型.21.8 分)为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球,已知用 800 元购买篮球的个数比购买足球的个数少 2 个,足球的单价为篮球单价的 .(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于 5200 元购买篮球、足球共 60 个,那么至少要购买多少个足球?【分析】 1)设篮球的单价为 x 元/个,则足球的单价为 0.8x 元/个,根据用 800元购买篮球的个数比购买足球的个数少 2 个,即可得出关于 x 的分式方程,解之经检验后即可得出结论;(2)购买 m 个足球,则购买(60﹣m )个篮球,根据总价=单价×购买数量结合总价钱不多于 5200 元,即可得出关于 m 的一元一次不等式,解之即可得出 m 的取值范围,取其内的最小正整数即可.【解答】解:(1)设篮球的单价为 x 元/个,则足球的单价为 0.8x 元/个,根据题意得: +2= ,解得:x=100,经检验,x=100 是原方程的解,∴0.8x=80.答:篮球的单价为 100 元/个,足球的单价为 80 元/个.(2)设购买 m 个足球,则购买(60﹣m )个篮球,( ( 根据题意得:80m +100(60﹣m )≤5200,解得:m ≥40.答:至少要购买 40 个足球.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)根据总价=单价×购买数量结合总价钱不多于 5200 元,列出关于 m 的一元一次不等式.22.(9 分)如图,在△OAB 中,OA=OB ,C 为 AB 中点,以 O 为圆心,OC 长为半径作圆,AO 与⊙O 交于点 E ,直线 OB 与⊙O 交于点 F 和 D ,连接 EF 、CF与 OA 交于点 G .(1)求证:直线 AB 是⊙O 的切线;(2)求证:ODEG=OGEF ;(3)若 AB=8,BD=2,求⊙O 的半径.【分析】 1)利用等腰三角形的性质,证明 OC ⊥AB 即可;(2)证明 OC ∥△EG ,推出 GOC ∽△GEF 即可解决问题;(3)设 OC=OD=r ,在 Rt △BOC 中,根据 OB 2=OC 2+BC 2,列出方程即可解决问题;【解答】 1)证明:∵OA=OB ,AC=BC ,∴OC ⊥AB ,∴⊙O 是 AB 的切线.(2)证明:∵OA=OB ,AC=BC ,∴∠AOC=∠BOC ,∵OE=OF ,∴∠OFE=∠OEF ,∵∠AOB=∠OFE +∠OEF ,∴∠AOC=∠OEF ,∴OC∥EF,∴△GOC∽△GEF,∴=,∵OD=OC,∴OD•EG=OG•EF.(3)解:设OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,∴(r+2)2=r2+42,∴r=3,∴⊙O的半径为3.【点评】本题考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(9分)已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C点.(1)求抛物线的解析式;(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P 顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】1)将点A和点B的坐标代入抛物线的解析式可得到关于a、b的方程(组,从而可求得a、b的值;(2)先求得抛物线的对称轴为x=1.过点B′作B′M⊥对称轴,垂足为M.然后证明△BNP≌△PMB,依据全等三角形的性质可知BN=PM=3,PN=MB′.设P (1,m),则点B′的坐标为(1﹣m,m﹣2),最后将点B′的坐标代入抛物线的解析式求解即可;(3)过点E作EF∥x轴,作点DF∥y轴,则∠EFD=90°.先求得点G的坐标,则可得到OG=,在Rt△AGO中,利用特殊锐角三角函数值可求得∠A的度数,则∠FED=30°,依据函数30°直角三角形的性质可得到DF=DE.则动点Q沿DE以每秒2个单位的速度运动到E与它一每秒1个单位的速度运动东F所用时间相等.故此当BD+DF最短时,所用时间最短,依据两点之间线段最短可知当B,D,F在一条直线上时,所用时间最短,此时BE⊥BF,则点D的横坐标为3,然后由函数解析式再求得点D的纵坐标即可.,【解答】解:(1)将点A和点B的坐标代入得:解得:a=1,b=﹣2.∴抛物线的解析式为y=x2﹣2x﹣3.(2)∵A(﹣1,0),B(3,0),∴抛物线的对称轴为x=1.如图所示:过点B′作B′M⊥对称轴,垂足为M.∵∠BPB′=90°, ∴∠BPN +∠B′PM=90°. ∵∠BPN +∠PBN=90°, ∴∠PBN=∠B′PM . 在△BPN 和△PB′M 中.∴△BNP ≌△PMB′.∴BN=PM=3,PN=MB′.设 P (1,m ),则点 B′的坐标为(1﹣m ,m ﹣2).将点 B′的坐标代入抛物线的解析式得:(1﹣m )2﹣2(1﹣m )﹣3=m ﹣2,解得:m 1=﹣1,m 2=2. ∵点 P 在 x 轴的下方,∴m=﹣1.∴P (1,﹣1).(3)存在.∵直线 y= x + 与 y 轴的交点为:G (0, ),与 x 轴的交点为:A (﹣1,0), ∴tan ∠GAO= ,∴∠GAO=30°,过点 E 作 EF ∥x 轴,过点 D 作 DF ⊥EF ,垂足为 F ,如图 2 所示,的∴∠FED=∠GAO=30°,∴DE=2DF ,DF=,设点 Q 的运动时间为 t 秒,则:t=+ =BD +DF ,∴当 BD ⊥x 轴时,此时,B 、D 、F 在同一直线上,且 BF ⊥EF ,如图 3 所示,根据垂线段最短可得:此时 BD +DF 最小,此时点 Q 的运动时间 t 秒最少,将 x=3 代入 y=x + 得:y= ,∴点 D 坐标为(3,).【点评】本题主要考查的是二次函数的综合应用,用含点 m 的式子表示点 B′坐标是解答问题(2)的关键,得到当点 B 、D 、F 在一条直线上时,所用时间最短是解答问题(3)的关键.。

2017年广东省深圳市中考数学模拟试卷及解析答案word版(三)

2017年广东省深圳市中考数学模拟试卷及解析答案word版(三)

2017年广东省深圳市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣8的相反数是()A.8 B.﹣ C.D.﹣82.(3分)我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A.3.1×106西弗B.3.1×103西弗C.3.1×10﹣3西弗D.3.1×10﹣6西弗3.(3分)如图所示,下列几何体中,主视图、左视图、俯视图都相同的是()A.半球B.圆柱C.球D.六棱柱4.(3分)下列运算中,正确的是()A.3a﹣a=3 B.a2+a3=a5 C.(﹣2a)3=﹣6a3D.ab2÷a=b25.(3分)函数中,自变量x的取值范围是()A.x≤6 B.x≥6 C.x≤﹣6 D.x≥﹣66.(3分)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()7.(3分)已知直线y=kx+b经过点(k,3)和(1,k),则k的值为()A.B.C.D.8.(3分)在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是()A.B.C.D.9.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2 10.(3分)如图,在△ABC中,EF∥BC,=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.(3分)如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.12.(3分)已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论:①b2﹣4ac>0;②2a+b=0;③abc>0;④3a+c>0,则正确的结论个数为()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)分解因式:x3﹣2x2y+xy2=.14.(3分)已知a、b为两个连续的整数,且,则a+b=.15.(3分)猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.16.(3分)如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=.三、解答题(本大题共6小题,共52分)17.(5分)计算:(﹣1)2017﹣(﹣)﹣3+(cos68°﹣2)0+|4﹣8sin60°| 18.(6分)求满足不等式组的整数解.19.(7分)2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人;(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.20.(8分)如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH=,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.21.(8分)某工程,乙工程队单独先做10天后,再由甲、乙两个工程队合作20天就能完成全部工程,已知甲工程队单独完成此工程所需天数是乙工程队单独完成此工程所需天数的,(1)求:甲、乙工程队单独做完成此工程各需多少天?(2)甲工程队每天的费用为0.67万元,乙工程队每天的费用为0.33万元,该工程的预算费用为20万元,若甲、乙工程队一起合作完成该工程,请问工程费用是否够用,若不够用应追加多少万元?22.(9分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.2017年广东省深圳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣8的相反数是()A.8 B.﹣ C.D.﹣8【解答】解:﹣8的相反数是8,故选:A.2.(3分)我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A.3.1×106西弗B.3.1×103西弗C.3.1×10﹣3西弗D.3.1×10﹣6西弗【解答】解:3100微西弗=3.1毫西弗=3.1×10﹣3西弗.故选C.3.(3分)如图所示,下列几何体中,主视图、左视图、俯视图都相同的是()A.半球B.圆柱C.球D.六棱柱【解答】解:A、半球的三视图分别为半圆,半圆,圆,不符合题意,故此选项错误;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意,故此选项错误;C、球的三视图都是圆,符合题意,故此选项正确;D、六棱柱的三视图分别为长方形,长方形,六边形,不符合题意,故此选项错误.故选C.4.(3分)下列运算中,正确的是()A.3a﹣a=3 B.a2+a3=a5 C.(﹣2a)3=﹣6a3D.ab2÷a=b2【解答】解:A、4a﹣a=3a,故本选项错误;B、a2+a3不能进行计算,故本选项错误;C(﹣2a)3=﹣8a3,故本选项错误;D、ab2÷a=b2,故本选项正确;故选D.5.(3分)函数中,自变量x的取值范围是()A.x≤6 B.x≥6 C.x≤﹣6 D.x≥﹣6【解答】解:根据题意得:6﹣x≥0,解得x≤6.故选:A.6.(3分)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.B.4 C.D.【解答】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.7.(3分)已知直线y=kx+b经过点(k,3)和(1,k),则k的值为()A.B.C.D.【解答】解:∵直线y=kx+b经过点(k,3)和(1,k),∴将(k,3)和(1,k),代入解析式y=kx+b得:解得:k=±,b=0,则k的值为:±.故选B.8.(3分)在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是()A.B.C.D.【解答】解:根据题意画图如下:∵共有16种等可能的情况数,两次都摸到黄球的情况数有4种,∴么两次都摸到黄球的概率是=;故选C.9.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2【解答】解:长方形的面积为:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).答:矩形的面积是(6a+15)cm2.故选:D.10.(3分)如图,在△ABC中,EF∥BC,=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.13【解答】解:∵=,∴==,∵EF∥BC,∴△AEF∽△ABC,∴==,∴9S△AEF=S△ABC,∵S四边形BCFE=8,∴9(S△ABC ﹣8)=S△ABC,解得:S△ABC=9.故选A.11.(3分)如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【解答】解:连接CA并延长到圆上一点D,∵CD为直径,∴∠COD=∠yOx=90°,∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5,∴DO=5,∵∠B=∠CDO,∴∠OBC的余弦值为∠CDO的余弦值,∴cos∠OBC=cos∠CDO==.故选C.12.(3分)已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论:①b2﹣4ac>0;②2a+b=0;③abc>0;④3a+c>0,则正确的结论个数为()A.1 B.2 C.3 D.4【解答】解:①如图所示,抛物线与x轴有2个交点,则b2﹣4ac>0,故①正确;②如图所示,对称轴x=﹣=1,则b=﹣2a,则2a+b=0,故②正确;③抛物线开口方向向下,则a<0,b=﹣2a>0.抛物线与y轴交于正半轴,则c>0,所以abc<0,故③错误;④当x=3时对应的函数图象在x轴下方,即y<0,∴9a+3b+c<0,而b=﹣2a,∴3a+c<0,故④错误;综上所述,正确的结论个数为2个.故选:B.二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.14.(3分)已知a、b为两个连续的整数,且,则a+b=11.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.15.(3分)猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.16.(3分)如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=8.【解答】解:在▱ABCD中,AB∥CD,AB=CD(平行四边形的对应边平行且相等),故设A(x,y1)、B(x、y2),则根据反比例函数的图象关于原点对称的性质知,C(﹣x,﹣y1)、D(﹣x、﹣y2).∵A在双曲线y1=﹣上,B在双曲线y2=上,∴x=﹣,x=,∴﹣=;又∵k1=2k2(k1>0),∴y1=﹣2y2;∵S▱ABCD=24,∴•|2x|=6|y2x|=24,解得,y2x=±4,∵双曲线y2=位于第一、三象限,∴k2=4,∴k1=2k2=8故答案是:8.三、解答题(本大题共6小题,共52分)17.(5分)计算:(﹣1)2017﹣(﹣)﹣3+(cos68°﹣2)0+|4﹣8sin60°|【解答】解:原式=﹣1+8+1+|4﹣8×|=﹣1+8+1+0=8.18.(6分)求满足不等式组的整数解.【解答】解:,由①得,x>2,由②得,x≤6,故原不等式组的解集为:2<x≤6,其整数解为:3、4、5、6.故答案为:3、4、5、6.19.(7分)2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人;(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.【解答】解:(1)被调查的学生总人数为150÷15%=1000(人),则选择B的人数为1000﹣(150+400+200+50)=200(人),补全图形如下:(2)32000×40%=12800(人)答:估计全市初三男生中选半场运球的人数有12800人;(3)根据题意画出树状图如下:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B和D的有2种可能,即BD和DB,P(同时选择B和D)=.20.(8分)如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH=,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.【解答】解:(1)由题意得,sin∠BAH==,又AB=10米,∴BH=AB=5米;(2))∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10.答:广告牌CD的高度为(20﹣10)米.21.(8分)某工程,乙工程队单独先做10天后,再由甲、乙两个工程队合作20天就能完成全部工程,已知甲工程队单独完成此工程所需天数是乙工程队单独完成此工程所需天数的,(1)求:甲、乙工程队单独做完成此工程各需多少天?(2)甲工程队每天的费用为0.67万元,乙工程队每天的费用为0.33万元,该工程的预算费用为20万元,若甲、乙工程队一起合作完成该工程,请问工程费用是否够用,若不够用应追加多少万元?【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,则:+(+)×20=1,解得x=60.经检验:x=60是原方程的根,x=×60=40.故甲队单独完成这项工程需要40天,乙队单独完成这项工程需要60天.(2)设甲、乙两队合作,完成这项工程需y天,则:(+)y=1,解得y=24,需要施工费用(0.67+0.33)×24=24(万元),24﹣20=4(万元),故工程费用不够用,应追加4万元.22.(9分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.【解答】解:(1)∵▱A′B′O′C′由▱ABOC旋转得到,且A的坐标为(0,3),得点A′的坐标为(3,0).设抛物线的解析式为y=ax2+bx+c,将A,A′C的坐标代入,得,解得,抛物线的解析式y=﹣x2+2x+3;(2)∵AB∥OC,∴∠OAB=∠AOC=90°,∴OB==,又∠OC′D=∠OCA=∠B,∠C′OD=∠BOA,∴△C′OD∽△BOA,又OC′=OC=1,∴==,又△ABO的周长为4+,∴△C′OD的周长为=1+.(3)作MN⊥x轴交AA′于N点,设M(m,﹣m2+2m+3),AA′的解析式为y=﹣x+3,N点坐标为(m,﹣m+3),MN的长为﹣m2+3m,S△AMA′=MN•x A′=(﹣m2+3m)×3=﹣(m2﹣3m)=﹣(m ﹣)2+,∵0<m<3,∴当m=时,﹣m2+2m+3=,M (,),△AMA′的面积有最大值.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

2017年广东省深圳市中考数学真题试卷

2017年广东省深圳市中考数学真题试卷

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()△AODA.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017•深圳)图中立体图形的主视图是()A. B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017•深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017•深圳)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()A.20B.30 C.30D.40【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△PBE∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017•深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt △MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF 时,AP=3.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017•深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017•深圳)先化简,再求值:(+)÷,其中x=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=,频率之和为1,属于中考常考题型.20.(8分)(2017•深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017•深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在请(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,=AB•OC=×5×2=5,∴S△ABC=S△ABD,∵S△ABC=×5=,∴S△ABD设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.2017年湖北省黄石市中考数学试卷一、选择题1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)三、解答题17.(7分)计算:(﹣2)3++10+|﹣3+|.18.(7分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.20.(8分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.22.(8分)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?23.(8分)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)24.(9分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.25.(10分)如图,直线l:y=kx+b(k<0)与函数y=(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE.设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.2017年湖北省黄石市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•黄石)下列各数是有理数的是()A.﹣ B.C.D.π【分析】利用有理数的定义判断即可.【解答】解:有理数为﹣,无理数为,,π,故选A【点评】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.2.(3分)(2017•黄石)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将110000用科学记数法表示为:1.1×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•黄石)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•黄石)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=【分析】根据整式的运算法则以及分式的运算法则即可求出答案.【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选(C)【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.5.(3分)(2017•黄石)如图,该几何体主视图是()。

届深圳市中考一模模拟测试数学试卷含答案

届深圳市中考一模模拟测试数学试卷含答案

2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是() A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是( )A、B、C、D、3. 下列计算正确的是()A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是( )A、B、C、D、5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为( )A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为( )A、40°B、30°C、20°D、10°7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元 C、50元,50元 D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A、①②B、①④ C、②③ D、③④10. 如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A、2,3/2π B、2,π C、2,3π D、2,4π11. 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为( )A、4 B、6 C、8 D、1012.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE; ②②AGE②②ECF; ②②FCD=45°; ②②GBE②②ECH,其中,正确的结论有( )A、1个 B、2个C、3个 D、4个ﻫ11题图12题图二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a= ________.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分)17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60°.18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x xxx996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人ﻫ(2)请将两幅统计图补充完整.ﻫ(3)“凤凰山”部分的圆心角是度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年广东省深圳市中考数学一模试卷一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a54.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1012.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星个.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.18.解不等式组并写出它的所有非负整数解19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.2019年广东省深圳市中考数学一模试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:﹣4的倒数是﹣,故选:D.【点评】此题主要考查了倒数,关键是掌握倒数定义.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.【分析】仔细观察图形找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:C.【点评】本题主要考查了三视图的主视图的知识,主视图是从物体的正面看得到的视图,属于基础题.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16万吨用科学记数法表示为:1.6×105吨.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°【分析】根据平行线的性质求出∠CFE,根据三角形的外角性质得出∠E=∠CFE﹣∠D,代入求出即可.【解答】解:∵AB∥CD,∠ABE=60°,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°,故选:D.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠CFE的度数,注意:两直线平行,同位角相等.7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的成本为x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的成本为y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选:B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选:C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④【分析】令x=1代入可判断①;由对称轴x=﹣的范围可判断②;由图象与x轴有两个交点可判断③;由开口方向及与x轴的交点可分别得出a、c的符号,可判断④.【解答】解:由图象可知当x=1时,y<0,∴a+b+c<0,故①不正确;由图象可知0<﹣<1,∴>﹣1,又∵开口向上,∴a>0,∴b>﹣2a,∴2a+b>0,故②正确;由图象可知二次函数与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△>0,即b2﹣4ac>0,故③正确;由图象可知抛物线开口向上,与y轴的交点在x轴的下方,∴a>0,c<0,∴ac<0,故④不正确;综上可知正确的为②③,故选:C.【点评】本题主要考查二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键.10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选:B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)==.故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星150个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:当n为奇数时:通过观察发现每一个图形的每一行有个,故共有3()个;当n为偶数时,中间一行有个,故共有+1个.所以当n=99时,共有3×=150个.故答案为150.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力,解题的关键是通过仔细观察发现规律.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=﹣15.【分析】根据内心的性质得OB平分∠ABC,再由点B的坐标是(2,0),点C的坐标是(0,﹣2)得到△OBC为等腰直角三角形,则∠OBC=45°,所以∠ABC=90°,利用勾股定理有AB2+BC2=AC2,根据两点间的距离公式得到(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b =5,然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:∵△ABC的内心在x轴上,∴OB平分∠ABC,∵点B的坐标是(2,0),点C的坐标是(0,﹣2),∴OB=OC,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴∠ABC=90°,∴AB2+BC2=AC2,∴(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b=5,∴A点坐标为(﹣3,5),∴k=﹣3×5=﹣15.故答案为﹣15.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了反比例函数图象上点的坐标特征和两点间的距离公式.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.【分析】原式利用特殊角的三角函数值,乘方的意义,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣1+1﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组并写出它的所有非负整数解【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有非负整数解即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤10,则不等式组的解集为2<x≤10,故不等式组的非负整数解为3,4,5,6,7,8,9,10,【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是72°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,;(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)【分析】如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.【点评】本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.【解答】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【点评】此题主要考查了分式方程的应用,根据已知利用总工作量为1得出等式方程是解题关键.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.【解答】解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt △ACB 中,tan ∠OAB ===, ∴∠OAB =30°,∵∠ABO =90°,∴∠OBA =60°,∴∠ABC =∠OBC ==30°, ∴OC =OB •tan30°=1×=,∴AC =OA ﹣OC =, ∴∠ACE =∠ABC +∠OAB =60°,∴∠EAC =60°,∴△ACE 是等边三角形,∴AE =AC =, ∴AF =AE =,EF ==1,∴OF =OA ﹣AF =, ∴点E 的坐标为(,1).【点评】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.【分析】(1)根据点A ,C 的坐标,利用待定系数法可求出抛物线的函数表达式;(2)利用二次函数图象上点的坐标特征可求出点B 的坐标,设点P 的纵坐标为m ,根据三角形的面积公式结合S △AOP =4S △BOC ,即可得出关于m 的含绝对值符号的一元一次方程,解之即可得出m 的值,再利用二次函数图象上点的坐标特征,即可求出点P 的坐标;(3)根据点A ,C 的坐标,利用待定系数法可求出直线AC 的函数表达式,设点Q 的坐标为(x ,x +3)(﹣3<x <0),则点D 的坐标为(x ,﹣x 2﹣2x +3),点E 的坐标为(x ,0),进而可得出DQ ,QE 的长度,结合直线AC 将△ADE 的面积分成1:2的两部分,即可得出关于x 的一元二次方程,解之即可得出x 的值,再将其代入点Q 的坐标即可求出结论.【解答】解:(1)将A (﹣3,0),C (0,3)代入y =﹣x 2+bx +c ,得: ,解得:,∴抛物线的函数表达式为y =﹣x 2﹣2x +3.(2)当y =0时,﹣x 2﹣2x +3=0,解得:x 1=﹣3,x 2=1,∴点B 的坐标为(1,0),∴S △BOC =×1×3=.设点P 的纵坐标为m ,则S △AOP =|m |,∵S △AOP =4S △BOC , ∴|m |=4×,∴m =±4.当y =4时,﹣x 2﹣2x +3=4,解得:x 1=x 2=﹣1,∴点P 的坐标为(﹣1,4);当y=﹣4时,﹣x2﹣2x+3=﹣4,解得:x1=﹣1﹣2,x2=﹣1+2,∴点P的坐标为(﹣1﹣2,﹣4)或(﹣1+2,﹣4).综上所述:点P的坐标为(﹣1,4)、(﹣1﹣2,﹣4)或(﹣1+2,﹣4).(3)设直线AC的函数表达式为y=kx+a(k≠0),将A(﹣3,0),C(0,3)代入y=kx+a,得:,解得:,∴直线AC的函数表达式为y=x+3.设点Q的坐标为(x,x+3)(﹣3<x<0),则点D的坐标为(x,﹣x2﹣2x+3),点E的坐标为(x,0),∴DQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,QE=x+3.∵直线AC将△ADE的面积分成1:2的两部分,且△AEQ和△ADQ等高,∴DQ=2QE或2DQ=QE,∴﹣x2﹣3x=2(x+3)或x+3=2(﹣x2﹣3x),解得:x1=﹣3(舍去),x2=﹣2,x3=﹣,∴点Q的坐标为(﹣2,1)或(﹣,).∴存在点Q(﹣2,1)或(﹣,),使得直线AC将△ADE的面积分成1:2的两部分.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积,解含绝对值符号的一元一次方程、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的函数表达式;(2)根据两三角形面积间的关系,求出点P的纵坐标;(3)由直线AC将△ADE的面积分成1:2的两部分,找出关于x的一元二次方程.。

相关文档
最新文档