03植物细胞跨膜离子运输 ——【中国农业大学考研资源】
物质跨膜运输的方式知识点总结

物质跨膜运输的方式知识点总结1500字物质跨膜运输是维持细胞内外环境平衡的关键过程之一。
跨膜运输有两种方式:主动运输和被动运输。
主动运输是由细胞消耗能量来推动物质跨越细胞膜,被动运输是通过物质自身的浓度梯度来实现跨越细胞膜。
在主动运输中,有两种重要的机制:主动转运和背景电解质通道。
主动转运是指通过跨膜蛋白质,在逆浓度梯度下将物质从低浓度区域转运到高浓度区域。
这种跨膜蛋白质包括离子泵、载体蛋白和ATP酶。
离子泵是一种利用能量(通常是ATP)来将离子从低浓度区域转运到高浓度区域的蛋白质。
最常见的例子是Na+/K+转运泵,它将三个Na+离子从细胞内转运到细胞外,同时将两个K+离子从细胞外转运到细胞内。
载体蛋白是细胞膜上的蛋白质,它可以通过构象变化将物质从细胞外转运到细胞内或者相反。
ATP酶则是利用ATP分解的能量来进行物质转运的蛋白质。
背景电解质通道是指通过细胞膜上的通道蛋白质,在运动的过程中允许物质自由通过,但不需要额外的能量。
这种通道蛋白质可以分类为离子通道和水通道。
离子通道根据通透性可以分为不选择性通道和选择性通道。
不选择性通道允许各种离子通过,而选择性通道只允许特定类型的离子通过。
水通道则允许水分子通过,最常见的例子是蛋白质水通道(aquaporin)。
被动运输包括扩散和渗透。
扩散是指物质沿着浓度梯度自发地从高浓度区域移动到低浓度区域的过程。
这种运输方式不需要能量,并且是无需外力驱动的。
扩散速率取决于物质在溶液中的浓度差异,以及物质的分子大小和电荷等性质。
渗透是指溶质通过半透膜从低浓度溶液自发地运动到高浓度溶液的现象。
半透膜是一种允许溶剂通过但不允许溶质通过的膜。
在渗透过程中,溶剂(通常是水)会通过半透膜,使得高浓度溶液的浓度降低,低浓度溶液的浓度增加。
这种过程不需要额外能量,但是渗透压差会推动溶剂的移动。
总结起来,物质跨膜运输的方式有主动运输和被动运输两种。
主动运输是通过细胞消耗能量来推动物质跨越细胞膜,包括主动转运和背景电解质通道。
植物营养学笔记(中国农大网上教程)

植物营养---植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。
营养元素---植物体用于维持正常新陈代谢完成生命周期所需的化学元素植物营养学是研究植物对营养物质吸收、运输、转化和利用的规律及植物与外界环境之间营养物质和能量交换的科学根自由空间:根部某些组织或细胞允许外部溶液中离子自由扩散进入的区域。
基本上包括了细胞膜以外的全部空间,相当于质外体系统。
1、水分自由空间:根细胞壁的大孔隙,离子可随水分自由移动。
2、杜南自由空间:因细胞壁和质膜中果胶物质的羧基解离而带有非扩散负电荷的空间,离子移动通过交换与吸附的方式,不能自由扩散。
细胞膜上的3种转运蛋白:通道(channel)、载体(carrier)、泵(pump)离子通道(ion channel): 膜上的选择性孔隙。
由它调节的离子运输属被动扩散,速度快,主要用于水和离子,如,水通道、K+通道、Ca2+离子通道。
离子泵 (pump):逆电化学势直接将分子或离子泵出膜内或膜外,与能量供应直接偶联。
也称为初级主动运输。
根据离子运输是否使膜内外产生净电荷而分为致电泵与电中性泵。
致电泵:离子的运输使膜内外产生净电荷,如H+泵,即ATP水解而产生H+,并将其泵出膜外。
[致电泵驱动阳离子跨膜运输的假说模型]电中性泵:离子的运输不使膜内外产生净电荷,如动物中的H+/K+-ATP酶。
植物中只有H+泵和Ca2+泵,泵出的方向为膜外。
载体(carrier): 在膜的一侧与被转运分子或离子结合,再到另一侧释放。
速度慢,运输物质的形式多样。
如NO3-,H2PO4-等。
植物生理学B植物细胞跨膜离子运输

2-3. 离子泵
离子泵: 具有ATP水解酶功能、并能直接利用水解ATP 的能量将离子逆着其电化学势梯度进行跨膜运输的膜 载体蛋白。
根据离子泵活动导致有净电荷的跨膜运动进而影响膜电位, 可将其分为致电离子 泵(electrogenic pump)和中性离子泵(electroneutral pump),前者可以导致 有净电荷的跨膜运动,而后者则不改变膜两侧的电荷分布状况。
H+-ATP 酶 Ca2+-ATP 酶
(内膜系统上的 H+-焦磷酸酶 )
目前尚无证据表明植物细胞存在类似于动物细胞中的 Na+/K+-ATPase 等 !
胞外
胞内
植物细胞膜质子ATP酶结构式意图(Buchanan等,2000)
pH 5
[H+]
pH 7 [H+]
高等植物细胞 P-型 ATP 酶工作机制示意图
初级与次级运输 Six trans-membrane domians, S1- S6; S4: voltage senseor; P-domian: pore
(内膜系统上的 H+-焦磷酸酶 ) 主动 (active) 与被动 (passive) 运输 (transport) 主动 (active) 与被动 (passive) 运输 (transport) 据目前的研究结果,载体多为单个亚基构成,大部分含有12个跨膜区域、分子量约在40~50 kDa。 结构特点: 离子载体与离子通道首先在结构上有明显不同,虽然两类膜蛋白都有若干疏水的跨膜结构区域,但离子载体蛋白的跨膜区域并不形成明显的孔道结构。 生物膜的 “两亲性” 与 “绝缘性”
复合名称
植物细胞钾离子通道 AKT1 结构模型
细胞生物学翟中和第四版05跨膜运输

4th subunit not shown
电压门控离子通道应答膜电位
01
03
02
3、离子通道的开放和关闭受外界刺激影响
3.2 配体门控通道:
特点:受体与细胞外的配体结合,引起通道构象改变, “门”打开,又称离子通道型受体。 分为阳离子通道,如乙酰胆碱受体;和阴离子通道,如γ-氨基丁酸受体。 Ach受体由4种亚单位(α2βγδ)组成。
钠的电化学梯度
钾的电化学梯度
钠钾泵
细胞外的Na+就像是堵在高水坝后面的大量的水。 胞外Na+处于电化学梯度的“上坡”——储能
钠钾泵——循环型
磷酸化驱动构象变化,Na+的释放到胞外
泵恢复到原来构象,K+的释放到胞内
钠钾泵的作用: 维持细胞的渗透性,保持细胞体积; 维持低Na+高K+的细胞内环境; 维持细胞的静息电位。 地高辛、乌本苷等强心剂抑制其活性;Mg2+和少量膜脂有助提高于其活性。
3、离子通道的开放和关闭受外界刺激影响
3.3 应力激活通道:
特点:开放受控于施加至通道的机械力。 例如:耳内听觉毛细胞
耳内听觉毛细胞 声音振动打开应力激活通道,引起离子流进毛细胞从而产生电信号,传递到听觉神经,再传递给大脑。
听觉毛细胞
静纤毛
不倾斜约束
倾斜约束
神经细胞的离子通道和信号转导
细胞体
树突
细胞内外的离子浓度差异很大
一、膜转运的基本原理
01
脂质双分子层对于溶质和离子是不可渗透的
02
脂质双分子层内部的疏水性导致包括离子在内的亲水性分子不能自由通过。
03
其扩散速度主要取决与分子的大小和溶解性(脂溶性)。
【学习课件】第四章植物细胞跨膜离子运输

S1
S6
N
C
精选ppt课件
25
离子通道的分类:
依据对离子的选择性,分一价,二价,阴离子通道,阳
离子通道等等。特异性
依据运送离子的方向:分内向通道和外向通道。 方向
依据通道开放与关闭的调控机制:
电压门控通道:可对跨膜电势梯度发生反应;
配体门控通道:对化学物质(如激素)发生反应;
张力门控通道:对机械拉力变化发生反应。
精选ppt课件
2
教学要求与重点
要求掌握植物细胞膜的结构和 跨膜运输蛋白,细胞离子跨膜运 输的意义,离子跨膜运输的机理。
精选ppt课件
3
第一节 生物膜的物理化学特性
一 生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
二 跨膜电化学势梯度和膜电位
/v_show/id_XMTMyNTk2Mzg4.html
K+ ClNa+
精膜选对pp溶t课件质的相对通透性Biblioteka 跨膜运输 功能蛋白11
(A)
水通道蛋白
(B)
水分子
图4-3 水分子通过生物膜的机制示意图。
A:水分子通过膜脂分子间隙穿过脂质双分子层;
B:水分子通过膜上精的选水p通pt课道件蛋白穿过膜结构。
12
二 跨膜电化学势梯度和膜电位
化学势
中性分子或粒子 浓度
10-4
Glycerol
10-6 10-8 10-10
K+ ClNa+
?
精膜选对pp溶t课件质的相对通透性
10
膜的相对通透性增高
人工膜
H2O Glycerol
极强亲水性 Cl难通过膜 K+
Na+
植物生理学B植物细胞跨膜离子运输

子运输
汇报人:可编辑
20ห้องสมุดไป่ตู้4-01-11
目录
• 植物细胞跨膜离子运输概述 • 植物细胞跨膜离子运输机制 • 植物细胞跨膜离子运输的影响因素 • 植物细胞跨膜离子运输与植物生长和发育 • 植物细胞跨膜离子运输的研究方法 • 未来展望与研究方向
01
植物细胞跨膜离子运输概述
长发育和环境适应过程。
植物对环境的适应性
03
植物通过调节离子运输来适应环境变化,如盐碱、干旱等。
02
植物细胞跨膜离子运输机制
主动运
主动运输是指细胞通过消耗能量,逆浓度梯度 或电位梯度跨膜运输物质的过程。
主动运输涉及载体蛋白的参与,载体蛋白在膜 上形成特定的通道,通过与被运输物质结合, 实现逆浓度或电位梯度的物质转运。
被动运输
顺浓度梯度进行,不需要消耗能量。包括简单扩 散和协助扩散。
3
载体蛋白
协助物质跨膜运输的膜蛋白,具有专一性。
植物细胞跨膜离子运输的重要性
维持细胞内外的渗透平衡
01
离子平衡是植物细胞正常代谢的基础,通过跨膜运输维持细胞
内外离子浓度的相对稳定。
参与信号转导
02
植物细胞内的离子浓度变化可以作为信号分子,参与植物的生
生长素
生长素可以促进植物细胞跨膜离子运输,尤其对钾离子的吸 收有显著促进作用。它通过调节离子通道的活性来影响离子 运输。
脱落酸
脱落酸可以抑制植物细胞跨膜离子运输,尤其是在缺水或盐 分过高的环境中,脱落酸的作用更加明显。它通过调节离子 泵的活性来影响离子运输。
04
植物细胞跨膜离子运输与植物生长和发育
主动运输对于维持细胞内稳态和正常生理功能 具有重要意义,如维持细胞液的渗透压、pH值 等。
细胞生物学物质的跨膜运输试题

细胞生物学物质的跨膜运输试题以下是一些关于细胞生物学中跨膜运输的试题:1.请解释什么是细胞膜的跨膜运输?跨膜运输是指物质通过细胞膜从一个细胞内区域或环境进入另一个区域或环境的过程。
这个过程涉及到物质穿越细胞膜的疏水性内层,并与细胞膜上的载体蛋白或通道蛋白相互作用。
2.请列举细胞膜跨膜运输的两种主要机制,并简要描述它们。
-主动转运:主动转运是指物质在细胞膜跨膜运输时需要消耗能量(通常为三磷酸腺苷,ATP)。
这种机制可以使物质在浓度梯度之外被积累,如钠-钾泵。
-被动扩散:被动扩散是指物质在细胞膜跨膜运输时不需要消耗能量,遵循浓度梯度自发地从高浓度区域向低浓度区域移动。
这种机制包括简单扩散和载体介导的扩散。
3.请解释离子通道蛋白的功能以及如何实现离子选择性。
离子通道蛋白是一类跨膜蛋白,它们具有特定的结构域,形成一个通道,使特定类型的离子能够穿过细胞膜。
离子通道蛋白通过开启或关闭来调节离子的通行。
离子选择性是由离子通道蛋白中的氨基酸残基决定的。
通道蛋白的内部有特定位置的氨基酸残基,可以与特定大小、电荷和水合状态的离子相互作用。
这种相互作用使得只有特定类型的离子能够通过通道,其他离子则被阻挡在外。
4.请解释细胞膜上的载体蛋白如何实现物质的跨膜运输?细胞膜上的载体蛋白通过与物质结合并发生构象变化来实现物质的跨膜运输。
这些载体蛋白在细胞膜上形成一个通道或者运输器,物质结合到载体蛋白上后,载体蛋白会发生构象变化,使物质从一个细胞内区域转移到另一个区域。
载体蛋白的跨膜运输可以是被动的,遵循浓度梯度自发地将物质从高浓度区域向低浓度区域转移,也可以是主动的,需要消耗能量才能将物质从低浓度区域向高浓度区域转移。
细胞生物学之物质的跨膜运输与信号转导学习资料

受体
网格蛋白再循环
接合素蛋白
网格蛋白 有被小泡
GDP结合蛋白 dynamin
衣被蛋白循环
无被小泡
网格蛋白有被小窝
运输小泡
次级溶酶体消化
(分选)
穿胞运输
胞内体
受体同配体结合→启动内化作用,网格蛋白组装→在网格蛋白的作用下形成网格蛋白有被小泡→进入胞质,脱去衣被蛋白、网格蛋白等;蛋白再循环→胞内体分选→溶酶体消化或穿胞运输 。
Vs
Addition
*
学习资料
(四)、主动运输(active transport)
主动运输是物质逆浓度梯度或电化学梯度运输的跨膜运输方式。
特点: ①逆浓度梯度(逆化学梯度)运输; ②需要能量,与某种释放能量的过程相耦联; ③需要载体蛋白,具有选择性和特异性。
类型:
依据
主动运输
*
学习资料
三、胞吞作用与胞吐作用
主动运输能量来源的三种不同类型
ATP驱动泵 (通过水解ATP 获得能量 )
耦联转运蛋白 (协同运输中的 离子梯度动力 )
光驱动泵 (利用光能运输物质,见于细菌 )
*
学习资料
小亚基
*
学习资料
ATP分解, 酶被磷酸化
酶构象变化,与Na+结合部位转向膜外侧
磷酸化酶对Na+的亲和力低而膜外侧释放Na+;对K+的亲和力高而结合2个K+
特化的分泌细胞产生的分泌物(如激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。
*
学习资料
胞吞作用和胞吐作用的动态过程 对质膜更新和维持细胞的生存与生长是必要的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章植物细胞跨膜离子运输
第一节生物膜的化学组成与生物膜的主要理化特性
第二节细胞膜结构中的跨膜运输蛋白
第三节植物细胞的离子跨膜运输机制
第四节高等植物K+、Ca+的跨膜运输机制研究进展
[主要内容]:介绍植物细胞膜的化学组成和理化特性,膜上运输蛋白的类型、离子跨膜运输机制及K+、Ca+跨膜运输机制研究进展。
[教学要求]:要求学生了解细胞离子跨膜运输的意义,生物膜的理化特性,掌握膜上运输蛋白的类型、特性及离子跨膜运输的机理,了解K+、Ca+的跨膜运输机制研究
进展。
[教学重点]:离子跨膜运输蛋白的种类、特性,离子跨膜运输机理。
[教学难点]:
[授课时数]:3学时
引言(3 min)
高等植物的生长发育有赖于构成植物个体的活细胞不断从土壤、大气、水体等环境中吸收利用各种矿质元素。
在植物细胞水平上对营养元素的吸收利用过程是植物不断吸收营养元素的基础。
植物细胞质膜是细胞与环境之间的空间界限,活细胞对各种营养元素的吸收就是这些元素的跨膜运输过程。
植物所必需的各种矿质元素大部分是以带电离子的形式被吸收的,因此本章的主要内容是“植物细胞跨膜离子运输”。
植物细胞与动物微生物细胞跨膜离子运输机制有许多相似之处,也有不同之处,但作为物质
1
运动的一种形式,都遵循物理化学的基本规律。
以下先介绍离子跨膜运输的基本知识,在此基础上讨论各种离子的运输过程。
第一节生物膜的化学组成和物理化学性质(8分)
细胞最外层是质膜,它是外界物质进入的屏障,质膜控制着细胞与环境的物质交流,维持了细胞内环境的相对稳定。
质膜是由双磷脂层与蛋白质构成。
磷脂结构:胆碱、磷酸、甘油、脂肪酸(饱和,不饱和)。
与磷脂相联的蛋白质分两类:内在蛋白(Integral)、外在蛋白(Peripheral)
内在蛋白插入双层脂中,常常是跨膜的。
外在蛋白通过非共价键,如氢键,附着在膜上。
所以磷脂表现出亲水和亲脂的性质。
为研究生物膜对溶质的通透性,常用人工双层脂膜和生物膜进行比较研究:
结果表明:
对于非极性(O2)和极性小分子(如H2O、CO2、甘油)二者的通透性类似。
对于离子和大的极性分子(如糖)二者表现出较大差异。
天然生物膜比人工膜通透性大得多。
说明:天然生物膜中的蛋白质有利于这些溶质运输。
生物膜中促进溶质运输的蛋白质。
称为运输蛋白(transport proteins)。
二者没有差异的小分子显然可通过双层脂运输。
2
第二节.细胞膜结构中的离子跨膜运输蛋白(30 min 重点内容)
研究已发现膜上有大量与运输有关的蛋白质。
一般将其分为三种类型:
通道蛋白(channel);载体(carrier);离子泵(ion pump)
通道蛋白是细胞膜上的一类内在蛋白,一般由几个亚基构成选择性孔道,孔的大小及孔内表面电荷等性质决定它转运溶质的性质。
离子通道的构象会随环境条件的改变而发生变化,处于某些构象时,中间形成孔道,允许溶质通过,由大小和电荷决定……。
当受到细胞内部或外界环境的刺激时,通道以某种方式关闭。
根据孔开闭的机制将通道分为两类:一类是膜电势控制的通道,可对跨膜电势梯度发生反应,另一类则对外界刺激(如光照,激素等)发生反应的通道。
图3—5是一个假想的K+离子通道模型:在这里,K+顺电化学势梯度(逆浓度梯度)从外转移到细胞内。
感受蛋白可对细胞内外由光照激素等引起的刺激做出反应,并通过某种未知方式将感受的信号传膜上的阀门由此做出开关的决定。
在植物细胞质膜上已鉴定出K+、Ca+、Cl-等离子的通道。
气孔保卫细胞质膜上内、外向的K+通道如图。
近年膜片钳技术的应用大大推动了离子通道的研究。
Patch clamp PC技术是指使用微电极从一小片细胞膜上获取电子信息的技术。
载体蛋白:也是膜上的内在蛋白。
由载体蛋白转运的物质,首先与载体蛋白的活性部位结合,结合后载体蛋白产生构象变化,将被转运物质暴露于膜的另一侧,并释放出去。
载体蛋白对溶质的运输具有高度特异性;但同一族的分子或离子可具有共同的载体,如
3。