棱柱 棱锥 棱台与旋转体结构特征
1.1.2棱柱、棱锥和棱台的结构特征(2)

4.棱锥的分类: .棱锥的分类: (1)按底面多边形的边数分为三棱锥、 )按底面多边形的边数分为三棱锥、 四棱锥、五棱锥等, 四棱锥、五棱锥等,其中三棱锥又叫四面 体!
三棱锥 四面体) (四面体)
四棱锥
五棱锥
(2)正棱锥:如果棱锥的底面是正多边 )正棱锥:如果棱锥的底面是正多边 并且水平放置, 它的顶点又在过正 顶点又在过 形,并且水平放置, 它的顶点又在过正 多边形中心的铅垂线上 多边形中心的铅垂线上,则这个棱锥叫做 S 正棱锥! 正棱锥
已知正四棱锥V- 例2. 已知正四棱锥 -ABCD,底面面积为 , 16,一条侧棱长为 ,计算它的高和斜高。 ,一条侧棱长为2,计算它的高和斜高。 为正四棱锥V- 解:设VO为正四棱锥 - 为正四棱锥 ABCD的高,作OM⊥BC于 的高, 的高 ⊥ 于 中点, 点M,则M为BC中点, , 为 中点 连接OM、OB,则 、 , 连接 VO⊥OM,VO⊥OB. ⊥ , ⊥
在Rt△VOM中,由勾股定理得 △ 中
VM = 62 + 22 = 2 10
即正四棱锥的高为6,斜高为 2 10 即正四棱锥的高为 ,
练习题: 练习题:
1.能保证棱锥是正棱锥的一个条件是 . ( C ) (A)底面为正多边形 ) (B)各侧棱都相等 ) (C)各侧面与底面都是全等的正三角形 ) (D)各侧面都是等腰三角形 )
2.过正方体三个顶点的截面截得一个正 . 三棱锥,若正方体棱长为 a,则截得的正 三棱锥, , 三棱锥的高为
3 a 3
。
3.正四面体棱长为 a,M,N为其两条相 . , , 为其两条相 对棱的中点, 对棱的中点,则MN的长是 的长是
2 a 2
。
4.若正棱锥的底面边长与侧棱长相等, .若正棱锥的底面边长与侧棱长相等, 则该棱锥一定不是( 则该棱锥一定不是( D ) A) B) (A)三棱锥 (B)四棱锥 (C)五棱锥 (D)六棱锥 ) )
空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结在我们的日常生活中,各种各样的物体形状各异,而在数学的世界里,我们把这些物体抽象成空间几何体来进行研究。
接下来,让我们一起深入探讨空间几何体的结构特征,并通过一些例题来加深理解。
一、空间几何体的分类空间几何体主要分为多面体和旋转体两大类。
多面体是由若干个平面多边形围成的几何体。
常见的多面体有棱柱、棱锥、棱台等。
棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
旋转体是由一个平面图形绕着一条直线旋转所形成的几何体。
常见的旋转体有圆柱、圆锥、圆台、球等。
圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
二、空间几何体的结构特征1、棱柱的结构特征侧棱都平行且相等。
两个底面与平行于底面的截面是全等的多边形。
2、棱锥的结构特征侧面都是三角形。
只有一个顶点。
3、棱台的结构特征上下底面是相似多边形。
各侧棱延长后交于一点。
4、圆柱的结构特征母线平行且相等,都垂直于底面。
两个底面是全等的圆。
5、圆锥的结构特征母线交于顶点。
轴截面是等腰三角形。
6、圆台的结构特征母线延长后交于一点。
上下底面是两个半径不同的圆。
7、球的结构特征球面上任意一点到球心的距离都相等。
三、例题解析例 1:判断下列几何体是否为棱柱。
(1)一个长方体;(2)一个有两个面互相平行,其余各面都是平行四边形的几何体。
解:(1)长方体符合棱柱的定义,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以是棱柱。
(2)不一定是棱柱。
教学设计2:1.1.2 棱柱、棱锥和棱台的结构特征

1.1.2 棱柱、棱锥和棱台的结构特征【教学目标】1.掌握棱柱、棱锥和棱台的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.【重点难点】教学重点:理解棱柱、棱锥和棱台的结构特征.教学难点:归纳棱柱、棱锥和棱台的结构特征.【课时安排】1课时【教学过程】导入新课设计1.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大厦的旋转酒吧、旋转餐厅,还有上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?引出课题.设计2.在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑物的几何结构特征如何?引导学生回忆、举例和相互交流,教师对学生的活动及时给予评价,引出课题.推进新课新知探究提出问题(1)观察下图所示的几何体,这些几何体都是多面体.多面体集合具有什么性质?多面体的结构特征是什么?(2)阅读教材,给出多面体的面、棱、顶点、对角线的定义.(3)阅读教材,多面体如何分类?(4)什么叫几何体的截面?讨论结果:(1)多面体的每个面都是多边形(围成多面体的多边形都包含它内部的平面部分),而圆柱、圆锥、球等其他几何体就不具有这种性质.由此得出多面体的结构特征:多面体是由若干个平面多边形所围成的几何体.(2)如下图所示,围成多面体的各个多边形叫做多面体的面,如面ABCD 、面BCC ′B ′;相邻的两个面的公共边叫做多面体的棱,如棱AB 、棱AA ′;棱和棱的公共点叫做多面体的顶点,如顶点A 、顶点A ′;连结不在同一个面上的两个顶点的线段叫做多面体的对角线,如对角线BD ′.(3)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.如上图中的(1)(2)(3)都是凸多面体,而(4)不是.本书中说到多面体,如果没有特别说明,指的都是凸多面体.多面体至少有4个面.多面体按照围成它的面的个数分别叫做四面体、五面体、六面体…… 多面体的分类:多面体⎩⎪⎨⎪⎧ 非凸多面体凸多面体⎩⎪⎨⎪⎧ 四面体五面体六面体……(4)一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的截面,在上图中画出了多面体的一个截面EAC .提出问题(1)观察如下图所示的多面体,根据小学和初中学过的几何知识,这些多面体是棱柱,棱柱集合具有什么性质,其特征性质是什么?(1)(2)(3)(2)阅读教材,给出棱柱的底面、侧面、侧棱、高的定义.(3)阅读教材,棱柱如何分类?(4)阅读教材,说一说特殊的四棱柱.讨论结果:(1)如果我们以运动的观点来观察,棱柱可以看成一个多边形(包括图形围成的平面部分)上各点都沿着同一个方向移动相同的距离所形成的几何体.观察这个移动过程,我们可以得到棱柱的主要特征性质:棱柱有两个相互平行的面,而且夹在这两个平行平面间的每相邻两个面的交线都互相平行(如上图).(2)棱柱的这两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两侧面的公共边叫做棱柱的侧棱.棱柱两底面之间的距离,叫做棱柱的高.(3)棱柱按底面是三角形、四边形、五边形……分别叫做三棱柱、四棱柱、五棱柱……棱柱用表示两底面的对应顶点的字母或者用一条对角线端点的两个字母来表示.例如,上图(3)中的五棱柱可表示为棱柱ABCDEA′B′C′D′E′或棱柱AC′.棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱(上图(1)).侧棱与底面垂直的棱柱叫做直棱柱(上图(2)(3)).底面是正多边形的直棱柱叫做正棱柱(上图(3)).(4)下面研究一些特殊的四棱柱.底面是平行四边形的棱柱叫做平行六面体(下图).侧棱与底面垂直的平行六面体叫做直平行六面体(下图(2)(3)(4)).底面是矩形的直平行六面体是长方体(下图(3)(4).棱长都相等的长方体是正方体(下图(4)).提出问题1.观察如下图所示的多面体,可能会判定是一些棱锥,棱锥集合具有什么性质?棱锥有什么特征性质?(2)阅读教材,给出棱锥的侧面、顶点、侧棱、底面、高的定义,如何表示棱锥?(3)阅读教材,棱锥如何分类?讨论结果:(1)棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形.(2)棱锥中有公共顶点的各三角形,叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻两侧面的公共边叫做棱锥的侧棱;多边形叫做棱锥的底面;顶点到底面的距离,叫做棱锥的高.(3)棱锥用表示顶点和底面各顶点的字母或者用表示顶点和底面的一条对角线端点的字母来表示.例如,下图中棱锥可表示为棱锥S—ABCDE或者棱锥S—AC.棱锥按底面是三角形、四边形、五边形……分别叫做三棱锥、四棱锥、五棱锥……如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥(下图).容易验证:正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高(下图).提出问题阅读教材,给出棱台的有关概念.讨论结果:如左下图所示,棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面、上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面间的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.棱台可用表示上下底面的字母来命名.如右上图中的棱台,记作棱台ABCD—A′B′C′D′,或记作棱台AC′.棱台的下底面为ABCD、上底面为A′B′C′D′、高为OO′.应用示例思路1例1设计一个平面图形,使它能够折成一个侧面与底面都是等边三角形的正三棱锥.解:因为要制作的正三棱锥的侧面与底面都是等边三角形,所以它的棱长都相等(下图).于是作一个等边三角形及其三条中位线,如下图所示,沿图中的实线剪下这个三角形,再以虚线(中位线)为折痕就可折成符合题意的几何体.点评:本题揭示了平面图形与立体图形的关系,即可以相互转化,因此将空间问题转化为平面问题.变式训练1.一个无盖的正方体盒子展开后的平面图,如左下图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=__________.【解析】如右上图所示,折成正方体,很明显点A、B、C是上底面正方形的三个顶点,则∠ABC=90°.【答案】90°例2已知正四棱锥V—ABCD(下图),底面面积为16,一条侧棱长为211,计算它的高和斜高.解:设VO为正四棱锥V—ABCD的高,作OM⊥BC于点M,则M为BC中点.连结OM、OB,则VO⊥OM,VO⊥OB.因为底面正方形ABCD的面积为16,所以BC=4,BM=OM=2,OB=BM2+OM2=22+22=2 2.又因为VB=211,在Rt△VOB中,由勾股定理,得VO=VB2-OB2=(211)2-(2202=6.在Rt△VOM(或Rt△VBM中,由勾股定理,得VM=62+22=210(或VM=(211)2-22=210).即正四棱锥的高为6,斜高为210.点评:解决本题的关键是构造直角三角形.正棱锥中,高、斜高和底面正多边形的边心距构成直角三角形;高、侧棱和底面正多边形的半径构成直角三角形.思路2例3下列几何体是棱柱的有()A.5个B.4个C.3个D.2个【解析】判断一个几何体是哪种几何体,一定要紧扣柱、锥、台、球的结构特征,注意定义中的特殊字眼,切不可马虎大意.棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.【答案】D点评:本题主要考查棱柱的结构特征.本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图,看到图形就想到文字叙述.变式训练1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.其中正确的个数是()A.1 B.2C.3 D.0【解析】①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.【答案】A2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点【答案】D例4长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为() A.1+ 3 B.2+10 C.3 2 D.23活动:解决空间几何体表面上两点间最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间线段长,这体现了数学中的转化思想.【解析】如左下图,在长方体ABCD—A1B1C1D1中,AB=3,BC=2,BB1=1.如右上图所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=52+12=26,即经过侧面ABB1A1和侧面BCC1B1时的最短距离是26;如左下图所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1=32+32=32,即经过侧面ABB1A1和底面A1B1C1D1时的最短距离是32;如右上图所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1=42+22=25,即经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2 5.由于32<25,32<26,所以由A到C1在正方体表面上的最短距离为3 2.【答案】C点评:本题主要考查空间几何体的简单运算及转化思想.求表面上最短距离可把立体图形展成平面图形.变式训练1.左下图是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描述蜘蛛爬行的最短路线.分析:制作实物模型(略).通过正方体的展开右上图可以发现,AB间的最短距离为A、B两点间的线段的长22+12= 5.由展开图可以发现,C点为其中一条棱的中点.具体爬行路线如下图中的粗线所示,我们要注意的是爬行路线并不唯一.解:爬行路线如下图(1)~(6)所示:2.如下图所示,已知正三棱柱ABC—A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长为__________.【解析】将正三棱柱ABC—A1B1C1沿侧棱AA1展开,其侧面展开图如左下图所示,则沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长就是左下图中AD+DA1.延长A1F至M,使得A1F=FM,连结DM,则A1D=DM,如右下图所示.则沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长就是如右上图中线段AM的长.在右上图中,△AA1M是直角三角形,则AM=AA21+A1M2=82+(1+1+1+1+1+1)2=10.【答案】10知能训练1.如下图,观察四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是棱台C.(3)是棱锥D.(4)不是棱柱【解析】图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上下两个面不平行,所以(2)不是棱台;图(4)前后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱;很明显(3)是棱锥.【答案】C2.正方体的截平面不可能...是:①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是()A.①②⑤B.①②④C.②③④D.③④⑤【解析】正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形(证明略);对五边形来讲,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形).【答案】B拓展提升1.有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?剖析:如下图所示,此几何体有两个面互相平行,其余各面是平行四边形,很明显这个几何体不是棱柱,因此说有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱.由此看,判断一个几何体是否是棱柱,关键是紧扣棱柱的3个本质特征:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行.这3个特征缺一不可,下图所示的几何体不具备特征③.2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?剖析:如左下图所示,将正方体ABCD—A1B1C1D1截去两个三棱锥A—A1B1D1和C—B1C1D1,得如右下图所示的几何体.右上图所示的几何体有一个面ABCD是四边形,其余各面都是三角形的几何体,很明显这个几何体不是棱锥,因此说有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥.由此看,判断一个几何体是否是棱锥,关键是紧扣棱锥的3个本质特征:①有一个面是多边形;②其余各面都是三角形;③这些三角形面有一个公共顶点.这3个特征缺一不可,右上图所示的几何体不具备特征③.课堂小结本节课学习了棱柱、棱锥和棱台的结构特征.作业1.如下图,甲所示为一几何体的展开图.(1)沿图中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图.(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙棱长为6cm的正方体ABCD—A1B1C1D1中指出这几个几何体的名称.【答案】(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,如下图甲所示.(2)需要3个这样的几何体,如上图乙所示.分别为四棱锥:A1—CDD1C1,A1—ABCD,A1—BCC1B1.2.如下图,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N,求P点的位置.分析:把三棱锥展开后放在平面上,通过列方程解应用题来求出P到C点的距离,即确定了P点的位置.解:如下图所示,把正三棱锥展开后,设CP=x,根据已知可得方程22+(3+x)2=29,解得x=2(x>0).所以P点的位置在离C点距离为2的地方.3.正四棱锥的侧棱长为23,侧棱与底面所成的角为60 °,则该棱锥的体积为() A.3 B.6C.9 D.18【解析】作下图,依题可知SO=23sin60°=23·32=3,CO=23·cos60°=23·12=3,∴底面边长为 6.从而V S—ABCD=13S ABCD·SO=13×(6)2×3=6.【答案】B设计感想本节教学设计,充分体现了新课标的精神,按课程标准的要求:降低逻辑推理,通过直观感受和操作确认来设计.在使用时,建议使用信息技术来处理图片和例题,否则会造成课时不足的矛盾.。
1.1 棱柱、棱锥、棱台的结构特征(第1课时)

有两个面互相平行,其余各面都是四边形,
并且每相邻两个四边形的公共边都互相平行,
这些面所围成的多面体叫做棱柱. E1 D1
底面:两个互相平行的面.
F1 A1 B1 C1
简称底.
侧面:其余各面. 侧棱:相邻侧面的公共边.
侧棱
底 ED 面
顶点:侧面与底面的公共顶点.
F
C
AB 侧面
顶点
棱柱的分类
按底面多边形的边数来分
A' D
侧棱:相邻侧面的公共边.
上底面
C' B' C
顶点:侧面与上(下)底面的 A
B
公共顶点
下底面
棱台的分类
由三棱锥、四棱锥、五棱锥……截得的棱台 分别叫做三棱台、四棱台、五棱台……
棱台的表示:用各底面顶点的字母表示
三棱台 四棱台
五棱台
棱台ABCD—A ' B ' C ' D '
1.判断下列说法是否正确,正确的在后面的 括号内打“√”,错误的打“×”. (1)棱柱的侧面可以不是平行四边形.( ) (2)三棱锥的四个面都可以作为底面.( ) (3)四棱台有8个顶点,6个面,4条侧棱.( ) • 答案:(1)× (2)√ (3)√
2.试判断下列说法正确与否: ①由六个面围成的封闭图形只能是五棱锥;
②两个底面平行且相似,其余各面都是梯形的 多面体是棱台.
• 解:①不正确,由六个面围成的封闭图形有 可能是四棱柱;
• ②不正确,两个底面平行且相似,其余各面 都是梯形的多面体,侧棱不一定相交于一
多面体的表面展开图
•
如图是三个几何体的表面展开图,请
B.2 个 D.4 个
2.下面图形所表示的几何体中,不是棱锥的为( )
2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

1.1。
1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.如长方体形的盒子外表面是长方体.(×)2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8想一想1。
如何判断一个几何体是否为棱柱?提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.下面四个几何体中,是棱台的是( )答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1。
棱柱、棱锥、棱台的结构特征(修改后)

根据构成这些空间几何体的面的特点,可将 空间几何体分为两类: 多面体和旋转体
一、多面体的定义:
一般地,我们把由若干个平面多边形围成的几何体 叫做多面体. 1.围成多面体的各个多边形叫做多面体的面. 2.相邻两个面的公共边叫做多面体的棱, 3.棱与棱的公共点叫做多面体的顶点.
E' D'
C
面
B
A
判断下列几何体是不是棱台,为什么?
(1)
(2)
注意:棱台的侧棱的延长线交于一点,
达标训练
1、下列命题正确的是( C )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱;
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱. C.有两个面平行,其余各面都是四边形,并且每相邻两个四 边形的公共边都互相平行的几何体叫棱柱. D.用一个平面去截棱锥,底面与截面之间的部分组成的几何
C C
E'
ቤተ መጻሕፍቲ ባይዱ
A
B
A
C
B
A
D
B
底面 侧面
D
C
B
C
A
A
B
E
C
1.棱柱的定义
A
B
侧棱 顶点
有两个面互相平行,其余各面都是四边形,并 且每相邻两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱.
2.棱柱的表示 如:棱柱ABCDE- ABCDE
3.棱柱的分类
(1) 按照底面多边形的边数,我们把棱柱分为 D 三棱柱、四棱柱、五棱柱、……
5.如图所示,几何体的正确说法的序号为________ ①③④⑤.
①这是一个六面体;
②这是一个四棱台;
③这是一个四棱柱;
棱柱、棱锥和棱台的结构特征 (2)

例1:设计一个平面图形,使它能够折成一个 侧面与底面都是等边三角形的正三棱锥。
这样的正三棱锥又叫正四面体
四个面都是正三角形 正四面体是正三棱锥 正三棱锥不一定是正四面体。
例2:已知正四棱锥V-ABCD,底面面积为16,一 条侧棱长为 2 11 ,计算它的高和斜高。 解:在 Rt MOB中, OB MO 2 BM 2 2 2
思考题:斜棱柱、直棱柱和正棱柱的底 面、侧面各有什么特点?
1. 斜棱柱、直棱柱的底面为任意多边形。正棱 柱的底面为正多边形。
2. 斜棱柱的侧面为平行四边形。直棱柱的侧面 为矩 形。正棱柱的各个侧面为全等的矩形。
典型例题 例1:下列命题中正确的是( D ) A、有两个面平行,其余各面都是四 边形的几何体叫棱柱。 B、有两个面平行,其余各面都是平 行四边形的几何体叫棱柱。 C、有两个侧面是矩形的棱柱是直棱 柱。 D、有两个相邻侧面是矩形棱柱是直 棱柱。
E′ F′ A′ B′
D′
C′
侧 面
E D
C B
侧棱F
A
(3)侧棱平行且相等.
底面
顶点
相关概念: (1)棱柱的两个互相平行的面叫做棱柱的底 面,简称底; (2)其余各面叫做棱柱的侧面; (3)相邻侧面的公共边叫做棱柱的侧棱; (4)侧面与底面的公共顶点叫做棱柱的顶点;
(5)棱柱中不在同一面上的两个顶点的连线
V
在 Rt VOB中, VO VB OB 6
2 2
在 Rt VOM 中,
D O A
VM VB BM 2 10
2 2
C B
M
练习1、如图:在正四棱锥 S-ABCD中, SO是这个四棱锥 的高,SM 是斜高,且SO=8 , SM=11 , (1)求侧棱长;(2)求一个侧面的面积(3)求底面的面积。 解:(1) 在 Rt SOM 中, OM SM 2 SO 2 OM= 57 S
高中数学必修2立体几何常考题型:棱柱、棱锥、棱台的结构特征

棱柱、棱锥、棱台的结构特征【知识梳理】1.空间几何体题型一、棱柱的结构特征【例1】下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析](1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案](3)(4)【类题通法】有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.【对点训练】1.下列四个命题中,假命题为()A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D 是正确的.题型二、棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析](1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案](2)(3)(4)【类题通法】判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.题型三、多面体的平面展开图【例3】如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.【类题通法】1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.【对点训练】3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.2C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.【练习反馈】1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:选D由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=2012,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No: 年月日课题:棱柱棱锥棱台与旋转体结构特征
课时 1 课型新授
知识与技能掌握多面体和旋转体定义和性质
过程与方法对空间几何体整体观察认识其结构特征
情感态度价值观培养学生空间想象能力逻辑思维能力
重点掌握多面体和旋转体的定义
难点观察几何体总结性质
关键如何运用性质形状问题
教学过程与内容师生
互动时间分配
复习:棱柱棱锥棱台圆柱圆锥圆台球的定义及其结构特征
1.一个棱柱是正四棱柱的条件是()
A.地面时正方形,有两个侧面是矩形。
B.地面时正方形.有两个侧面垂直于底面。
C.底面是正方形,相邻的两个侧面是矩形。
D.每个侧面都是全等的矩形的死棱柱。
2如图所示,正六棱柱的底面周长伟24,H是BC的中点,
∠SHO=60°,求(1)棱锥的高,(2)斜高(3)侧棱长
3.正四棱台AC’的高是14cm,两底面的边长分别为10cm和16cm.求这个棱台的侧棱台和斜高
4.长方体ABCD-A
1B
1
C
1
D
1
中AB=4 BC=4 BC=3 BB
1
=5 一只蚂蚁从
A点出发沿表面爬行到点C
1
.求蚂蚁爬行的最短路线的长
5.下列命题中,错误的是( )
A .圆柱的轴截面是过母线的截面值面积最大的
B .圆锥的轴截面是所有过顶点的截面中面积最大的
C .圆台的轴截面一定是等腰梯形。
D .圆锥的轴截面是全等的等腰三角形。
6.边长为5cm 的正方信不过EFGH 是圆柱的轴截面,则从E 点沿圆柱的则
免到行对顶点F 的最断距离是( )
A .10cm B.52cm
C.512+πcm
D. 42
52+π cm 7.在半径为25cm 的求内有一个截面,它的面积是49π2cm 求球心到这个
截面的距离
8.地球上A.B 两点都在北纬45°圈上,A,B 的球面距离为R 3
π,A 在半径30°线上,点B 的位置及A,B 两点间的维度圈上圆弧的长度。
9.圆锥的底面半径为1cm ,高为2cm 期中有一个内接正方体,求这个内
接正方体的棱长。
10.如图,圆台上,下底面的半径分别为5cm 和10cm 母线长AB=20cm 从
圆台的母线AB 的中点M ,拉一条绳子绕圆台侧面转到A 点,求(1)绳
子的最短长度(2)再绳子的最短时上底圆周上的点到绳子的最短距离
小结:通过练习掌握几何体结构特征
反馈
练习
设计
教后后记。