2020年江苏省七年级数学上册期末试卷(附答案)
苏教版七年级数学上册 期末试卷测试卷(含答案解析)

苏教版七年级数学上册 期末试卷测试卷(含答案解析)一、选择题1.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120202.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°4.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-5.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .6.如图,给出下列说法:①∠B 和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A 和∠BCD 是同旁内角. 其中说法正确的有( )A .0个B .1个C .2个D .3个7.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-18.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .经过一点,有无数条直线C .垂线段最短D .经过两点,有且只有一条直线9.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个10.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .11.下列平面图形不能够围成正方体的是( ) A .B .C .D .12.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等D .不相交的两条直线叫做平行线13.下列合并同类项正确的是( ) A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 14.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9B .6C .9-D .6- 15.下列计算中正确的是( )A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a +=二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.18.已知3x =是方程35x x a -=+的解,则a 的值为__________. 19.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__. 20.下午3点30分时,钟面上时针与分针所成的角等于_____°.21.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.22.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。
【苏科版】数学七年级上册《期末考试试卷》(含答案解析)

2020-2021学年度第一学期期末测试苏科版七年级数学试题第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ﹣3的相反数是( ) A. 13- B. 13 C. 3- D. 32.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为( )A. 14×106B. 1.4×107C. 1.4×108D. 0.14×109 3.下列运算中,正确的是( )A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 541a a -=4.图中几何体的主视图是( )A. B. C. D. 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A. AC =BCB. AB =2ACC. AC +BC =ABD. 12BC AB = 6. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°7.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是()A. 高B. 铁C. 开D. 通8.如图,将长方形ABCD沿线段OG折叠到''OB C G的位置,'OGC∠等于100°,则'DGC∠的度数为()A. 20°B. 30°C. 40°D. 50°二、填空题(每题3分,满分24分,将答案填在答题纸上)9.若60A∠=︒,且A∠与B互补,则B∠=_______________度.10.一个数的绝对值是2,则这个数是_____.11.一个等腰三角形两边长分别为3和7,这个三角形的周长是_____.12.若一个多边形的内角和是900º,则这个多边形是边形.13.如图,直线//,1125∠=︒a b,则2∠=_____________度14.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=________.15.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.16.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.三、解答(共72分.解答应写出文字说明、证明过程或演算步骤.)17.计算:(1)()375244128⎛⎫-+-⨯- ⎪⎝⎭ (2)()24123-+⨯-18.解方程(1)528x +=-(2)4352x x -=+(3)()4232x x -=--(4)2151136x x +--= 19.先化简,再求值:()()222223223a b ab a b a b ab +-+--,其中1a =-,2b =.20.如图,如果//,40,40∠=∠=AB CD B D ,那么BC 与DE 平行吗?什么?21.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.22.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C 画AB 的垂线,并标出垂线所过格点E ;(2)过点C 画AB 的平行线CF ,并标出平行线所过格点F ;(3)直线CE 与直线CF 的位置关系是 ;(4)连接AC ,BC ,则三角形ABC 的面积为 .23.A 、 B 两地相距 360km ,甲、乙两车分别沿同一条路线从 A 地出发驶往 B 地,已知甲车的速度为 60/km h ,乙车的速度为 90/km h ,甲车先出发1h 后乙车再出发,乙车到达 B 地后再原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距 50km ?24.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、. (1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .答案与解析第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ﹣3的相反数是( ) A. 13- B. 13 C. 3- D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为( )A. 14×106B. 1.4×107C. 1.4×108D. 0.14×109 【答案】B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).14 000 000一共8位,从而14 000 000=.4×107.故选B .3.下列运算中,正确的是( )A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 541a a -= 【答案】C【解析】【分析】根据同类项与合并同类项的知识进行选择排除即可.【详解】A .3a 与2b 不是同类项不能合并,所以A 错误;B.32a 与23a 字母指数不同,不是同类项,所以B 错误;C.23a b 与23ba 所含字母相同且相同字母的指数相同,是同类项可以合并,计算正确;D.54a a a -=所以D 错误;故答案为C.【点睛】本题考查的是整式的运算,能够熟练掌握同类项与合并同类项的知识点是解题的关键. 4.图中几何体的主视图是( )A. B. C. D.【答案】B【解析】【分析】根据主视图是从物体的正面去观察所得到的,根据看到的图形进行选择即可.【详解】因为球在长方体的中间,从正面看上去看到的是一个长方形和圆形,且圆在正方形的中间部位, 故答案选B.【点睛】本题考查的是物体的三视图,知道主视图是从正面去观察物体是解题的关键.5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A. AC =BCB. AB =2ACC. AC +BC =ABD. 12BC AB = 【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A 、B 、D 都可以确定点C 是线段AB 中点【详解】解:A 、AC =BC ,则点C 是线段AB 中点;B 、AB =2AC ,则点C 是线段AB 中点;C 、AC +BC =AB ,则C 可以是线段AB 上任意一点;D 、BC =12AB ,则点C 是线段AB 中点. 故选C .【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.6. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°【答案】B【解析】 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,7.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A. 高B. 铁C. 开D. 通【答案】D【解析】【分析】 根据正方体的表面展开图中,相对面之间一定相隔一个正方形的特点选出答案即可.【详解】因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“安”字的对面是是“通”字,故答案选D.【点睛】本题考查的是正方体的展开图,熟知正方体的表面展开图的特点是解题的关键.8.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为()A. 20°B. 30°C. 40°D. 50°【答案】A【解析】由折叠的可知∠OGC=∠OGC′=100°,∴∠OGD=180°-∠OGC=80°,∴∠DGC′=∠OGC′-∠OGD=100°-80°=20°,故选 A.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.若60A∠=︒,且A∠与B互补,则B∠=_______________度.【答案】120 【解析】【分析】根据补角的定义可知∠A+∠B=180°,据此进行计算即可. 【详解】∵∠A与∠B互补,∴∠A+∠B=180°,∴∠B=180°-∠A=180°-60°=120°,故答案120. 【点睛】本题考查的是补角的定义,能够知道互补的两个角相加等于180°是解题的关键. 10.一个数的绝对值是2,则这个数是_____.【答案】±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为±2.【点睛】本题考点:绝对值.11.一个等腰三角形的两边长分别为3和7,这个三角形的周长是_____.【答案】17.【解析】试题分析: 求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,要进行讨论,还要应用三角形的三边关系验证能否组成三角形.(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17. 故答案为17.考点: 等腰三角形的性质;三角形三边关系.12.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.如图,直线//,1125∠=︒a b ,则2∠=_____________度【答案】55【解析】【分析】根据对顶角相等的性质可知∠1的对顶角的度数,再根据平行线的性质可知同旁内角互补,从而可求答案.【详解】∵//a b∴∠2+∠3=180°又∵∠1=∠3=125°∴∠2=180°-∠3=180°-125°=55°故答案为55.【点睛】本题考查的是对顶角的性质和平行线的性质,知道两直线平行同旁内角互补是解题的关键. 14.如图,直线AB ,CD 相交于点O ,∠EOC=70°,OA 平分∠EOC,则∠BOD=________.【答案】35°【解析】试题分析:∵∠EOC =70°,OA 平分∠EOC ,∴∠AOC =12∠EOC =12×70°=35°, ∴∠BOD =∠AOC =35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角相等的性质,熟记定义并准确识图是解题的关键.15.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.【答案】1【解析】【分析】根据8,6DA DB ==可知AB 的长度,再根据C 为线段AB 的中点,可知AC 的长度,从而可求答案.【详解】∵8,6DA DB ==∴AB=DA+DB=8+6=14∵C 为线段AB 的中点 ∴1=72AC BC AB == ∴CD=DA -AC=8-7=1故答案为1.【点睛】本题考查的是线段中点的性质,熟知线段中点的性质是解题的关键.16.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.【答案】29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144 解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去) ∴满足条件所有x 的值是29或6.三、解答(共72分.解答应写出文字说明、证明过程或演算步骤.)17.计算:(1)()375244128⎛⎫-+-⨯- ⎪⎝⎭ (2)()24123-+⨯-【答案】(1)19;(2)17.【解析】【分析】(1)根据乘法分配律将括号内各数分别乘-24之后再计算即可;(2)先算乘方再从左至右计算即可.【详解】解:(1)()375244128⎛⎫-+-⨯- ⎪⎝⎭ ()()()375=242424412818141519⎛⎫-⨯-+⨯--⨯- ⎪⎝⎭=-+= (2)()24123-+⨯-=12911817-+⨯=-+=【点睛】本题考查的是含有乘方的有理数的混合运算,熟知计算顺序是解题的关键.18.解方程(1)528x +=-(2)4352x x -=+(3)()4232x x -=--(4)2151136x x +--= 【答案】(1)x=-2;(2)x=4;(3)x=2;(4)x=-3【解析】【分析】(1)先移项合并同类项,再系数化1;(2)先移项合并同类项,再系数化1;(3)先去括号,再移项合并同类项,最后系数化1;(4)先去分母,再去括号,然后一项合并类项,最后在系数化1.【详解】解:(1)528x +=-,移项合并同类项得:5x=-10系数化1得:x=-2;(2)4352x x -=+移项合并同类项得:2x=8系数化1得:x=4;(3)()4232x x -=--去括号得:4-x=2-6+3x移项合并同类项得:4x=8系数化1得:x=2;(4)2151136x x +--= 去分母得:2(2x+1)-(5x-1)=6去括号得:4x+2-5x+1=6移项合并同类项得:-x=3系数化1得:x=-3【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的步骤是解题的关键.19.先化简,再求值:()()222223223a b ab a b a b ab+-+--,其中1a =-,2b =.【答案】226a b ab +,8.【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式222223243a b ab a b a b ab =-+-+ 226a b ab =+.当1a =-,2b =时原式()()2261212=⨯-⨯+-⨯ 124=-8=.【点睛】本题考查整式的运算,解题关键是熟练运用整式的运算法则,本题属于基础题型.20.如图,如果//,40,40∠=∠=AB CD B D ,那么BC 与DE 平行吗?为什么?【答案】平行,理由见解析【解析】【分析】根据AB∥CD可知∠B=∠C,再根据内错角相等两直线平行,从而可得答案.【详解】解:BC∥DE,理由如下:∵AB∥CD ∴∠B=∠C=40°∵∠D=40°∴∠C=∠D ∴BC∥DE 【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定方法是解题的关键.21.如图,COD∠为平角,,2AO OE AOC DOE⊥∠=∠,求AOC∠的度数.【答案】60°【解析】【分析】根据∠COD为平角,AO⊥OE,可知∠AOC+∠DOE的度数,从而可求答案. 【详解】解:∵∠COD为平角,AO⊥OE∴∠AOC+∠DOE=180°-90°=90°又∵∠AOC=2∠DOE∴3∠DOE=90°,即∠DOE=30°∴∠AOC=60°【点睛】本题考查的是平角,直角和角之间的关系,能够明白角与角之间的关系是解题的关键.22.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C画AB的垂线,并标出垂线所过格点E;(2)过点C画AB的平行线CF,并标出平行线所过格点F;(3)直线CE与直线CF的位置关系是;(4)连接AC,BC,则三角形ABC的面积为.【答案】(1)如图,直线CE即为所求;见解析;(2)如图,直线CF即为所求;见解析;(3)CE⊥CF(4)19.2【解析】【分析】(1)构造全等三角形解决问题即可;(2)构造平行四边形解决问题即可;(3)根据平行线的性质即可判断;(4)利用分割法计算三角形的面积即可;【详解】解:(1)如图,直线CE即为所求;(2)如图,直线CF即为所求;(3)∵CF∥AB,CE⊥AB,∴CE⊥CF;(4)S△ABC=20﹣12×3×4﹣12×1×4﹣12×1×5=192.【点睛】本题考查作图—应用与设计、平行线的判定和性质、全等三角形和平行四边形的应用、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60/km h,乙车的速度为90/km h,甲车先出发1h后乙车再出发,乙车到达B地后再原地等甲车. (1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?【答案】(1)乙车出发2小时追上甲车;(2)乙车出发13、113、256与甲车相距50km【解析】【分析】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,根据两车所走的路程相等,列出方程进行求解即可;(2)分乙车没追上甲车、乙车追上甲车、乙车到达B地而甲车没到达B地三种情况分别解即可.【详解】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,由题意得60(x+1)=90x,解得:x=2,答:乙车出发2小时追上甲车;(2)①()11090603÷-=(小时),②()()11605090603+÷-=(小时),③4小时后,甲距离B地60千米,乙到达B地等甲,还有可能相距50米,()25410606+÷=(小时),答:乙车出发2小时追上甲车;乙车出发13、113、256与甲车相距50km.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解(1)的关键,分情况讨论是解(2)的关键.24.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、. (1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .【答案】(1)90°;(2)99°;(3)180°-2m°【解析】【分析】(1)由折叠的性质可得,BFE B FE CFH C FH ''∠=∠=,∠∠,在由角的构成可求答案;(2)由折叠的性质可设,=BFE B FE x C FH CFH y ''===∠∠∠∠,再根据角的构成就可求出答案;(3)方法同(2),将(2)中的18B FC ''=∠换成=EFH m ∠即可求解.【详解】解:(1)∵沿EF ,FH 折叠,∴BFE B FE CFH C FH ''∠=∠=,∠∠∵点B '在FC '上, ∴()11=+=180=9022EFH BFB CFC ''⨯∠∠∠, 故答案为90°;(2)∵沿EF ,FH 折叠,∴可设,=BFE B FE x C FH CFH y ''===∠∠∠∠,∵2x+18°+2y=180°,∴x+y=81°∴∠EFH=x+18°+y=99°,故答案为99°;(3)∵沿EF ,FH 折叠∴可设,=BFE B FE x C FH CFH y ''===∠∠∠∠∴∠EFH=180°-∠BFE-∠CFH=180°-(x+y )即180x y m +=︒-又∵∠EFH EFB B FC C FH x B FC y ''''''=-+=-+∠∠∠∠∠∴()=1801802B FC x y EFH m m m ''=+---=-∠∠故答案为:1802m -【点睛】本题考查的是倒角的能力,能够清晰的看出题干中角的构成是解题的关键.。
苏教版七年级上册数学 期末试卷试卷(word版含答案)

苏教版七年级上册数学 期末试卷试卷(word 版含答案)一、选择题1.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120202.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 3.下列各式中与a b c --的值不相等的是( ) A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a --- 4.下列四个数中,最小的数是() A .5B .0C .1-D .4- 5.下列各项中,是同类项的是( ) A .xy -与2yx B .2ab 与2abc C .2x y 与2x z D .2a b 与2ab 6.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b --7.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .8.如图,已知射线OA ⊥射线OB , 射线OA 表示北偏西25°的方向,则射线OB 表示的方向为( )A .北偏东65°B .北偏东55°C .北偏东75°D .东偏北75°9.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头10.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°11.下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A .B .C .D .12.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点 13.某商品在进价的基础上提价70元后出售,之后打七五折促销,获利30元,则商品进价为( )元.A .90B .100C .110D .12014.下列四个图中的1∠也可以用AOB ∠,O ∠表示的是( ) A . B .C .D .15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.18.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.19.已知1x =是方程253ax a -=+的解,则a =__.20.一个数的绝对值是2,则这个数是_____.21.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.22.在同一平面内,150,110AOB BOC ∠=︒∠=︒,则AOC ∠的度数为_____________.23.若132=∠,则1∠的余角为__________.24.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个 25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<< ()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC 也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).27.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________; (2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.28.如图,线段 AB 的中点为 M ,C 点将线段 MB 分成 MC :CB=1:3 的两段,若AC=10,求AB 的长.29.已知:如图,点P 是数轴上表示-2与-1两数的点为端点的线段的中点.(1)数轴上点P 表示的数为 ;(2)在数轴上距离点P 为2.5个单位长度的点表示的数为 ;(3)如图,若点P 是线段AB (点A 在点B 的左侧)的中点,且点A 表示的数为m ,那么点B 表示的数是 .(用含m 的代数式表示)30.如图,点O 是直线AB 上的一点,将一直角三角板如图摆放,过点O 作射线OE 平分BOC ∠.(1)如图1,如果40AOC ∠=︒,依题意补全图形,求DOE ∠度数;(2)当直角三角板绕点O 顺时针旋转一定的角度得到图2,使得直角边OC 在直线AB 的上方,若AOC α∠=,其他条件不变,请你直接用含α的代数式表示DOE ∠的度数为 ;(3)当直角三角板绕点O 继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现DOE ∠与AOC ∠(0180,0AOC DOE ≤∠≤≤∠°°°)≤180°之间有怎样的数量关系?请直接写出你的发现: .31.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.32.有以下运算程序,如图所示:比如,输入数对(2,1),输出W =2.(1)若输入数对(1,﹣2),则输出W = ;(2)分别输入数对(m ,﹣n )和(﹣n ,m ),输出的结果分别是W 1,W 2,试比较W 1,W 2的大小,并说明理由;(3)设a =|x ﹣2|,b =|x ﹣3|,若输入数对(a ,b )之后,输出W =26,求a +b 的值.33.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
2020年江苏省七年级上学期数学期末检测试卷(附答案)

江苏省七年级上学期数学期末检测试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上)1.下列各数是无理数的是 【 】 A .-2 B .227C .0.010010001D . π 2.下列四个数中,在-2到0之间的数是 【 】 A .-1 B . 1 C .-3 D . 33.下面四个立体图形,从正面、左面、上面观察都不可能...看到长方形的是 【 】4.下列计算正确的是 【 】 A .3a +4b =7ab B .7a -3a =4 C .3a +a =3a 2 D .3a 2b -4a 2b =-a 2b5.如图,直线AB 、CD 被直线EF 所截,AB ∥CD ,∠1=105°,则∠2等于 【 】 A . 65°B . 70°C . 75°D .80°6.下列说法正确的有 【 】(1)两条直线相交,有且只有一个交点;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直; (3)过一点有且只有一条直线与已知直线平行;(4)若两条直线相交所成直角,则这两条直线互相垂直.A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相.应位置...上) 7.十八大报告指出:在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国 际社会广泛赞誉.将1 460 000 000用科学记数法表示为 .8.绝对值大于23且不大于3的所有负整数的和为: . 9.若∠α的补角为76°28′,则∠α= .10.如果代数式x 2-3x 的值为3,那么代数式-2x 2+6x +6的值是 .11.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元, 则这款服装每件的标价比进价多 元.12.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=140o,则 ∠EOD=___________度.13.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为 度.14.用边长为1的正方形,做了一套七巧板,拼成如图①所示的图形,则图②中阴影部分 的面积为 .15.已知0121232=⎪⎭⎫⎝⎛++-n m ,则2m-n = ___________.16.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把 这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始, 沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种 走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长, 即从3→ 4→5→1为第一次“移位”,这时他到达编号为1的点,然后 从1→2为第二次“移位”.若小明从编号为4的点开始,第2015次“移 位”后,他到达编号为 的点. 三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证......明过程或演算步骤.........) 17.(本题8分)计算:⑴ 18(14)(18)13-+---- ⑵()4211(1)33(3)2---÷⨯--18.(本题8分)解下列方程:⑴5(2)1x x --=; ⑵ 1615312=--+x x .第16题图5432119.(本题6分)已知A=3x 2+3y 2-5xy ,B=2xy-3y 2+4x 2, 求:⑴2A-B ; ⑵当x=3,y=31时,2A-B 的值.20.(本题6分)粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?21.(本题满分8分)利用直尺..画图: ⑴利用图1中的网格,过P 点画直线AB 的平行线和垂线.⑵把图⑵网格中的三条线段通过平移使三条线段AB 、CD 、EF 首尾顺次相接组成一个三角形. ⑶ 如果每个方格的边长是单位1,那么图⑵中组成的三角形的面积等于 .22.(本题满分6分)已知:关于x 的方程332-=-bx x a 的解是x=2,其中0≠a 且0≠b , 求代数式abb a -的值. .23.(本题满分6分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z 的值.24.(本题满分9分)如下图, AD ∥EF, ∠1+∠2=180o ,⑴求证:DG ∥AB,在下列橫线上填写; 证明:∵AD ∥EF(已知)∴ ( )又∵∠1+∠2=180o (已知),∴ ( )∴DG ∥AB ( )⑵若DG 是∠ADC 的角平分线,∠1=30o ,求∠B 的度数.25.(本题满分11分)如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm, 点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向 点O 匀速运动(点Q 运动到点O 时停止运动),两点同时出发.⑴当P 在线段AB 上且PA=2PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;⑵若点Q 运动速度为3cm/秒,经过多长时间P 、Q 两点相距70cm ? ⑶当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求EFAPOB 的值.参考答案22.解:∵关于x的方程与323a x bx--=的解是x=2,∴22323a b--=………………………2分∴3a=4b.………………………4分∵a≠0且b≠0,∴43437,,343412a b a bb a b a==∴-=-=…………………………6分23.解:由于正方体的平面展开图共有六个面,其中面“z”与面“3”相对,面“y”与面“-2”相对,面“x”与面“10”相对,则z+3=5,y+(-2)=5,x+10=5,…………………………3分解得z=2,y=7,x=-5.故x+y+z=4. …………………………6分。
2020年江苏省数学七年级上学期期末模拟试卷(附答案)

江苏省数学七年级上学期期末模拟试卷(满分:150分测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入答题纸中表格相应的空格内)1.下列各数是无理数的是( ▲)A.-2 B.227C.0.010010001 D.π2.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高( ▲)A.-3℃B. 7℃C. 3℃D.-7℃3.下列运算中,正确的是( ▲)A.bababa2222=+- B.22=-aaC.422523aaa=+ D.abba22=+4.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( ▲)A. B. C. D.5.把方程20.3120.30.7x x+--=的分母化为整数,结果应为(▲)A.231237x x+--= B.10203102037x x+--=C.1020310237x x+--= D.2312037x x+--=6.如图,AD⊥BC,ED⊥AB,表示点D到直线AB距离的是(▲)A.线段AD的长度B.线段AE的长度C.线段BE的长度D.线段DE的长度7.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短。
正确的有( ▲)A.1个 B.2个 C.3个 D.4个8.如图,由白色小正方形和黑色小正方形组成的图形.则第6个图形中白色小正方形和黑色小正方形的个数总和等于( ▲)A.60B.58ABED CC.45D.40二、填空题(每题3分,计30分,请把你的正确答案填入答题纸中相应的横线上)9.据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数 法表示应是 吨. 10.单项式34a b π-的次数是 次.11.如果A 2618'∠=︒,那么A ∠的余角为 °(结果化成度).12.已知3x y -=,则()()12+-+-x y y x 的值为___________ .13.用边长为1的正方形,做了一套七巧板,拼成如图(1)所示的图形,则图②中阴影部 分的面积为 .14.取一张长方形纸片,按图(2)中所示的方法折叠一角,得到折痕EF ,如果∠DFE =36°, 则∠DF A = °.15.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%; 乙超市连续两次降价15%;丙超市一次降价30%。
江苏省2020学年七年级数学上学期期末试卷(含解析)

七年级数学上学期期末试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线 D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x 的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线 D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x 的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a <3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是 4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.。
【苏科版】数学七年级上册《期末考试卷》(含答案)

2020-2021学年度第一学期期末测试苏科版七年级数学试题一、选择题1. ﹣3的相反数是( ) A. 13- B. 13 C. 3- D. 32.下列计算正确的是( )A. 325a b ab +=B. 532y y -=C. 277a a a +=D. 22232x y yx x y -= 3.下列各数:3.14,﹣2,0.131131113,0,﹣π,17,0.6 ,其中无理数有( ) A. 1个 B. 2个 C. 3个 D. 4个4.已知1x =-是方程25x x m -=+的解,则m 的值是( )A. ﹣4B. ﹣6C. ﹣7D. ﹣8 5.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A. 0a b +<B. ||||a b >C. 0a b -<D. 0ab > 6.下列说法错误的是( )A. 对顶角相等B. 两点之间所有连线中,线段最短C. 等角的补角相等D. 过任意一点P ,都能画一条直线与已知直线平行 7.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( )A . 0.8x +28=(1+50%)x B. 0.8x ﹣28=(1+50%)x C. x +28=0.8×(1+50%)x D.x ﹣28=0.8×(1+50%)x 8.如图,将长方形ABCD 沿线段OG 折叠到OB'C'G 位置,∠OGC'等于100°,则∠DGC'的度数为( )A. 20°B. 25°C. 30°D. 40°9.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A . 富B. 强C. 文D. 民 10.如图,电子蚂蚁P 、Q 在边长为1个单位长度的正方形ABCD 的边上运动,电子蚂蚁P 从点A 出发,以32个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q 从点A 出发,以12个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在( )A. 点AB. 点BC. 点CD. 点D二、填空题.11.单项式﹣x 3y 的系数是_____.12.若代数式2a m b 4与-5a 2b n+1是同类项,则mn =__________.13.若∠α=54°12',则∠α的补角是_____________.14.据报道,2018年我市城镇非私营单位就业人员年平均工资超过70500元,将数70500用科学计数法表示为_________________.15.若a 2﹣3b =4,则1﹣2a 2+6b =____.16.如图,数轴上点A 表示的数为a ,化简:|a ﹣3|﹣2|a +1|=________.(用含a 的代数式表示)17.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.18.如图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.三、解答题.19.计算:(1)152()(24)463-+⨯-(2)()220192412125-+-÷+-20.解方程:(1)()324x x-=-(2)132123x x+--=21.先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.22.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A、B、C 都在格点上.(1)按下列要求画图:过点B和一格点D画AC的平行线BD,过点C和一格点E画BC的垂线CE,并在图中标出格点D和E;(2)求三角形ABC的面积.23.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.24.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.25.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.(1)求购进甲、乙两种款式的服装每件的价格各是多少元?(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.26.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM 为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?答案与解析一、选择题1. ﹣3的相反数是( ) A. 13- B. 13 C. 3- D. 3 【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 【详解】根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】本题考查相反数,题目简单,熟记定义是关键.2.下列计算正确的是( )A. 325a b ab +=B. 532y y -=C. 277a a a +=D. 22232x y yx x y -= 【答案】D【解析】【分析】根据合并同类项的法则进行运算依次判断. 【详解】解:A.两项不是同类项不能合并,错误; B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键. 3.下列各数:3.14,﹣2,0.131131113,0,﹣π,17,0.6 ,其中无理数有( ) A. 1个B. 2个C. 3个D. 4个【答案】A【解析】无理数有:-π.故选A.点睛:无线不循环小数无理数.4.已知1x =-是方程25x x m -=+的解,则m 的值是( )A. ﹣4B. ﹣6C. ﹣7D. ﹣8【答案】B【解析】【分析】根据一元一次方程的解的定义即可求出答案.【详解】将x =﹣1代入2x ﹣5=x +m ,∴﹣2﹣5=﹣1+m ,∴m =﹣6.故选B .【点睛】本题考查了一元一次方程的解,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.5.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A. 0a b +<B. ||||a b >C. 0a b -<D. 0ab > 【答案】C【解析】【分析】根据a ,b 两数在数轴的位置依次判断所给选项的正误即可.【详解】观察数轴可知:﹣1<a <0,b >1.A .a +b >0,故A 不符合题意;B .|a |<|b |,故B 不符合题意;C .a ﹣b <0,故C 符合题意;D .ab <0,故D 不符合题意.故选C .【点睛】本题考查了有理数的乘法和减法以及数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.6.下列说法错误的是( )A. 对顶角相等B. 两点之间所有连线中,线段最短C. 等角的补角相等D. 过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A.根据对顶角的性质判定即可;B.根据线段的性质判定即可;C.根据补角的性质判定即可;D.根据平行公理判定即可.【详解】A.对顶角相等,故选项正确;B.两点之间连线中,线段最短,故选项正确;C.等角的补角相等,故选项正确;D.过直线外一点P,能画一条直线与已知直线平行,故选项错误.故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题.7.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A. 0.8x+28=(1+50%)xB. 0.8x﹣28=(1+50%)xC. x+28=0.8×(1+50%)xD. x﹣28=0.8×(1+50%)x 【答案】C【解析】【分析】设成本是x元,根据利润=售价-进价,即可得出答案.【详解】设成本x元,可列方程为:x+28=0.8×(1+50%)x.故选C.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出售价是解题的关键.8.如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()A. 20°B. 25°C. 30°D. 40°【答案】A【解析】【分析】根据折叠得出∠OGC=∠OGC′=100°,求出∠OGD,即可求出答案.【详解】∵将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,∴∠OGC=∠OGC′=100°,∴∠OGD=180°﹣∠OGC=80°,∴∠DGC'=∠OGC′﹣∠OGD=20°.故选A.【点睛】本题考查了平行线的性质和折叠的性质,能根据折叠得出∠OGC=∠OGC′=100°是解答此题的关键.9.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A. 富B. 强C. 文D. 民【答案】A【解析】试题解析:由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选A.10.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以3 2个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以12个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】根据题意可以得到前几次相遇的地点,从而发现规律,求出第2018次相遇的地点,本题得以解决.【详解】由题意可得:两只蚂蚁第一次相遇时,4÷(3122+)=2(秒),此时在点B,则两只蚂蚁第二次相遇在点C,第三次相遇在点D,第四次相遇在点A.∵2018÷4=504…2,∴它们第2018次相遇在点C.故选C.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,发现其中规律,找出第2018次相遇的地点.二、填空题.11.单项式﹣x3y的系数是_____.【答案】1-【解析】【分析】单项式中的数字因数叫做单项式的系数,由此解答即可.【详解】单项式﹣x3y的系数是﹣1.故答案为﹣1.【点睛】本题考查了单项式的定义,熟练掌握单项式的概念是解题的关键.12.若代数式2a m b4与-5a2b n+1是同类项,则mn=__________.【答案】6【解析】【分析】根据同类项的概念即可求出答案.【详解】由题意可知:m=2,4=n+1,解得:m=2,n=3,∴mn=2×3=6.故答案为6.【点睛】本题考查了同类项的概念,涉及有理数的运算,属于基础题型.13.若∠α=54°12',则∠α的补角是_____________.【答案】012548'【解析】【分析】根据补角的定义,直接求解即可.【详解】这个角的补角是:180°﹣54°12′=125°48′. 故答案为125°48′.【点睛】本题考查了补角的定义,正确进行角度的计算是关键.14.据报道,2018年我市城镇非私营单位就业人员年平均工资超过70500元,将数70500用科学计数法表示为_________________.【答案】47.0510⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将数70500用科学记数法表示为7.05×104. 故答案为7.05×104. 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.若a 2﹣3b =4,则1﹣2a 2+6b =____.【答案】7-【解析】【分析】把a 2﹣3b 看作一个整体并代入所求代数式进行计算即可得解.【详解】∵a 2﹣3b =4,∴1﹣2a 2+6b =1﹣2(a 2﹣3b )=1﹣2×4=1﹣8=﹣7. 故答案为﹣7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.16.如图,数轴上点A表示的数为a,化简:|a﹣3|﹣2|a+1|=________.(用含a的代数式表示)【答案】1DHk=-【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:0<a<3,∴a﹣3<0,a+1>0,则原式=3﹣a﹣2a﹣2=﹣3a+1.故答案为﹣3a+1.【点睛】本题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解答本题的关键.17.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为_______.【答案】29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去)∴满足条件所有x的值是29或6.18.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D,给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA =90°,∠ADC =∠BDC =∠ACF =90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC ⊥BF ,∴∠BCA =90°,∴∠ACD +∠1=90°,∴∠1是∠ACD 的余角,故①正确; ∵CD ⊥BE ,∴∠ADC =∠CDB =90°,∴∠B +∠BCD =90°,∠ACD +∠DAC =90°.∵∠BCA =90°,∴∠B +∠BAC =90°,∠1+∠ACD =90°,∴图中互余的角共有4对,故②错误; ∵∠1+∠DCF =180°,∴∠1的补角是∠DCF .∵∠1+∠DCA =90°,∠DAC +∠DCA =90°,∴∠1=∠DAC .∵∠DAC +∠CAE =180°,∴∠1+∠CAE =180°,∴∠1的补角有∠CAE ,故③说法错误;∵∠ACB =90°,∠ACF =90°,∠ADC =∠BDC =90°,∴∠BDC ,∠ACB ,∠ACF 和∠ADC 互补,故④说法正确.正确的是①④.故答案为①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.三、解答题.19.计算:(1)152()(24)463-+⨯- (2)()220192412125-+-÷+- 【答案】(1)-2;(2)7【解析】【分析】(1)根据乘法分配律计算即可;(2)根据有理数混合运算法则计算即可.【详解】(1)原式620162=-+-=-;(2)原式1537=-++=.【点睛】本题考查了有理数的混合运算.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20.解方程:(1)()324x x -=-(2)132123x x +--= 【答案】(1)x=1;(2)x=13 【解析】【分析】(1)先去括号,再移项,合并同类项,把x 的系数化为1即可;(2)先去分母,再去括号,移项,再合并同类项,把x 的系数化为1即可.【详解】(1)去括号得:634x x -=-移项、合并同类项得:22x -=-系数化为1得:1x =;(2)去分母得:()()316232x x +-=-去括号得:3x +3-6=6x -4合并同类项得:31x -=-系数化为1得:13x =. 【点睛】本题考查了解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解答此题的关键.21.先化简,后求值:(3a 2﹣4ab )﹣2(a 2+2ab ),其中a ,b 满足|a+1|+(2﹣b )2=0.【答案】a 2-8ab ;17【解析】【分析】先去括号,然后合并同类项,根据非负数的性质求出a 、b 的值,最后代入数值进行计算即可.【详解】原式=3a 2-4ab-2a 2-4ab=a 2-8ab , 由()2120a b ++-=,可得a+1=0,2-b=0,所以a=-1,b=2,当a=-1,b=2时,原式=(-1)2-8×(-1)×2=17. 22.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A 、B 、C 都在格点上. (1)按下列要求画图:过点B 和一格点D 画AC 的平行线BD ,过点C 和一格点E 画BC 的垂线CE ,并在图中标出格点D 和E ;(2)求三角形ABC 的面积.【答案】(1)见解析;(2)5.【解析】【分析】(1)根据要求画出线段BD ,线段CE 即可;(2)利用分割法求出△ABC 的面积即可;【详解】解:(1)如图,点D ,点E 即为所求;(2)S △ABC =3×4-12×1×3-12×1×3-12×2×4=5. 【点睛】本题考查作图﹣应用与设计,平行线的判定和性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.【答案】(1)作图见解析;(2)作图见解析.【解析】【分析】(1)由题意得:左视图有两列,小正方形的个数分别是3、1;俯视图有两排,上面一排有4个小正方形,下面一排有2个小正方形;(2)根据题意可得此正方体应该添加在前排第2个小正方体上,进而得到左视图.【详解】解:(1)如图所示:;(2)添加后可得如图所示的几何体:,左视图分别是:【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.24.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.【答案】(1) 30°;(2) OB是∠DOF的平分线,理由见解析【解析】【分析】(1)设∠AOE=2x,根据对顶角相等求出∠AOC的度数,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠BOF的度数即可.【详解】(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x.∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线.理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°.∵OF平分∠BOE,∴∠BOF=75°.∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠DOF的角平分线.【点睛】本题考查了对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.25.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.(1)求购进甲、乙两种款式的服装每件的价格各是多少元?(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.【答案】(1)购进乙种款式的服装每件的价格是80元,甲种款式的服装每件的价格是90元;(2)这批服装全部售完获得的利润是2520元.【解析】(1)设购进乙种款式的服装每件的价格是x元,则购进甲种款式的服装每件的价格是(x+10)元,由题意得等量关系:购买30件甲款服装的费用=购买35件乙款服装的费用-100元,根据等量关系列出方程,再解即可;(2)设购进甲款服装a件数,由题意得等量关系:购进乙款服装的件数+甲款服装件数=80,根据等量关系列出方程,求出a的值,可得甲乙两种服装的件数,然后分别计算出两种服装的总利润可得答案.解:(1)设购进乙种款式的服装每件的价格是x元,由题意得:30(x+10)=35x﹣100,解得:x=80,则x+10=90,答:购进乙种款式的服装每件的价格是80元,购进,甲种款式的服装每件的价格是90元;(2)设购进甲款服装a件数,由题意得:a+3a=80,解得:a=20,3a=3×20=60,(20+40)×120+20×120×0.8﹣20×90﹣60×80=2520(元),答:这批服装全部售完获得的利润是2520元.26.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM 为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?【答案】(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=12AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.。
2020年苏科教版七年级上学期期末数学试卷(附答案)

苏科教版七年级上学期期末数学试卷考试时间:90分钟 本卷满分:120分 考试形式:闭卷一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个正确答案,请把你认为正确的答案的代号填在答题纸相应的位置上).1.3-的相反数是 ( ) A .3B .3-C .13-D .132.下列变形正确的是 ( ) A.若-2x=5,那么x=5+2 B.若3x+2=7,那么3x=7-2 C.若3-2(x-1)=6 ,则3-2x+1=6 D.若43=-x ,那么x=-43 3.下列图形中,线段PQ 的长表示点P 到直线MN 的距离是 ( )A. B. C. D.4.如图是一无盖正方体盒子,下列展开图不能叠合成无盖正方体的是 ( )5.如图,下列条件中,不能判断直线a ∥b 的是 ( ) A .∠1=∠3 B. ∠2=∠3 C. ∠4=∠5 D. ∠2+∠4=180º(第5题图) (第6题图) (第7题图)6.如图,小明把一个三角尺的直角顶点放在黑板上的两条平行线a b 、中的直线b 上,已知 ∠1=55°,则∠2的度数为 ( ) A. 35° B. 45° C. 55° D.125°7.已知a 、b 两数在数轴上的位置如图所示,则化简12++--+b a b a 的结果是( ) A. 1 B. -1 C.23a - D. 23b + 8.某商场为促销,按如下规定对顾客实行优惠:①若一次购物不超过200元,则不予优惠;②若一次购物超过200元,但不超过500元,按标价给予九折优惠;③若一次购物超过500元,其中500元按第②条规定给予优惠,超过500元部分给予八折优惠.某人两次去购物,分别付款168元与423元,如果他把这两次购买的商品一次购买,则应付多少? ( )A. 472.8 元B. 510.4元C. 522.8元D. 560.4 元二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在答题纸的相应位置).9. 将一根细木条固定在墙上,只需2个钉子,它的依据是 . 10.已知1=x 是方程72=+m x 的解,则m = . 11.已知∠α=40°26′,则∠α的余角的度数为 .12.如图,如果OA 的方向是北偏东60°,那么OA 的反向延长线OB 的方向是 .(第12题图) (第14题图)13.若单项式2x 2y m与单项式-13x n y 3是同类项,则nm 的值是 . 14.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC =35°,则∠AOD = °. 15.若0322=-+x x ,则2365x x +-的值是 .16.若关于a 、b 的多项式22223(2)(2)a ab b a mab b ---++中不含有ab 项,则m = . 17.已知线段AB=10cm ,直线AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则AM= cm.18. 定义:a 是不为1的有理数,我们把11a -称为a 的衍生..数..如:2的衍生数是1112=--,1-的衍生数是111(1)2=--.已知113a =-,2a 是1a 的衍生数,3a 是2a 的衍生数,4a 是3a 的衍生数,……,依此类推,则=2014a .三、解答题(本大题共8小题,计66分.解答时应写出文字说明、证明过程或演算步骤).19.(本题6分)(1)计算:)1(4)2(33+-÷-+-; (2)解方程:)1(36)122+=+-x x (.20.(本题6分)先化简,再求值:)3()3(52222b a ab ab b a +--,其中2,1=-=b a .21.(本题6分)如右图,是由5个大小相同的小正方体组合成的简单几何体.请在下面方格纸中画出它的三个视图.主视图 左视图 俯视图22.(本题8分) m 为何值时,代数式3252+-m m 的值比代数式27m-的值大5?23.(本题8分)如图,已知直线 AB 与CD 相交于点O ,OE 、OF 分别是∠BOD 、∠AOD 的 平分线.(1)∠DOE 的补角有 ; (2)若∠BOD =42°,求∠AOE 和∠DOF 的度数; (3)判断OE 与OF 之间有怎样的位置关系?并说明理由.24.(本题8分)如图, ∠1 =60°,∠2 =120°, (1)判断BD 与CE 的位置关系,并说明理由;(2)若∠C =∠D ,试探索∠A 与∠F 的数量关系,并说明理由.25.(本题12分)某工程队承包了一段全长1755米的过江隧道施工任务,,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?26. (本题12分)问题引入:小明坐在第2排第3列,可以用两个有顺序的数字表示为:(2,3).小亮坐在第3排第4列,可以用两个有顺序的数字表示为:(3,4).若小丽坐在第a排第b列,可以用两个有顺序的数字表示为: .由此可知,用两个有顺序的数字可以表示平面内一个点的位置.数学模型:如图,有两条互相垂直且有公共原点的数轴,水平方向的数轴叫做x轴,竖直方向的数轴叫做y轴,则这两条数轴构成了平面直角坐标系.探究发现:如图,有一点D,过D点向x轴作垂线,垂足表示的数为3,过D向y轴作垂线,垂足表示的数为1,则点D用两个有顺序的数字表示为:(3,1).同理,点A可表示为:(-2,2).①点B可表示为: .②点E到y轴的距离为: .③若点P到x轴的距离为2,到y轴的距离为3,则点P用有顺序..的数字表示为: .④若有一点Q,过点Q分别向x轴和y轴作垂线段,两条垂线段与x轴、y轴围成的长方形的面积为4,Q点可以用两个有顺序的整数..表示,这样的Q 点有___________个.附加题:(本题10分)丰富的图形世界里有奇妙的数量关系,让我们通过下面这些几何体开始神奇的探索之旅. 观察:下面这些几何体都是简单几何体,请你仔细观察.统计:每个几何体都会有棱(棱数为E )、面(面数为F )、顶点(顶点数为V ),现将有关数据统计,完成下表.发现:(1)简单几何中,V F E +=- ; (2)简单几何中,每条棱都是 个面的公共边;(3)在正方体中,每个顶点处有 条棱,每条棱都有 个顶点,所以有2E ⨯=3V ⨯. 应用:有一个叫“正十二面体”的简单几何体,它有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.请问它有 条棱, 个顶点,每个顶点处有 条棱.几何体 a b c d e 棱数(E ) 6 9 15 面数(F ) 4 5 5 6 顶点数(V )458答案一、选择题(本大题共8小题,每小题3分,共24分.).二、填空题(本大题共10小题,每小题3分,共30分.).9.两点确定一条直线; 10. 3; 11.49°34′; 12.南偏西60°;13. 9; 14.145 ;15. 4; 16.-6; 17. 2或8 ;18. 31-. 三、解答题(本大题共8小题,计66分.). 19.(本题6分)(1)0 (3分) ;(2)x=-1(3分) 20.(本题6分) 22612ab b a - (4分);48(2分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西东50°D'E DCBA江苏省七年级数学上册期末试卷A 卷(100分)一、选择题(每小题3分,共30分)1.若规定向东走为正,则8-米表示( )A .向东走8米B .向西走8米C .向西走8-米D .向北走8米2.2009年7月22日,在我国中部长江流域发生了本世纪最为壮观的日食现象,据统计,观看本次日食的人数达到了2580000人,用科学记数法可将其表示为( )A .2.58×107人B .0.258×107人C .2.58×106人D .25.8×106人 3.下列调查中,适合采用普查的是( )A .对府南河水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对某类烟花爆竹燃放安全情况的调查D .对7年级某班50名同学体重情况的调查 4.下列计算正确的是( )A .235x y xy +=B .22532a a -= C.()()231---= D .()237732-÷⨯=- 5.将长方形纸片ABCD 沿AE 折叠,得到如图所示的图形,已知'70CED ∠=︒,则∠AED 的大小是( )A .60°B .50°C .75°D .55°6.如果关于x 的方程13210m x+=是一元一次方程,则m 的值为( )A .13B .1C .3D .不存在7.某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转90°,那么指针应该指向( )A .南偏东50°B .西偏北50°C .南偏东40°D .东南方向 8.代数式113a b a x y +--与23x y 是同类项,则a b -的值为( ) A .2 B .0 C .2-D .1910.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A .31128x x++= B .331128x x +-+= C .1128x x += D .31128x x -+= 二、填空题(每题4分,共20分)11.-2013的相反数是_________,绝对值是________. 12.代数式25ab π-的系数是__________;多项式21213y x y x -+-共有__________项 13.时钟上8点30分时,时针与分针所夹的角度是__________.A B C DOE DC BA俯视图左视图主视图图②图①人数学习态度层级C 级B 级60%A 级25%1205012010050C 级B 级A 级14.当x =_______时,代数式42x +与39x -的值互为相反数15.一件商品的进价为a 元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为______元.三、计算下列各题(16题,每小题6分,第17题6分,共18分) 16.(1)18.0)35()5(124---⨯-÷-; (2)解方程142312=+--x x .17.先化简,再求值:已知21202x y ⎛⎫++-= ⎪⎝⎭,求()()2232322x xy x y xy y ⎡⎤---++⎣⎦的值.四、解答题(18题6分,19题8分,共14分)18.如图,是由一些大小相同的小正方体组合成的简单几何体. (1)右图中有_____块小正方体;(2分)(2)该几何体的主视图如下图所示,请在下面方格纸中分别画出它的左视图和俯视图(请涂上阴影)(4分)19.初中生对待学习的态度一直是教育工作者关注的问题之一.为此成都市教育局对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了_______名学生;(2)将图①补充完整; (3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计成都市近80 000名初中生中大约有多少名学生学习态度达标?(达标包括A 级和B 级)五.解答题(每小题9分,共18分)20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOD ∶∠BOE=1∶4,求∠AOF 和∠COE 的度数.比赛项目 票价(元/场)321y x 3a2a0a b c 21.某公司为了丰富员工业余生活,准备购买了音乐比赛的门票,该门票开始接受预订.下表为官方票务网站公布的几种音乐的门票价格,公司准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订钢琴门票和小提琴门票,问他可以订钢琴门票和小提琴门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种门票,其中钢琴门票数与长笛门票数相同,且购买小提琴门票的费用比购买钢琴门票的费用少1000元,求他能预订三种门票各多少张?B 卷(50分)一、填空题(每小题4分,共20分)22.小米家的窗户由六个小正方形组成(阴影部分是窗帘)如图所示,窗户中能射进阳光的部分的面积是______________.22题 23题 24题23.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数互为相反数,则x =___________,y =___________.24.已知有理数a 、b 、c 在数轴上的位置如图所示,化简:2a b b c b a ++-+-=_______. 25.如图,将线段AB 延长至C ,使BC=2AB ,AB 的中点为D ,E 、F 是BC 上的点,且BE ∶EF ∶FC=1∶2∶5,已知AC=60cm ,则DF=___________cm .26.观察下列等式:1+3=4,1+3+5=9,1+3+5+7=16,…若1+3+5+…+()21n -=400,则n =__________. 二、解答题:(每小题6分,共12分) 27.求k 为何值时,关于x 的方程38764x k x +=+的解比关于x 的方程1123x x -+=的解大3.28.已知代数式22321A a ab b =++-,212B a ab a =-+-. (1)当2-==b a 时,求2A B -的值;(2)若2A B -的值与a 的取值无关,求b 的值.二、解答题:(本题8分)29.国家发改委宣布,我国将实行阶梯电价,作为试点的某市已执行的方案是:居民用电基本电价为每度0.50元,若每月用电超过120度,超过部分在基本电价基础上提价20%收费.(1)该市某用户11月份用电150,求该用户交电费多少元?(2)该市某用户12月用电a 度,请用含a 的代数式表示该用户12月份交多少电费? (3)若该用户10月份的电费平均为每度0.54元,求10月用电多少度?应交多少电费?三、解答题:(本题10分)30.已知∠AOB=150°,∠COE=75°,OF 平分∠AOE .(1)如图1,若∠COF=14°,则∠BOE=_________;若∠COF=n °,则∠BOE=_________,∠BOE 与∠COF钢琴 1000长笛 800 小提琴 500 CF E D B A的数量关系为____________;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,(1)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由;(3)在(2)的条件下,如图3,在∠BOE 的内部是否存在一条射线OD ,使得∠BOD 为直角,且∠DOF=3∠DOE ?若存在,请求出∠COF 的度数;若不存在,请说明理由.O O O 图3图2图1BDE FACBEFACBE FCA54321OEBDFA C答案A 卷一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCDCDCCADD二、填空题:(每小题4分,共20分)三、计算:16.(1)解原式2.0)35(251--⨯÷-= ……………………3分 215=-……………………6分 (2)解:()()4213212x x --+= ……………………3分 522x = ……………………5分225x =……………………6分四、18.①11块(2分)②略(两个图各2分)19.(每小题各2分,共8分)①200②略③()360160%25%54︒⨯--=︒④()8000025%60%68000⨯+= ∴有68000人学习达度达标。
20.解:∵∠3∶∠2=1∶4∴设∠3=x 度,∠2=4x 度 ∵EO 平分∠BOC∴∠1=∠2=4x 度∵∠1+∠2+∠3=180°20x =°∴∠1=∠2=80°,∠3=20° ……………………5分 ∵OF ⊥CD ∴∠4=90°∴∠5=180°-∠4-∠3=70° ……………………9分21.(1)解:设订钢琴门票x 张,则小提琴()10x -张 ……………………1分()1000500108000x x +-=……………………2分6x = ……………………3分 答:钢琴门票6张,小提琴4张刚好用完8000元。
………………4分 (2)设钢琴门票数a 张,长笛a 张,则小提琴()102a -张 ………………5分 ()50010210001000a a -+=……………………7分3a = ……………………8分 答:钢琴门票3张,长笛3张,小提琴4张。
……………………9分B 卷一、填空题:22.22162a a π-或262a π⎛⎫- ⎪⎝⎭23.―1,―3 24.2a c - 25.25 26.20二、27.解:1123x x-+= 解得3x =-……………………2分 ∴38764x k x +=+的解为0x =……………………2分 将0x =代入得30704k +=+ 解得328k =……………………2分 28.解:(1)A -2B=522ab b a +- ……………………2分 当2a b ==-时 原式=20 ……………………1分(2)A -2B=()522b a b -+∴25b =时A -2B 的取值与a 无关 ……………………3分 29.(1)78元……………………2分 (2)a ≤120时费用0.5a 元……………………1分 120a >时费用()0.612a -元……………………1分设10月用电x 度,∵0.54>0.5 ∴120x > ……………………1分 (3)用电200度 ……………………1分 交费108元 ……………………1分 30.(1)∠BOE=280° ……………………1分∠BOE=2n ° ……………………1分 ∠BOE=2∠COF ……………………1分(2)依然成立。