第6章其它荷载与作用分析
土木工程毕业设计 第六章 竖向荷载(恒载 活载)作用下框架内力计算讲解

第六章竖向荷载(恒载+活载)作用下框架内力计算第一节框架在恒载作用下的内力计算本设计用分层法计算内力,具体步骤如下:①计算各杆件的固端弯矩②计算各节点弯矩分配系数③弯矩分配④调幅并绘弯矩图⑤计算跨中最大弯矩、剪力和轴力并绘图一、恒载作用下固端弯矩计算(一)恒载作用下固端弯矩恒载作用下固端弯矩计算(单位:KN·m) 表6.1弯矩图恒载作用下梁固端弯矩计算统计表6.2(二)计算各节点弯矩分配系数用分层法计算竖向荷载,假定结构无侧移,计算时采用力矩分配法,其计算要点是:①计算各层梁上竖向荷载值和梁的固端弯矩。
②将框架分层,各层梁跨度及柱高与原结构相同,柱端假定为固端。
③计算梁、柱线刚度。
对于柱,假定分层后中间各层柱柱端固定与实际不符,因而,除底层外,上层柱各层线刚度均乘以0.9修正。
有现浇楼面的梁,宜考虑楼板的作用。
每侧可取板厚的6倍作为楼板的有效作用宽度。
设计中,可近似按下式计算梁的截面惯性矩:一边有楼板:I=1.5Ir两边有楼板:I=2.0Ir④计算和确定梁、柱弯矩分配系数和传递系数。
按修正后的刚度计算各结点周围杆件的杆端分配系数。
所有上层柱的传递系数取1/3,底层柱的传递系数取1/2。
⑤按力矩分配法计算单层梁、柱弯矩。
⑥将分层计算得到的、但属于同一层柱的柱端弯矩叠加得到柱的弯矩。
(1)计算梁、柱相对线刚度图6.1 修正后梁柱相对线刚度(2)计算弯矩分配系数结构三层=5.37÷(5.37+1.18)=0.820①梁μB3C3μ=5.37÷(5.37+3.52+1.18)=0.533C3B3=3.52÷(5.37+3.52+1.18)=0.350μC3D3=3.52÷(3.52+1.18)=0.749μD3C3=1.18÷(5.37+1.18)=0.180②柱μB3B2=1.18÷(5.37+3.52+1.18)=0.117μC3C2=1.18÷(3.52+1.18)=0.251μD3D2结构二层①梁μ=5.37÷(1.18+1.18+5.37)=0.695B2C2=5.37÷(1.18+1.18+5.37+3.52)=0.477μC2B2μ=3.52÷(1.18+1.18+5.37+3.52)=0.313 C2D2=3.52÷(1.18+1.18+3.52)=0.5986 μD2C2=1.18÷(1.18+1.18+5.37)=0.1525②柱μB2B3μ=1.18÷(1.18+1.18+5.37)=0.1525B2B1=1.18÷(1.18+1.18+5.37+3.52)=0.105 μC2C3μ=1.18÷(1.18+1.18+5.37+3.52)=0.105 C2C1=1.18÷(1.18+1.18+3.52)=0.2007 μD2D3μ=1.18÷(1.18+1.18+3.52)=0.2007D2D1结构一层=5.37÷(1.18+1+5.37)=0.711①梁μB1C1=5.37÷(1.18+1+5.37+3.52)=0.485 μC1B1=3.52÷(1.18+1+5.37+3.52)=0.318 μC1D1=3.52÷(1.18+1+3.52)=0.618μD1C1=1.18÷(1.18+1+5.37)=0.156②柱μB1B2=1÷(1.18+1+5.37)=0.133μB1B0=1.18÷(1.18+1+5.37+3.52)=0.107μC1C2=1÷(1.18+1+5.37+3.52)=0.090μC1C0μ=1.18÷(1.18+1+3.52)=0.207D1D2μ=1÷(1.18+1+3.52)=0.175D1D0(三)分层法算恒载作用下弯矩恒载作用下结构三层弯矩分配表6.3B C D上柱偏心弯矩分配系数0固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配14.650 -13.883 226.915 20.861 -251.346 84.509 -112.810 二次分配14.512 -14.512 228.818 21.278 -250.096 105.707 -105.707恒载作用下结构二层弯矩分配表6.40.768 12.717 -28.301↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配 6.931 4.431 -4.607 308.811 46.295 47.232 -385.113 169.804 -113.072 -92.837二次分配 5.901 3.401 -9.302 300.595 44.486 45.423 -390.504 191.416 -105.826 -85.591恒载作用下结构一层弯矩分配表6.52.127 9.081 -7.935↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次二次7.030 5.338 -12.368 267.469 35.352 22.097 -324.919 357.349 -46.247 -15.172 -295.930图6.2 弯矩再分配后恒载作用下弯矩图(KN·m)(四)框架梁弯矩塑性调幅为了减少钢筋混凝土框架梁支座处的配筋数量,在竖向荷载作用下可以考虑竖向内力重分布,主要是降低支座负弯矩,以减小支座处的配筋,跨中则应相应增大弯矩。
第六章行车荷载

4、路面的结构层次与材料要求
路基垫层:垫层介于基层和土基之间,它可改善土基的湿度和温度
状况、使面层与基层免受土基水温状况变化的不良影响或保护土基
处于稳定状态;同时,也可扩散基层传递的荷载应力,减小土基的 应力与变形,并可阻止路基土挤入基层。一般垫层修于特定状况道
路工程结构中,如防砂土基础挤入基层、软土地基扩散应力、冻土
材料:水泥混凝土、沥青混凝土、沥青碎石、泥灰结石、块料等材料。
4、路面的结构层次与材料要求
基层:主要承受由面层传来的车辆荷载垂直力并将其扩散到下面的
垫层及土基,是路面结构的主要承重层(对于沥青路面)或重要功
能层(对于水泥砼路面)。 特点:它应具有足够的强度与刚度,并应具有良好的扩散应力的能
力;基层受大气影响较面层小,但仍可能被面层渗入雨水浸湿或地
概述
1.路面材料的几种强度 2)抗剪强度shear strength 摩尔—库仑强度理论: c tan 其中c和φ是表征路面材料抗剪强度的两项参数,可以通过直剪试 验或三轴压缩试验测定。
三轴试验确定c,φ
概述
1.路面材料的几种强度 3)抗压强度compressive strength 指试样在无侧向压力条件下,抵抗轴向压力的极限应力。材料经 过标准成型和养生后通过无侧限抗压试验测定的强度。
3、轴载换算
轴载换算的基本原则: ①等破坏原则:同一种路面结构在不同轴载作用下在使用末期 达到相同的损伤程度(破坏状态); ②等厚度原则:用不同标准轴载设计的路面结构厚度相同。
轴载换算系数公式:
3、轴载换算
沥青路面轴载换算公式:
3、轴载换算
沥青路面轴载换算公式:
3、轴载换算
水泥混凝土路面轴载换算公式:Fra bibliotek2、车辆的种类与作用特点
土力学讲课第六章地基土承载力

例题分析
有一条形基础,宽度 b = 3m ,埋深 h = 1m ,地基土内摩擦角 j =30 °,黏聚力 c =20kPa ,天然重度 =18kN/m 3 。试求:
( a )地基临塑荷载; ( b )当极限平衡区最大深度达到 0.3 b 时的均布荷载数值。 解
:
( a )计算公式:
(b)临界荷载:
(1)原位测试
(1) 静载荷试验
fa=fak+b(b-3)+dm(d-0.5)
fak :静载荷试验确定的承载力-特征值(标准值) fa :深宽修正后的承载力特征值(设计值)
(2)承载力公式法:
fa=Mbb+Md md+Mcck fa :承载力特征值(设计值)
——相当与
p1/4=NB /2+Nq d+Ncc
时,有:
化简后,得到:
p
0.3b
=333.8kPa
总结上节课的内容 极限承载力理论界和半理论解 1 Prantl解 假设和滑裂面形状 2 太沙基解,一般解形式 3 极限承载力的影响因素 , c, ,D, B,
pu
B
2
N cNc qNq
B
p 实际地面 D I 45o-/2 III II E F
• 合力= 1, 3 • 设k0 =1.0 • 弹性区的合力:
图6.5 条形均布荷载作用下地基主应力
p D (a)无埋置深度 (b)有埋置深度 1,3 ( 0 sin 0 ) ( D z ) ( 1)
允许地基中有一定的塑性区,作为设计承载力
--考察地基中塑性区的发展
D
D
I区:朗肯主动区
垂直应力pu为大主应力,
第六章路面结构的力学分析

第六章路面结构的力学分析1.引言路面结构是指在路面上铺设的各种材料和层次,用来承受车辆荷载和环境荷载,并提供平稳、安全的行车路面。
路面结构的力学分析是研究路面结构在荷载作用下产生的应力和变形,以及结构的强度和稳定性。
2.车辆荷载车辆荷载是指行驶在路面上的车辆对路面产生的力和压力。
车辆荷载可包括静载荷和动载荷。
静载荷是指车辆停在路面上时对路面的作用力,动载荷是指车辆行驶时对路面的作用力。
车辆荷载可以通过车辆轴重、车辆类型、车速等参数来计算。
3.路面材料的特性路面材料的特性包括强度、刚度、抗裂性、耐久性等。
强度是指材料抵抗破坏的能力,刚度是指材料对应力的响应程度,抗裂性是指材料抵抗裂缝的能力,耐久性是指材料抵抗气候和环境影响的能力。
路面材料的选择应考虑车辆荷载、气候条件和交通流量等因素。
4.路面结构的力学模型路面结构的力学模型可分为弹性模型和塑性模型。
在弹性模型中,路面结构被假设为弹性体,能够在荷载作用下产生弹性变形,但不会导致结构破坏。
弹性模型的分析可通过有限元法等数值方法进行。
在塑性模型中,路面结构被假设为塑性体,能够在荷载作用下产生塑性变形,可能导致结构破坏。
塑性模型的分析可通过弹塑性理论和强度理论等方法进行。
5.路面结构的承载力路面结构的承载力是指其能够承受的最大荷载。
路面结构的承载力分析可通过确定路面结构的应力和变形,并比较其与材料的强度和变形能力。
当路面结构的应力超过材料的强度或变形超过材料的变形能力时,路面结构可能产生破坏。
6.路面结构的稳定性路面结构的稳定性是指其在荷载作用下保持平稳和不发生破坏的能力。
路面结构的稳定性分析可通过确定路面结构的变形和结构的弯曲、剪切和压实情况,以及土壤的支撑条件。
7.实例分析以城市道路的路面结构为例进行实例分析。
首先,通过调查和测量确定车辆荷载、路面材料和路面结构的参数。
然后,进行路面结构的力学分析,计算路面结构的应力和变形。
最后,比较计算结果与路面材料的强度和变形能力,评估路面结构的承载力和稳定性。
第六章-框架在竖向荷载作用下的内力分析

第六章框架在竖向荷载作用下的内力分析(采用弯矩二次分配法)6.1 计算方法和荷载传递路线1. 计算方法框架结构在竖向荷载作用下的内力计算采用力矩分配法,因为框架结构对称,荷载对称;又属于奇数跨,故在对称轴上梁的截面只有竖向位移(沿对称轴方向)没有转角。
对称截面可取为滑动端。
弯矩二次分配法是一种近似计算方法,即将各节点的不平衡弯矩同时作分配和传递,并以两次分配为限。
(取一榀横向框架)2. 荷载传递路线2700对于边跨板,为7.2 m×4.5m,由于7.2/4.5<3.0 所以按双向板计算对于中跨板,为 4.5m×2. 7m,由于 4.5/2.7 〈3.0 所以按双向板计算6.2 竖向荷载计算5.2.1 A-B(C-D) 轴间框架梁板传至梁上的三角形或梯形荷载等效为均布荷载。
1. 屋面板传载恒载: 5.0 ×4.5/2 ×(1-2 ×0.312+0.313) ×2=18.85kN/m活载:0.5 ×4.5/2 ×(1-2 ×0.312+0.313) ×2=1.89kN/m2. 楼面板传荷载恒载: 3.99 ×4.5/2 ×(1-2 × 0.31 2+0.31 3) ×2=15.08kN/m活载: 2.0 ×4.5/2 ×(1-2 ×0.312+0.313) ×2=7.56kN/m3. 梁自重: 5.46 kN/mA-B(C-D) 轴间框架梁均布荷载为:屋面梁:恒载=梁自重+板传荷载=5.46 kN/m+18.85 kN/m=24.31 kN/m 活载=板传荷载=1.89 kN/m楼面梁:恒载=梁自重+板传荷载=5.46 kN/m+15.08 kN/m=20.54 kN/m 活载=板传荷载=7.56 kN/m5.2.2 B-C 轴间框架梁1. 屋面板传载恒载: 5.0 ×2.4/2 ×5/8 ×2=8.44kN/m活载:0.5 ×2.7/2 ×5/8 ×2=0.84kN/m2. 楼面板传荷载恒载: 3.99 ×2.7/2 ×5/8 ×2=6.73kN/m活载: 2.0 ×2.7/2 ×5/8 ×2=4.22kN/m3. 梁自重: 3.9kN/mB-C 轴间框架梁均布荷载为:屋面梁:恒载=梁自重+板传荷载=3.9 kN/m+8.44kN/m=12.34kN/m 活载=板传荷载=0.84kN/m楼面梁:恒载=梁自重+板传荷载=3.9 kN/m+6.73kN/m=10.63kN/m 活载=板传荷载=4.22kN/m6.3 框架计算简图g=24.31KN/m g=12.34KN/m g=24.31KN/m(q=1.89KN/m)2700框架计算简图6.4. 梁固端弯矩梁端弯矩以绕杆端顺时针为正,反之为负。
第6章荷载统计分析

6.5.2 民用建筑楼面活荷载 楼面活荷载一般包括持久活荷载、临
时活荷载。 1.办公楼楼面持久活荷载 概率模型为:
经卡方分布检验, 他的分布不拒绝极值 I型分布,可以计算出 在基准期T内持久活荷载的统计参数。
2.临时性活荷载 他是调查测定,经卡 方统计检验,他服 从极值I型分布。可 以计算出他的统计 参数。 3. 办公楼楼面活荷载的统计参数 根据Turkstra 组合,可得其统计参数为:
对于出现的概率p<1的临时楼面活荷载、风 雪荷载,我国在T内最大荷载的概率分布函数:
FQT FQi (x) m......(6 5)
6.4 荷载组合和荷载效应组合的原则
1.荷载和荷载效应的关系
S = C × Q……(6-7)
2.荷载组合和荷载效应组合
(1)Tukstra组合:
该规则轮流以一个荷载效应在T内的最大值与 其余荷载的任意时点值组合,取所有组合中的 最大值,见式6-9和图6-2。
第6章 荷载统计分析
教学基本要求
1.了解荷载的统计方法、常用荷载的统计 分析;
2. 熟悉荷载的代表值、设计值。
6.1 荷载的概率模型
荷载是一个随机变量,对于常见的楼面活荷载、 风荷载、雪荷载等采用了平稳二项随机过程概 率模型。基本假定如下: • 设计基准期T可以分为r个相等的时段,在内 荷载不变。 • 在上荷载出现概率为p, 不出现的概率为q=1-p。 • 在上荷载幅值是非负随机变 量且概率分布函数FQi(x)相同.
Sc=max(Sc1+Sc2...+Scn)…(6-9)
(2)JCSS组合
该规则先假定可变荷载的样本函数为 平稳二项工程,将某一个可变荷载Q1 在基准期内[0,T]的最大值与另一个可 变荷载在时间1内的局部最大值效应 以及第三个可变荷载在时间1内的局 部最大值效应组合,以此类推。
第6章 交通荷载及路面设计参数

图6-6 轮迹横向分布频率曲线 (单向行驶一个车道)
如何表征轮迹横向 分布频率对路面结 构设计的影响?
图6-7 轮迹横向分布频率曲线 (混合行驶双车道)
6.2 交通数据调查
四、轮迹横向分布 轮迹横向分布系数η: 轮迹横向分布频率图中,取宽度为两个条带的频率之 和称为轮迹横向分布系数。
表6-9 水泥混凝土路面轮迹横向分布系数
4、汽车对道路的静态压力
1)汽车轮胎的内压力 货车轮胎的标准静内压力:一般在0.4~0.7MPa范围内。 通常轮胎与路面接触面上的压力p略小于内压力pi,约为
(0.8~0.9)pi。 车轮在行驶中,内压力会因轮胎充气温度升高而增加,因
此,滚动的车轮接触压力也有所增加,达到(0.9~1.1) pi.
轴载谱的应用:
轴载谱
交通调查某类车辆每日通行的轴载数,即可推算出所 有车辆各级轴载的作用次数。
6.2 交通数据调查
三、车型与轴载组成 水泥路面:
还需获得最重轴载和货车中占主要份额特重车型轴载。 沥青路面:
还需获得车型分布系数。
6.2 交通数据调查
三、车型与轴载组成 沥青路面:车型分布系数。
6.2 交通数据调查
胎唇钢丝 Bead Wire
6.1 交通荷载及其对路面的作用
4、汽车对道路的静态压力
双轮组车轴: 每一侧双轮用一个圆表示,
称为单圆荷载。 每一侧双轮用两个圆表示,
称为双圆荷载。
单圆当量 圆直径
D 8P
p
规范规定标准轴载BZZ-100。 则:P=100/4kN p=700kPa 得到:D=0.302m d=0.213m
6.2 交通数据调查
6.2 交通数据调查
一、调查方法
6-其他荷载与作用

第6章 其他荷载与作用 教学提示:本章介绍了由于温度变化、基础不均匀沉降或构件自身发生收缩或徐变在结构上引起的变形和内力,阐述了爆炸以及水的浮力对结构的影响,并给出了相应的计算公式;进一步探讨了各种动荷载:离心力、制动力的计算方法并对预应力的施加介绍了各种方法。
教学要求:学生应了解各种特殊荷载与作用产生的条件和对结构的影响,熟知各种荷载与作用的取值和计算方法。
6.1 温度作用6.1.1 温度作用的概念当结构物所处环境的温度发生变化,且结构或构件的热变形受到边界条件约束或相邻部分的制约,不能自由胀缩时,就会在结构或构件内形成一定的应力,这个应力被称为温度应力,即温度作用,指因温度变化引起的结构变形和附加力。
温度作用不仅取决于结构物环境的温度变化,它还与结构或构件受到的约束条件有关。
在土木工程中所遇到的许多因温度作用而引发的问题,从约束条件看大致可分为两类。
第一类,结构物的变形受到其他物体的阻碍或支承条件的制约,不能自由变形。
现浇钢筋混凝土框架结构的基础梁嵌固在两柱基之间,基础梁的伸缩变形受到柱基约束,没有任何变形余地(图6.1)。
排架结构支承于地基,当上部横梁因温度变化伸长时,横梁的变形使柱产生侧移,在柱中引起内力;柱子对横梁施加约束,在横梁中产生压力(图6.2)。
图6.1 基础梁嵌固于柱基之间图6.2 排架结构受到支承条件的约束第二类,构件内部各单元体之间相互制约,不能自由变形。
简支屋面梁在日照作用下屋面温度升高,而室内温度相对较低,简支梁沿梁高受到不均匀温差作用,产生翘曲变形,在梁中引起应力。
大体积混凝土梁结硬时,水化热使得中心温度较高,两侧温度偏低,内外温差不均衡在截面引起应力,产生裂缝。
6.1.2 温度应力的计算结构物受温度变化的影响应根据不同结构类型和约束条件进行分类而分别计算。
一类是静定结构在温度变化时能够自由变形,结构物无约束应力产生,故无内力。
但由于任何荷载与结构设计方法·122· ·122· 材料都具有热胀冷缩的性质,因此静定结构在满足其约束的条件下可自由地产生变形,这时应考虑结构的这种变形是否超过允许范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简支屋面梁温差引起的应力分布第6章其它荷载与作用分析大体积混凝土梁水化热引起的应力分布
第六章 其它荷载与作用 第一节 温度作用
二、温度应力计算
根据不同的结构形式和约束条件考虑 温度变化对结构内力和变形的影响。
静定结构: 由于温度变化引起的材料膨胀和收缩变形是自由的,故在结 构上不引起内力,其变形可由虚功原理计算。
第6章其它荷载与作用分析
第六章 其它荷载与作用 第二节 变形作用
变形作用
由于外界因素的影响(如结构或构件的支座移动或地基发生 不均匀沉降),或自身原因构件发生伸缩变形(如混凝土构 件发生徐变),使得结构物被迫发生变形和内力。
➢静定结构: 允许产生符合其约束条件的位移,结构内不会产生应力和应变
➢超静定结构: 多余约束限制结构自由变第形6章,其它荷从载与而作用产分析 生应力和应变
第六章 其它荷载与作用 第二节 变形作用
一、地基变形的影响
砌体结构房屋,地基不均匀 沉降在砌体中引起附加拉力或 剪力,当附加内力超过砌体本 身强度便产生裂缝。
单层厂房,因地面大 面积堆载造成基础下沉, 使柱身在附加弯矩作用 下开裂。
下沉
下沉
第6章其它荷载与作用分析
中部沉降过大引起的正八字裂缝
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
四、桥梁结构的温度作用
➢气温变化:常年的气温变化导致桥梁沿纵向均匀地位移, 这种位移不产生结构内力,只有当结构的位移受到约束时才 会引起温度次应力。(均匀温度作用)
➢结构温差:由于太阳的辐射,使结构沿高度方向形成非线 性的温度梯度,导致结构产生次应力。(梯度温度作用)
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
三、温度变化的考虑
温度变化:由气温变化和结构温差引起
气温变化:一年中大气气温年温差,通常取最高月和最低月 平均气温的差值。我国长江中下游一带大气气温年温差约为 30℃。
结构温差:由于日照、骤冷等天气原因或高温车间、低温冷 库等使用情况造成的结构内外温度差异,应考虑房屋散热和 保暖条件,按实际调查情况确定温差取值。
沿桥梁横向也存在梯度温度,由于影 响小,设计时不再计及其作用。
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
(1)均匀温度作用
➢计算时应从结构受到约束(架梁或结构合龙)时的结构温 度作为起点,计算结构最高和最低有效温度的作用效应。如 缺乏实际调查资料,公路混凝土结构和钢结构的最高和最低 有效温度标准值可按下表取用。
超静定结构: 存在多余约束,其温度作用效应的计算,一般根据变形协调 条件,按结构力学或弹性第力6章其学它荷载方与作法用分确析 定。
第六章 其它荷载与作用 第一节 温度作用
例如:厂房纵向排架结构柱嵌固于地面,排架横梁受到均匀 温差作用向两边伸长或缩短,中间有一变形不动点(位于各 柱抗侧刚度分布的中点)。变形不动点两侧横梁伸缩变形将 在柱中和横梁引起应力。
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
竖向日照正温差计算的温度基数
结构类型 混凝土铺装 50mm沥青混凝土铺装层 100mm沥青混凝土铺装层
T1(℃) 25 20 14
T2(℃) 6.7 6.7 5.5
混凝土上部结构和带混凝土桥面板的钢结构 的竖向日照反温差为正温差乘以-0.5。
荷载与结构设计方法
第六章 其它荷载与作用
第6章其它荷载与作用分析
第六章 其它荷载与作用
本章内容 第一节 温度作用 第二节 变形作用 第三节 冻胀力 第四节 爆炸作用 第五节 行车动态作用 第六节 预加力
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
一、温度作用基本概念及原理
温度作用——因温度变化引起的结构变形和附加力。
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
➢(2)构件内部各单元体之间相互制约,不能自由变形。
①简支屋面梁,在日照作用 下屋面温度高于室内温度, 简支梁沿梁高受到不均匀温 差作用,产生翘曲变形,在 梁中引起应力。
②大体积混凝土梁结硬时, 水化热使得中心温度较高, 两侧温度偏低,内外温差 不均衡在截面引起应力。
厂房第纵6章向其排它荷架载温与作度用分变析形分布
第六章 其它荷载与作用 第一节 温度作用
不动点
ΔLi Vi
E iI i
H
Li
排架结构温度应力计算简图
不动点右侧第i根柱的柱顶变位DLi=aTLi(忽略横梁变形) ,
第i根柱的抗侧刚度Ki=3EiIi/H3,则该柱受到的柱顶剪力为:
式中 Li——V第i i根DL柱i 到Ki不 a动T点Li 的 3HE距i3I离i 。
工程约束条件: ➢(1)结构物的变形受到其它物体的阻碍或支承条件的制 约,不能自由变形。
①框架结构基础梁的 伸缩变形受到柱基约 束,没有任何变形余 地。
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
②排架结构上部横梁因温度变化伸长时,横梁的变形使 柱产生侧移,在柱中引起内力;柱子对横梁施加约束, 在横梁中产生压力。
(2)梯度温度作用
➢计算梯度温度引起的效应时,采用下图所示的竖向温度 梯度曲线,其桥面板表面的最高温度T1规定见下表。
混凝土结构:当梁高H小于 40来自mm时,图中A=H-100(mm); 梁高H等于或大于 400mm时, A=300mm。
带混凝土桥面板的钢结构:
A=300mm,图中的t为混凝土桥
面板的厚度(mm)。
具体表现: 当结构或构件的温度发生变化时,体内任一点(单元体) 热变形(膨胀或收缩)由于受到周围相邻单元体的约束 (内约束)或边界受到其他结构或构件的约束(外约 束),使体内该点产生温度应力。
温度作用大小影响因素:
环境温度变化
约束条件
第6章其它荷载与作用分析
第六章 其它荷载与作用 第一节 温度作用
气温分区
严寒地区 寒冷地区 温热地区
钢桥面板钢桥
最高
最低
46
-43
46
-21
46
-9(-3)
混凝土桥面板钢桥
最高
最低
39
-32
39
-15
39
-6(-1)
混凝土、石桥
最高
最低
34
-23
34
-10
34
-3(0)
注:表中括弧内数值适用于昆第明6章、其南它荷宁载、与作广用州分析、福州地区。
第六章 其它荷载与作用 第一节 温度作用