关于露点温度和结露

合集下载

露点温度

露点温度

露点温度露点(或霜点)温度:露点温度指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。

形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。

露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。

所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。

在100%的相对湿度时,周围环境的温度就是露点温度。

露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。

在一定的空气压力下,逐渐降低空气的温度,当空气中所含水蒸气达到饱和状态,开始凝结形成水滴时的温度叫做该空气在空气压力下的露点温度。

即当温度降至露点温度以下,湿空气中便有水滴析出。

降温法清除湿空气中的水分,就是利用此原理。

在日常生活中我们可以看到,到夜间空气温度降低时,空气中的水分会有一部分析出,形成露水或霜。

这说明在水蒸气含量不变的情况下,由于温度的降低,能够使空气中原来未达饱和的水蒸气可变成饱和蒸气,多余的水分就会析出。

使水蒸气达到饱和时的温度就叫作“露点”。

测得露点温度,就可以从水蒸气的饱和含量表中查得其水蒸气含量。

由于温度降低过程中水蒸气含量并没有改变,因此,测定露点实际上就是测定了空气中的绝对湿度。

如果露点越低,表示空气中的水分含量越少。

露点可用专用的露点仪测定。

例如,空气经干燥器后的露点为-50℃,与-50℃对应的饱和水分含量为38.89mg/m3,说明空气中尚含有这些水分。

如果露点为-60℃,则饱和水分含量为10.68mg/m3。

露点越低,说明干燥程度越高。

它是指气体中的水份从未饱和水蒸气变成饱和水蒸气的温度,当未饱和水蒸气变成饱和水蒸气时,有极细的露珠出现,出现露珠时的温度叫做“露点”,它表示气体中的含水量,露点越低,表示气体中的含水量越少,气体越干燥。

露点和压力有关,因此又有大气压露点(常压露点)和压力下露点之分。

关于露点温度的计算方法

关于露点温度的计算方法

关于露点温度的计算方法2010-10-25 16:37:42| 分类:工作| 标签:|字号大中小订阅因为看到很多朋友发帖子,询问露点温度的计算方法,没有发现太确切的跟帖,现举例说明如下:例如:23℃,RH45%的湿度,对应的露点温度算法:先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。

知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。

通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦!这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。

形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。

露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。

所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。

在100%的相对湿度时,周围环境的温度就是露点温度。

露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。

不同温度时饱和水汽压(P)(单位:毫米高水银柱)室内空气露点查询表横:湿度%纵:温度℃温度() 压强(mmHg)水汽密度(克/米) 温度()压强(mmHg)水汽密度(克/米)-30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 0.280.310.350.380.430.470.520.580.640.700.770.850.941.031.131.241.361.491.631.781.952.130.330.370.410.460.510.550.600.660.730.800.880.961.051.151.271.381.511.651.801.962.142.331415161718192021222324252627282930313233343511.9912.7913.6314.5315.4816.4817.5418.6519.8321.0722.3823.7625.2126.7428.3530.0431.8233.7035.6637.7339.9042.1812.112.813.614.515.416.317.318.319.420.621.823.024.425.827.228.730.332.133.935.737.639.6。

关于露点温度和结露

关于露点温度和结露

所谓的露点温度一定温度的空气中,水蒸气的最大含量称为[饱和水蒸汽量],此时的空气成为[饱和空气]饱和空气温度下降时,空气中的水蒸气将凝结成露.含有水蒸气的空气的饱和温度, 称为露点温度,露点温度由绝对湿度决定,例如:气温20度,相对湿度60%时,结露温度为12度(请参照如下数据温度表).露点温度通常是用于查看气体的干燥状态,相对湿度的小量变化也将引起露点温度的巨大变化, 因此可通过露点温度了解气体的干燥状态的细微变化,即使气体温度产生变化,露点温度也不会改变.应该指出的是,欧美地区比较频繁的使用相对湿度,海岸地区及农业地区的天气预报也经常使用露点温度.所谓的结露是指?所谓的结露现象是指容器内壁表面温度下降,室内空气温度下降到露点温度以下时,内壁及表面会发生水珠凝结的现象,这个现象称之为结露.结露是否发生取决于室内温度, 室内湿度及露点温度.露点温度即使没有下降到与外气温相同的,一定温度下仍有可能发生结露现象.所谓的表面结露是指?所谓的表面结露是指室内壁体表面温度低于室内露点温度或接近壁体表面温度时,冷却至露点温度以下,表面出现水滴附着现象称之为表面结露.所谓的内部结露是指?所谓的内部结露是指壁体内部产生的结露现象.室内的高温空气(湿气)在进入内壁及内部温度下降到结露温度以下,引起内部结露.湿度、露点和相关参数:表示湿度的参数有:·水汽分压·相对湿度·露点·霜点·绝对湿度·混合率·湿球温度·ppm ·平衡相对湿度·水活性·热焓水份含量表示方法大多数情况下用于固体或液体。

当用于气体时,这种概念就不适用了。

水汽压(Pw):是指在空气或气体中存在的水汽压。

饱和水汽压(Pws):在特定温度下水汽中的最大压力。

温度越高,空气中能承受的水蒸汽越多。

相对湿度(RH):指在特定温度下的水汽分压和饱和水汽压之比,是用百分比来表示:%RH=100%*(Pw/Pws)。

室内结露原理

室内结露原理

室内结露原理一、什么是室内结露室内结露是指在室内空气中的水蒸气由于与室内物体表面接触而冷却,形成水珠的现象。

当室内空气中的水蒸气含量超过一定限度时,当水蒸气接触到冷却的表面时,由于温度下降,水蒸气中的水分会凝结成液态水,形成结露。

二、室内结露原理室内结露的原理可以通过几个关键因素来解释:1. 温度差异:室内结露的前提是室内空气中的水蒸气与室内物体表面接触并冷却。

当室内物体表面的温度低于室内空气的露点温度时,水蒸气就会凝结成水珠。

2. 相对湿度:相对湿度是指空气中所含水蒸气与该温度下的饱和水蒸气压的比值。

当相对湿度达到100%时,空气中的水蒸气饱和,无法再吸收更多的水分,这时就会形成结露。

3. 表面特性:物体表面的性质也会影响结露的形成。

一些冷凝物质,如金属或玻璃等,表面光滑且导热性好,容易吸收和散发热量,因此更容易形成结露。

三、室内结露的影响因素室内结露的形成受到许多因素的影响,包括温度、湿度、通风等。

以下是一些常见的影响因素:1. 温度差异:温度差异越大,室内结露的可能性越高。

当室内温度较低,而室外温度较高时,室内空气中的水蒸气容易冷却并形成结露。

2. 湿度:室内空气中的湿度越高,结露的可能性越大。

当相对湿度达到100%时,空气中的水蒸气就会凝结成水珠。

3. 通风:良好的通风可以帮助减少室内结露的发生。

通过通风可以将室内湿气排出,降低室内湿度,减少结露的可能性。

四、如何避免室内结露室内结露可能会导致家具、墙壁等表面的潮湿和发霉,对室内环境和居住者的健康造成影响。

因此,避免室内结露是非常重要的。

以下是一些预防结露的方法:1. 保持室内通风:良好的通风可以将室内湿气排出,减少结露的可能性。

可以打开窗户,使用抽湿机或安装排气扇等方式增加空气流通。

2. 控制室内湿度:保持适宜的室内湿度也是避免结露的关键。

可以使用除湿机、空调或加湿器等设备来调节室内湿度。

3. 增加室内温度:通过提高室内温度,可以减少室内空气与物体表面的温度差异,降低结露的可能性。

露点测定原理

露点测定原理

露点测定原理
当一定体积的气体在恒定的压力下均匀降温时,气体和气体中水分的分压保持不变,直至气体水分达到饱和状态,该状态下的温度就是气体的露点。

通常是在气体流经的测定气室中安装可降温的镜面。

在0℃以上水汽达到饱和时,水汽便凝结成露,此时的温度叫做露点。

在0℃以下水汽达到饱和时,水变凝结成冰,此时的温度叫做霜点。

在0℃以上的露点和0℃以下的霜点,人们通称为露点。

在一个标准大气压下,一个结露温度对应一个确定的水的饱和蒸汽压值,一个确定的水的饱和蒸汽压值对应一个确定的气体湿度。

因此测定气体的露点温度就可以测定气体的温度。

露点仪直接给出的量值是露点温度。

光电露点仪的工作原理可以简单的叙述为:被测气体在恒定的压力下,一般是指在一个标准大气压下,以一定的流速掠过光洁的经制冷的金属镜面,随着温度逐渐降低,镜面达到某一个温度时开始结露(或霜),此时的镜面温度就是露点温度。

仪器通过光学系统,测温电路,逻辑控制电路,数字显示电路等,测量到露点温度Td,并显示出来。

什么是露点温度

什么是露点温度

什么是露点温度?
露点温度指的是在一定的环境温度的空气中,水蒸汽的最大含量称为“饱和水蒸汽量”,此时的空气成为“饱和空气”,饱和空气温度下降时空气中的水蒸汽将凝结成水珠。

含有水蒸汽的空气的饱和温度,称为露点温度。

表格左边聪5~29这一列是环境温度,上面一行是湿度,里面的数字就是露点温度。

比如说,环境温度为25℃,湿度为80%,从表格中我们可以看出露点温度是21.3℃。

也就是说,在环境温度为25℃,湿度为80%的条件下,如果物件(配件)表面的温度低于21.3℃的话,则物件(配件)表面就会结露(有水)。

露点温度是指空气在水汽含量和气压都不改变的条件下

露点温度是指空气在水汽含量和气压都不改变的条件下

露点温度是指空气在水汽含量和气压都不改变的条件下
,冷却到饱和时的温度。

形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。

露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。

所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。

在100%的相对湿度时,周围环境的温度就是露点温度。

露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。

湿球温度的定义是在定压绝热的情况下,空气与水直接接触,达到稳定热湿平衡时的绝热饱和温度。

露点温度
露点(或霜点)温度:
指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。

形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。

露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。

所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。

露点仪:能直接测出露点温度的仪器。

使一个镜面处在样品湿空气中降温,直到镜面上隐现露滴(或冰晶)的瞬间,测出镜面平均温度,即为露(霜)点温度。

它测湿精度高,但需光洁度很高的镜面,精度很高的温控系统,以及灵敏度很高的露滴(冰晶)的光学探测系统。

使用时必须使吸入样本空气的管道保持清洁,否则管道内的杂质将吸收或放出水分造成测量误差。

1/ 1。

温度和湿度和结露温度的公式

温度和湿度和结露温度的公式

温度和湿度和结露温度的公式温度和湿度和结露温度的公式是温度、湿度和结露温度之间的重要联系,它可以帮助我们理解空气内部的状况。

这个公式也可以用来计算空气中结露点的温度,并可以帮助我们判断是否有可能形成结露或凝结。

温度和湿度是一对紧密相关的物理参数,它们能够很好地描述空气内部的状态。

它们可以用来衡量空气湿度,可以表明空气是否潮湿,也可以表明空气中存在多少水蒸气,以及水蒸气的比例是多少。

湿度是衡量空气湿度的单位,它表示空气中的水蒸气的比例,通常使用百分比表示。

空气中的水蒸气的量取决于温度,当温度升高时,空气中的水蒸气量也会相应增加;当温度降低时,空气中的水蒸气量也会相应减少。

温度是衡量空气温度的单位,通常使用摄氏度(°C)或华氏度(°F)表示。

空气中的水蒸气量随着温度的变化而变化,当温度升高时,空气中的水蒸气量也会相应增加;当温度降低时,空气中的水蒸气量也会相应减少。

结露温度是一个重要的物理参数,它表示的是空气中的湿度超过某一特定的阈值时,水蒸气将从空气中凝结出来的温度。

结露温度取决于空气中的温度和湿度,当温度和湿度同时升高时,结露温度也会相应升高;当温度和湿度同时降低时,结露温度也会降低。

温度、湿度和结露温度之间的关系可以通过如下公式来表示:结露温度= 0.81 × 温度 + (1-0.81) × 湿度上述公式中,“0.81”是一个固定的系数值,可以根据实际情况进行调整。

这个公式的作用是,当温度和湿度同时升高时,结露温度也会相应升高,这意味着空气中的水蒸气量会达到一定的阈值,此时可能会形成结露;当温度和湿度同时降低时,结露温度也会相应降低,这意味着空气中的水蒸气量也会降低,不会形成结露。

因此,我们可以使用上述公式来计算空气中的结露点温度,以判断是否有可能形成结露或凝结。

总之,温度、湿度和结露温度之间的关系是一个重要的物理概念,它可以帮助我们更好地理解空气内部的状况,也可以帮助我们计算空气中结露点的温度,以判断是否有可能形成结露或凝结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所谓的露点温度一定温度的空气中,水蒸气的最大含量称为[饱和水蒸汽量],此时的空气成为[饱和空气]饱和空气温度下降时,空气中的水蒸气将凝结成露.含有水蒸气的空气的饱和温度, 称为露点温度,露点温度由绝对湿度决定,例如:气温20度,相对湿度60%时,结露温度为12度(请参照如下数据温度表).露点温度通常是用于查看气体的干燥状态,相对湿度的小量变化也将引起露点温度的巨大变化, 因此可通过露点温度了解气体的干燥状态的细微变化,即使气体温度产生变化,露点温度也不会改变.应该指出的是,欧美地区比较频繁的使用相对湿度,海岸地区及农业地区的天气预报也经常使用露点温度.所谓的结露是指?所谓的结露现象是指容器内壁表面温度下降,室内空气温度下降到露点温度以下时,内壁及表面会发生水珠凝结的现象,这个现象称之为结露.结露是否发生取决于室内温度, 室内湿度及露点温度.露点温度即使没有下降到与外气温相同的,一定温度下仍有可能发生结露现象.所谓的表面结露是指?所谓的表面结露是指室内壁体表面温度低于室内露点温度或接近壁体表面温度时,冷却至露点温度以下,表面出现水滴附着现象称之为表面结露.所谓的内部结露是指?所谓的内部结露是指壁体内部产生的结露现象.室内的高温空气(湿气)在进入内壁及内部温度下降到结露温度以下,引起内部结露.湿度、露点和相关参数:表示湿度的参数有:·水汽分压·相对湿度·露点·霜点·绝对湿度·混合率·湿球温度·ppm ·平衡相对湿度·水活性·热焓水份含量表示方法大多数情况下用于固体或液体。

当用于气体时,这种概念就不适用了。

水汽压(Pw):是指在空气或气体中存在的水汽压。

饱和水汽压(Pws):在特定温度下水汽中的最大压力。

温度越高,空气中能承受的水蒸汽越多。

相对湿度(RH):指在特定温度下的水汽分压和饱和水汽压之比,是用百分比来表示:%RH=100%*(Pw/Pws)。

相对湿度受温度的影响很大。

压力也会改变相对湿度。

比如,在常温下,如果压力增加一倍,相对湿度会增加两倍。

露点温度(Td):是指空气中饱和水汽开始凝结的温度,也就是结露的温度。

在100%的相对湿度时,周围环境温度等于露点温度。

露点温度越小于环境温度,就意味着越小的结露可能,也就意味着空气越干燥。

露点不受温度影响,但受压力影响。

霜点温度(Tf):如果露点温度低于结霜温度,有时我们使用霜点这个概念。

在0℃以下时,霜点总是比露点高一点,因为冰的水蒸汽饱和压与水的不同。

绝对湿度(a):是指在一个温度和压力下一个单位体积的湿空气中的水份的重量。

通常以克/每立方米来表示。

有时它容易与混合率混淆。

混合率(x):是水蒸汽重量与干气重量比。

通常用克/每公斤干气来表示,主要用在干燥流程中或通风系统中,用在已知空气的重量流量时计算水含量。

湿球温度(Tw):传统上,湿球温度由温度表外裹护套来显示。

湿球温度和环境温度用来计算相对湿度和露点温度。

ppm:是水蒸气与干气或总的(湿)气之比。

有时用在表示低湿度,用质量/体积或质量/重量。

平衡相对湿度(ERH):指在湿度没有净变化的互相交换情况下,空气的相对湿度值。

水活性(aw):类似于均衡相对湿度,范围是0……1,而不是0%……100%。

热焓(h):是指0℃时的干气到达现在状态时所需的能量。

大多用在空调计算中。

本站相关仪器的介绍:温湿度计温度检测与仪表一、温度测量的基本概念温度是表征物体冷热程度的物理量。

温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。

它规定了温度的读数起点(零点)和测量温度的基本单位。

目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。

华氏温标(o F)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等分,每等分为华氏1度,符号为o F。

摄氏温度(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等分,每等分为摄氏1度,符号为℃。

热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的温度为绝对零度,记符号为K。

国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。

目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(Rev-75)。

但由于IPTS-68温示存在一定的不足,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过了1990年国际温标ITS-90,ITS-90温标替代IPTS-68。

我国自1994年1月1日起全面实施ITS-90国际温标。

1990年国际温标(ITS-90)简介如下。

1.温度单位热力学温度(符号为T)是基本功手物理量,它的单位为开尔文(符号为K),定义为水三相点的热力学温度的1/273.16。

由于以前的温标定义中,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这各方法。

根据定义,摄氏度的大小等于开尔文,温差亦可以用摄氏度或开尔文来表示。

国际温标ITS-90同时定义国际开尔文温度(符号为T90)和国际摄氏温度(符号为t90)2.国际温标ITS-90的通则ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。

ITS-90是这样制订的,即在全量程中,任何温度的T90值非常接近于温标采纳时T的最佳估计值,与直接测量热力学温度相比,T90的测量要方便得多,而且更为精密,并具有很高的复现性。

3.ITS-90的定义第一温区为0.65K到5.00K之间, T90由3He和4He的蒸气压与温度的关系式来定义。

第二温区为3.0K到氖三相点(24.5661K)之间T90是用氦气体温度计来定义.第二温区为平衡氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义.它使用一组规定的定义固定点及利用规定的内插法来分度.银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计.二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。

通常来说接触式测温仪表测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。

非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。

三、热电偶热电偶是工业上最常用的温度检测元件之一。

其优点是:② 测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

四、热电阻热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

1.热电阻测温原理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

2.热电阻的结构(1)精通型热电阻工业常用热电阻感温元件(电阻体)的结构及特点见表2-1-11。

从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。

为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节.(2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。

与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。

它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

(4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。

相关文档
最新文档