各种震荡电路设计

合集下载

振荡电路的设计实验报告plc -回复

振荡电路的设计实验报告plc -回复

振荡电路的设计实验报告plc -回复振荡电路的设计实验报告[PLC]一、引言振荡电路是电子技术领域中重要的一种电路,其特点是能够产生稳定的交流信号。

本实验旨在通过PLC(可编程逻辑控制器)来设计一个振荡电路,并测试其振荡频率和波形的稳定性。

二、设计原理1. 振荡电路简介振荡电路由放大器和反馈网络构成,其中反馈网络通过放大器将一部分输出信号返回到输入端,形成正反馈。

当反馈网络的增益满足一定的条件时,振荡电路可产生稳定的振荡信号。

2. PLC简介PLC是一种专门用于工业自动化控制的电气设备,具有可编程性、可靠性和灵活性等特点,广泛应用于工业生产线上。

三、实验器材与元件1. PLC(型号ABC-100)2. 电容器C3. 电感L4. 电阻R5. 示波器6. 信号发生器四、实验步骤1. 连接电路将PLC的输入端和输出端与相应的电路元件连接,搭建振荡电路。

具体连接方式可参照实验指导书或相关资料。

2. 编辑程序使用PLC编程软件,编写振荡电路的控制程序。

程序中需要包含对输入输出端口的定义和操作,以及对反馈网络进行控制的代码。

3. 上传程序将编写好的控制程序上传到PLC中,通过编程软件将程序下载到PLC的存储器中。

4. 调试与测试将信号发生器连接到振荡电路的输入端,设置合适的频率和幅值。

通过示波器观察输出端的波形,检查振荡电路是否正常工作。

调试过程中根据需要进行参数的调整。

5. 测试稳定性将信号发生器的频率固定在一个特定值,观察输出端波形的稳定性。

使用示波器测量振荡电路的振荡频率,并与理论值进行比较。

六、实验结果与分析经过实验观察和测量,可以得到振荡电路的波形图及频率数据。

通过分析实验结果,可以判断振荡电路的设计和控制程序是否满足要求,以及在不同参数条件下振荡电路的稳定性。

七、实验总结通过本实验,我们成功通过PLC来设计和控制一个振荡电路。

在实验过程中,我们了解到振荡电路的基本原理,并通过实验实际操作和观察,加深了对振荡电路的理解。

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。

2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。

对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。

因此,已知振荡频率f,可以求出R和C的值。

3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。

电路一般由放大器、RC电路和正反馈网络组成。

放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。

4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。

例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。

5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。

总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。

振荡电路及555定时器应用设计报告

振荡电路及555定时器应用设计报告
八、结论
电路由反相器U3A、U4B以及反馈电阻R2、保护电阻R1和耦合电容C1;通过时反相器工作在放大状态,这时只要反相器输入电压有点变化,就会被正反馈回路放大而引起震荡,此时电路是不稳定的。此电路可以通过调节R和C的值改变输出信号的振荡频率。
石英晶体和非门构成多谐振荡器:
一、设计任务与要求
1.要求多谐振荡器的工作频率稳定性更高;
2.用555时基电路构成单稳态触发器,具有可重复触发特性;
二、方案设计与论证
任务一:多谐振荡器
1.方案一、非门构成对称型多谐振荡器
对称型多谐振荡器原理:
(1)静态(未振荡)时应是不稳定的
此电路是由两个反相器及滑动变阻器经耦合电容C1连接起来的正反馈振荡电路,并设法使反相器工作在放大状态,即给他们设置适合的偏置电压,这个偏置电压可以通过在反相器的输出端与输出端之间接入反馈电阻来得到。
通过分析,结合设计电路性能指标、器件的性价比,本设计电路选择方案二。
三、单元电路设计与参数计算
非对称式多谐振荡器由反相器,电阻和电容构成,非对称式多谐振荡器的组成框图3-1所示。
参数计算:振荡周期为:
取频率为6KHz,电容值为0.1uf,可根据上述公式可得电阻阻值为750Ω
图3-1
四、总原理图及元器件清单
七、性能、功能测试与分析
1、.功能电路测试与分析
(1)测试步骤
1、接入5v电压源;
2、接好电路后,用示波器显示波形。
(2)测试数据
测试得到的波形周期为T=3.6格*0.05ms
(3)误差计算
误差=((0.18-0.16)/0.18)*100%=11.1%
(4)误差分析
接入的电阻值不可能是理想值,存在一定的误差,从而造成波形的周期与理论值周期有误差。

《射频电路设计》第8章 振荡电路

《射频电路设计》第8章 振荡电路

E f f0 f
f0
f0
单位ppm
《射频通信电路》刘长军
8.3.2 可调谐振荡电路
技术指标
1)频率范围,即电压可以控制调节的频率范围; 2)线性度,控制电压与振荡频率间的线性关系; 3)压控灵敏度,即单位控制电压所能产生的频率
改变; 4)控制电压允许随时间变化的最大速率; 5)电压范围,即压控振荡电路的工作电压和控制
2. 电容三点式振荡电路
VCC
R1
R3
L
CC
T
CC
T
R2
RS
CS
C1
C2
L
CB R1
RS
VCC
C1 C2
《射频通信电路》刘长军
8.1.2 LC型振荡电路
D
TG
S
L C2
C1
D G
T
S
C1 L
C2
电容三点式振荡电路的射频等效电路
《射频通信电路》刘长军
8.1.2 LC型振荡电路
3. 改进的电容三点式振荡电路
R1 C2 R2
VCC
C
L
T C1
RFC
《射频通信电路》刘长军
8.1.2 LC型振荡电路
L L1
C L2
L L1
T
C
L2
T
射频等效电路图
《射频通信电路》刘长军
8.1.2 LC型振荡电路
DS
L
C
G
D
GS C L
S
G D
C
L
(a)共栅极、共源极和共漏极的变压器耦合振荡电路(Amstrong)
C1
DS
第八章 振荡电路
四川大学电子信息学院 刘长军

如何设计一个基本的振荡电路

如何设计一个基本的振荡电路

如何设计一个基本的振荡电路振荡电路是电子领域中常见的电路之一,用于产生稳定的交流信号。

本文将介绍如何设计一个基本的振荡电路,并给出详细的步骤和注意事项。

1. 确定振荡器类型首先,我们需要确定要设计的振荡电路的类型。

常见的振荡器类型包括晶体振荡器、RC振荡器和LC振荡器等。

不同的振荡器类型适用于不同的应用,因此在设计之前要明确振荡器的使用目的。

2. 选择频率和波形确定振荡电路所需要产生的频率和波形。

频率决定了振荡器的工作范围,而波形则影响信号的稳定性和适用性。

常见的波形包括正弦波、方波和三角波等。

3. 选择元件和数值根据所选择的振荡器类型确定所需的元件和数值。

例如,对于RC振荡器,需要选择合适的电容器和电阻器;对于LC振荡器,需要选择合适的电感和电容器。

元件的数值将直接影响振荡器的频率和稳定性,因此要根据设计要求进行合理选择。

4. 绘制电路图根据所选的元件和数值绘制振荡电路的电路图。

在绘制电路图时,应尽量使电路清晰易读,可以使用电路设计软件或手工绘制。

5. 进行仿真和调试使用电路仿真软件对所设计的振荡电路进行仿真,并进行调试和优化。

通过仿真可以评估电路的性能和稳定性,发现可能存在的问题并加以解决。

6. 制作实物电路在经过仿真调试之后,可以使用所选的元件和电路板等材料制作实物电路。

制作实物电路时要注意元件的连接方式和排布,确保电路的可靠性和稳定性。

7. 进行测试和验证制作完成后,进行测试和验证。

通过测试可以判断电路是否正常工作,是否符合设计要求。

如果测试结果不理想,需要进行进一步的调试和优化。

总结:设计一个基本的振荡电路需要经过以上的步骤,包括确定振荡器类型、选择频率和波形、选择元件和数值、绘制电路图、进行仿真和调试、制作实物电路以及进行测试和验证。

每个步骤都需要仔细考虑和详细规划,以确保设计出稳定可靠的振荡电路。

当然,在实际设计过程中还需注意电路间的互应,元器件的选型和性能的调整等一系列细节问题。

如何设计一个简单的多谐振荡器电路

如何设计一个简单的多谐振荡器电路

如何设计一个简单的多谐振荡器电路多谐振荡器是一种电路,能够产生多种频率的振荡信号。

它在电子领域有着广泛的应用,比如在无线通信、音频放大和音乐合成等方面。

设计一个简单的多谐振荡器电路需要考虑一些关键因素,如选择适当的元器件和确定合适的工作参数。

本文将介绍如何设计一个简单的多谐振荡器电路。

首先,我们需要选择合适的元器件。

一个基本的多谐振荡器电路通常包括一个放大器和一个反馈网络。

放大器可以是单管或双管放大器,选择合适的放大器是设计中的第一步。

反馈网络通常包括电容和电感元件,可以选择合适的数值以实现所需的频率响应。

其次,确定电路的工作参数。

多谐振荡器可以产生多个频率的振荡信号,我们需要确定这些频率的范围和间隔。

这取决于电路中使用的元器件和反馈网络的参数。

通过调整这些参数,我们可以实现所需的频率响应。

设计电路的关键是选择合适的反馈网络。

反馈网络决定了电路的振荡频率和增益。

常见的反馈网络包括RC网络、LC网络和LCR网络。

选择合适的网络取决于所需的频率响应和振荡器的性能要求。

最后,我们需要进行电路的调试和优化。

在实际的电路设计中,可能会出现电路不稳定或振荡频率不准确的情况。

这时需要通过调整元器件数值或更换元器件来优化电路性能。

可以使用示波器和频谱分析仪等仪器来帮助调试和优化电路。

总结起来,设计一个简单的多谐振荡器电路需要选择适当的元器件、确定合适的工作参数和选择合适的反馈网络。

通过调试和优化,可以获得所需的振荡频率和性能。

设计过程中需要注意电路的稳定性和可靠性,确保电路能够长时间稳定地工作。

只有经过仔细的设计和调试,才能实现一个简单而有效的多谐振荡器电路。

电容三点式振荡电路详解及multisim仿真实例

电容三点式振荡电路详解及multisim仿真实例

电容三点式振荡电路详解及multisim仿真实例电容三点式振荡电路是一种常见的电路,可以用于产生高频信号或者时钟信号。

本文将详细介绍电容三点式振荡电路的原理、设计方法以及multisim仿真实例。

首先,我们来看一下电容三点式振荡电路的原理。

电容三点式振荡电路由三个元器件组成,包括一个电容器、一个电感器和一个晶体管。

当电容器和电感器组成的LC振荡回路与晶体管共同工作时,就可以产生振荡信号。

具体来说,当电容器充电时,晶体管被激活,导致电容器放电并使振荡回路开始振荡。

随后,电容器重新充电并继续振荡,从而形成连续的高频信号。

接下来,我们来介绍一下电容三点式振荡电路的设计方法。

首先,需要选择电容器和电感器的具体数值,以及晶体管的型号。

在选择电容器和电感器时,需要根据所需的振荡频率来确定。

一般来说,振荡频率越高,所需的电容器和电感器数值就越小。

而在选择晶体管时,需要考虑其放大系数和工作电压等参数。

通过合理选择这些元器件,就可以设计出满足要求的电容三点式振荡电路。

最后,我们来看一下如何通过multisim软件进行电容三点式振荡电路的仿真实验。

首先,需要打开multisim软件,并创建一个新电路。

然后,将所选的电容器、电感器和晶体管拖入电路中并连接起来。

接下来,需要设置电容器和电感器的数值,以及晶体管的型号。

最后,可以进行仿真实验,观察电路的输出信号是否符合要求。

综上所述,电容三点式振荡电路是一种常用的电路,可以用于产生高频信号或时钟信号。

本文介绍了电容三点式振荡电路的原理、设计方法和multisim仿真实例,希望能对读者有所帮助。

RC正弦波振荡电路设计

RC正弦波振荡电路设计

RC 正弦波振荡电路设计电气工程系 王文川任务三 RC 正弦波振荡电路一、RC 正弦波振荡器任务描述RC 正弦波振荡电路的描述学习目标RC 正弦波振荡电路的认识。

重点:RC 正弦波振荡电路的描述。

难点:RC 正弦波振荡电路的认识。

一、实验目的1、进一步学习RC正弦波振荡器的组成及其振荡条件2、学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。

若用R、C元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz~1MHz的低频信号。

1、RC移相振荡器。

电路型式如图12-1所示,选择R>>Ri图12-1 RC移相振荡器原理图振荡频率起振条件放大器A的电压放大倍数||>29电路特点简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。

频率范围几赫~数十千赫。

2、RC串并联网络(文氏桥)振荡器电路型式如图12-2所示。

振荡频率起振条件 ||>3电路特点可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

图12-2 RC串并联网络振荡器原理图3、双T选频网络振荡器电路型式如图12-3所示。

图12-3 双T选频网络振荡器原理图振荡频率起振条件 ||>1电路特点选频特性好,调频困难,适于产生单一频率的振荡。

注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。

三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等四、实验内容1、RC串并联选频网络振荡器(1)(1)按图12-4组接线路图12-4 RC串并联选频网络振荡器(2) 断开RC串并联网络,测量放大器静态工作点及电压放大倍数。

(3) 接通RC串并联网络,并使电路起振,用示波器观测输出电压uO波形,调节Rf使获得满意的正弦信号,记录波形及其参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档