(完整版)matlab典型电路设计示例
matlab电气仿真实例

matlab电气仿真实例MATLAB电气仿真实例在本文中,我们将探讨MATLAB在电气仿真领域中的应用。
通过一个具体的实例,我们将展示如何使用MATLAB进行电气系统的建模、分析和仿真。
1. 引言电气系统的建模和仿真对于设计和分析电路、控制系统、电力系统等具有重要意义。
传统的电气仿真方法需要手动编写大量的数学方程,并且计算过程繁琐。
而MATLAB提供了一种快速、简便且高效的方式来实现电气仿真。
2. 问题描述假设我们有一个简化的直流电机系统。
系统包括一个直流电机、一个电阻和一个电压源。
我们想要分析在给定电压下电机的转速以及电机周围的电压和电流的变化情况。
3. 建立电气系统模型首先,我们需要建立电气系统的数学模型。
在本例中,我们使用电路定律(基尔霍夫定律和欧姆定律)来建立模型。
根据基尔霍夫定律,我们可以得到电路的电流方程:I = \frac{V}{R}其中,I是电流,V是电压,R是电阻。
根据欧姆定律,我们可以得到电机的速度与电压之间的关系:\omega = \frac{V}{K}其中,ω是电机的角速度,V是电压,K是电机的转速常数。
基于这些方程,我们可以进一步建立系统的状态空间模型:\begin{bmatrix} \dot{\omega} \\ \dot{I} \end{bmatrix} =\begin{bmatrix} 0 & \frac{-1}{K} \\ 0 & \frac{-1}{R}\end{bmatrix} \begin{bmatrix} \omega \\ I \end{bmatrix} +\begin{bmatrix} \frac{1}{K} \\ 0 \end{bmatrix} V其中,\dot{\omega}和\dot{I}分别表示电机速度和电流的导数。
4. MATLAB仿真现在我们可以使用MATLAB进行仿真了。
首先,我们需要定义系统的参数和初始条件。
例如,我们可以选择电压源电压为12V,电阻为1Ω,转速常数为10。
MATLAB仿真三相桥式整流电路(详细完美)

目录摘要- 1 -Abstract- 2 -第一章引言- 3 -1.1 设计背景- 3 -1.2 设计任务- 3 -第二章方案选择论证- 5 -2.1方案分析- 5 -2.2方案选择- 5 -第三章电路设计- 6 -3.1 主电路原理分析- 6 -第四章仿真分析- 7 -4.1 建立仿真模型- 7 -4.2仿真参数的设置- 8 -4.3 仿真结果及波形分析- 9 -第五章设计总结- 22 -致谢- 23 -参考文献- 23 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。
据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。
电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。
关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization is unthinkable.With the development of social production and scientific technology, application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。
(完整word版)Matlab解决电路问题

如下图所示的电桥电路, 其中I1是16V 的电压源, I2是1A 的电流源,R1为8 , 电桥的四个臂分别为R2, R3, R4, R5电阻值如图所示, 求流过R4的电流I 的大小?解法一: 利用戴维南定理进行求解:解题思路:将A.B 两点断开, 求A.B 两点之间的等效电阻与等效电压, 等效之后的图形 如下图所示:I=? ABAB其中R6是等效电阻, I3是等效电压。
①求解等效电阻:求解等效电阻时把所有的电流源开路, 电压源短路, 得到如下所示的电路:AB则AB两端的电阻值即等效电阻R6=(R2+R3)//R1+R5②求解等效电压可以利用叠加法求解AB 两端的电压值, 先不看电压源(即电压源相当于短路), 计算电流源对AB 两端的电压值, 再不看电流源(即电流源相当于断路), 再计算AB 两端的电压值, 然后将俩种情况下的电压值叠加即得到AB 两端的等效电压。
不看电压源的电路图如下:则UCB+I2*R5+I2*(R1+R2)//R3=0 可以得到:UCB =-[I2*R5+I2*(R1+R2)//R3]U AB1 =-I2*R5-I2*3213)21(R R R R R R ++•++I2*R2*3213R R R R ++不看电流源的电路图如下:ABC很容易的知道AB 两端的电压值为:U AB2=321)32(*1R R R R R I +++所以UAB=UAB1+UAB2则经过戴维南等效之后的电路图如下:可以很简单的求解出II=64R R U AB+ABMatlab求解程序如下:(程序代码如下)R1=8;R2=4;R3=20;R4=3;R5=3;I1=16;I2=1;R6=R5+(R2+R3)*R1/(R1+R2+R3);UAB1=-I2*R5-I2*(R1+R2)*R3/(R1+R2+R3)+I2*R2*R3/(R1+R2+R3); UAB2=I1*(R2+R3)/(R1+R2+R3);UAB=UAB1+UAB2;I=UAB/(R4+R6);解法二: 运用叠加定理直接求解①先考虑电压源对AB两点的电流影响, 此时不看电流源, 电流源相当于断路, 电路图如下:根据电路图, 容易知道: AB 之间的电流I1 为I 1=543232)54//()32(11R R R R R R R R R R R I ++++•+++②再考虑电流源对AB 端电流源的影响, 此时不看电压源, 即将电压源短路, 电路图如下所示:根据电路图, 分析容易知道: 可以根据三角形与Y 形电路之间的转换, 将三角形电阻ACD 转换为Y 形电阻, 公式为:ABI 1BCD形电阻之和相邻电阻的乘积形电阻∆∆Y转换之后的电路图如下:可以得到:R12=32121R R R R R ++•R13=32131R R R R R ++•由于是电流源, 电流一定, 可以忽略与电流源串联的电阻R23 所以I 2=-I2*541312513R R R R R R ++++综上知道:I=I 1+I 2Matlab 求解程序如下: (程序代码如下) R1=8 R2=4;I 2R3=20; R4=3; R5=3; I1=16; I2=1;i1=[(R2+R3)/(R2+R3+R4+R5)]*I1/[R1+(R2+R3)*(R4+R5)/(R2+R3+R4+R5)];R12=R1*R2/(R1+R2+R3); R13=R1*R3/(R1+R2+R3);i2=-I2*(R13+R5)/(R12+R13+R4+R5); I=i1+i2解法三: 利用回路电流法进行求解 实验电路图如下:将无伴电流源的支路作为一个回路电流, 可以有电路图结合回路电i1i2流法列出如下方程:i1=I2I*(R2+R3+R4+R5)+i1*(R3+R5)-i2*(R2+R3)=0 -I*(R2+R3)-i1*R3+i2*(R1+R2+R3)=I1解方程可以很容易解的I 的值。
MATLAB电路仿真实例

题14.14图(a)所示电路,已知u S =15cos(2t)V二端口网络阻抗参数矩阵10」6求ab端戴维南等效电路并计算电压Uo(一) 手动求解:将网络N用T型电路等效,如图(b)所示_cn——+ 5。
(10-j6)現(4-j6)0s() j6Q[](b)等效阻抗Z =4-j6j6 +15 —j6开路电压U OC 5+l0:6+j6 金2汀阪Z i j4 OC j4 j3 】26.4 j43.18148 Vj*》U oU o所以u o = 3.18cos(2t148 ) V(二)Matlab 仿真:1•分析:本次仿真需输入各阻抗 Zl 、Z1、Z2、Z3、Z4以及激励源Us 的参数值, 仿真结果需输出开路电压Uoc 、等效阻抗Zi 以及电感两端电压U0的幅值和相位 信息,并绘制Uoc ,U0的值随时间变化的波形曲线。
%清空自定义变量z1=4-6j;z2=6j;z3=10-6j;z4=5;us=15*exp(j*0);zl=4j;瀚入各元件参数 zi=z1+(z2*(z3+z4)/(z2+z3+z4)); uoc=us*z2/(z2+z3+z4); u0=zl/(zi+zl)*uoc; %在屏幕上显示“ The magnitude of zi is' %显示等效阻抗zi 的模%在屏幕上显示“ The phase of zi is %显示等效阻抗zi 的辐角%在屏幕上显示“ The magnitude of uoc is" %显示开路电压uoc 的模%等效阻抗zi 的计算表达式 %开路电压uoc 的计算表达式 %电感两端电压uo 的计算表达式disp('The magn itude of zi is'); disp(abs(zi))disp('The phase of zi is'); disp(a ngle(zi)*180/pi)disp('The magn itude of uoc is'); disp(abs(uoc))disp('The phase of uoc is');clear 其中各元件与原图的对应关系如下图所示:2•编辑M 文件的源程序如下:%在屏幕上显示“ The magnitude of uoc is"disp(a ngle(uoc)*180/pi) %显示开路电压uoc的辐角disp('The magn itude of u0 is'); disp(abs(u0))disp('The phase of u0 is'); disp(a ngle(u0)*180/pi) %在屏幕上显示“ The magnitude of u0 is”%显示电感两端电压u0的模%在屏幕上显示“ The magnitude of u0 is”%显示电感两端电压u0的辐角t=0:pi/100:2*pi;Yu0=abs(u0)*cos(2*t+a ngle(u0)); Yuoc=abs(uoc)*cos(2*t+angle(uoc)); plot(t,Yu0,t,Yuoc) %生成时间变量t%生成变量Yu0%生成变量Yuoc%绘制u0, uoc随时间t变化的波形曲线以下是源程序的截图:FNe Edit Text Cell Tooh Debug desktop Windofw H&lp1- cLea.r22- il=^6j ;2:3=6jL^=10-fl j ;3- si=zH(72*(Z3+E4)/(Z2+Z3+Z4));4- / (z2+z3+zl);5- uD=zl/(zi+zl);7B - disp (T The mafiiitude of zi is F);9 - disp (abe(£L))10 - di第p『THo Rh阴弓of si 》i11- diip (anglflXri) «;180/pi)1212- disp (1 The magnitude of uoc i衬);13- disp tabs(uoc))14- disp (1The pha.se of uoc is ),15一diep (angle (uoc) > 180/p i)1716- di^p The magnitude of u£) is* );17- disp(abE(uD))18- di^p ( The pha^e of u j is* ;19- disp (angle (uO) # 130/pi)2220r t=0:pi/100:2#pi;21- YuO-abs (uO) #ecs (2#t+afLgle (uO)); 22- Yuo(;=-abs(UQC) *ccs(2*t + aixgleCuQC)), 23- plot (t^YuO, t, Yucc) 档熾罐'电1 ■過懂Stack:| Base —*活空自走文基塑= 15^eK P(j*C0 .zl=4j 元件變黝实等啟阻抗注的计算裘达武黑开路电压sc的计算耒达式页电感腐请电压口口的计算表达贰乐在屏葛上显示"Tlrw *a£nitude of zi is 監昼示專效阻械注的按茶在屏幕上显示"Th目phase o£ zi i尹乐显示尊效阻抗"的辐角乐在屏莓上显示(*Ihe niagnitude of uoc is " 麻昼示并踏电压的種韓在屏幕上显示H Ths juagnitude of uoc is n 第显乐开路电圧uoc的辐甬sftSS上显不"Th巳nt^^mtLide of uO is 乐显示电感两端电压的種銘在屏菴上显示"The nLagnitude trf uO is !,35显示电感两喘电JEuQ的辐角纸生成时间SSt轴生JS^SY U O箔生寤叢里Ywu乐经制龍时闾t賞化的试魁曲绒3•程序运行结果如下:The magn itude of zi is 6.4000The phase of zi isThe magn itude of uoc is6 The phase of uoc is90The magn itude of u0 is 3.1800 The phase of u0 is 147.9946 以下是输出结果的截图:Commahd WindowTostarted, select MATLAB HmEp ot DentDE fron the Help menu.The element type "nane" nust be tarminated by the matching end-t ag ,v </nam&>,v . Could rot parse the file: d:\tocilboM\ccElinltVccElink\info.uni The TaagnitudE of si is6,4000The phase of zi isThe magnitude of uoc is6The phase o£ ucc isSOrhe itiagititude cf uC ±s3. 1300 The phase of u£i is147, 0945(zi 的幅值)(zi 的辐角)(Uoc 的幅值)(Uoc 的辐角) (U0的幅值)以下是UO、Uoc随时间t变化的波形:注:以上Uoc与U0的幅值都是最大值4•根据仿真结果,将各待求量用相量表示如下:此结果与手动运算结果完全一致,仿真结束(三)心得体会:1.本次仿真原计划用Orcad/Pspice进行。
matlab llc设计实例文档

在MATLAB中设计低压电(LLC)变频器涉及到模拟和设计电力电子装置,通常用于控制交流电机速度。
LLC变频器是使用电力电子器件(如绝缘栅双极晶体管(IGBTs))来控制交流电源和负载之间的电压和频率。
以下是一个简化的MATLAB设计实例文档的大致内容,这个实例可能是用于设计和分析一个LLC变频器的主要步骤:标题:MATLAB Based LLC Design Example1. 介绍简述LLC变频器的作用和重要性。
说明MATLAB在电力电子设计中的作用。
2. 设计目标定义设计的主要参数,如电机功率、工作频率、电压等级等。
确定所需的电力电子器件规格。
3. 系统模型建立使用MATLAB中的PowerSystems工具箱建立系统的电气模型。
包括LLC 变频器的各个部分,如输入侧的整流器、中间的直流环节、输出侧的逆变器和负载。
4. 参数设置为系统的各个部分设置参数,如电网电压、电机参数、变频器控制策略等。
5. 控制策略设计设计变频器的控制算法,如PID控制、矢量控制等。
在MATLAB中实现这些控制策略,并模拟其效果。
6. 仿真分析使用MATLAB进行系统仿真,分析在不同工况下的性能,如负载变化、电网电压波动等。
检查系统稳定性、响应时间和效率等指标。
7. 结果验证将仿真结果与实际测试数据进行对比,验证模型的准确性和控制策略的有效性。
8. 设计优化根据仿真和验证的结果,对系统模型和控制策略进行优化。
重复仿真和测试,直到满足设计要求。
9. 结论总结设计过程和最终结果。
提出未来改进和进一步研究的建议。
10. 参考文献列出在设计过程中参考的文献和资料。
这只是一个大致的设计文档框架,具体的内容和步骤需要根据实际的设计要求和项目细节来填充。
在实际操作中,设计一个LLC变频器需要深入的电力电子和控制理论知识,以及丰富的MATLAB使用经验。
此外,设计过程中可能需要多次迭代和实验来达到满意的设计效果。
MATLAB在电路中的应用

12
[例2] 对如图2所示的电路,已知R1=R2=R3=4Ω, R4=2Ω,
控制常数 K1=0.5, k2=4, is=2A, 求 i1和i2。
图2 例2的电路
13
解:
ua
A) 建模
对图示电路,用节点电压法列写方程得:
1 R2
1 R1
ua
1 R2
% 输入解 (1) 的已知条件
A=[a11,a12,a13;a21,a22,a23;a31,a32,a33]; % 列出系数矩阵A
B=[b1;0;0]; I=A\B*us;
% I=[ia;ib;ic]
ia=I(1); ib=I(2); ic=I(3);
i3=ia - ib, u4=R4*ib, u7=R7*ic
A=[a11,a12,a13,a14; a21,a22,a23,a24; a31,a32,a33,a34; a41,a42,a43,a44];
B=[1; 0; 0; 0];
% 设置系数B
X=A\B*is;
i1=X(3), i2=X(4)
% 显示要求的分量
16
C) 程序运行结果(电路的解)
i1 = 1 ,i2 = 1
,
i3
k1us
k1 k2
u4 ,
u7
k3us
k3 k2
u4
9
B) Matlab程序( Ex01.m )
2 4 12
12
0
12 12 4 12
12
0 ia 1
12
ib
0us
12 4 2ic 0
clear, close all, format compact
Matlab技术电路设计实例分析

MatIab技术电路设计实例分析引言Mat1ab作为一种非常强大的数学计算软件,不仅在科学研究领域有广泛应用,同时在工程设计和电路分析方面也发挥着重要作用。
本文将通过一系列实例来说明Mauab在电路设计中的应用,并分析其技术优势。
第一部分:Mat1ab在电路模拟中的应用电路模拟是电路设计中一个必不可少的环节。
Mat1ab提供了强大的电路模拟工具,可以快速而准确地分析电路的性能。
以一个简单的RC滤波器为例,我们可以利用Mauab进行频率响应的模拟和分析。
首先,我们需要设置RC滤波器的参数,包括电阻和电容的取值。
然后,利用Mat1ab的控制系统工具箱中的函数,可以很方便地建立RC滤波器的传递函数模型。
接下来,我们可以使用MaUab绘制该滤波器的频率响应曲线,并通过参数调整来实现滤波器性能的优化。
通过以上实例,我们可以看到MatEb在电路模拟中的便捷性和准确性。
其强大的计算能力和丰富的工具箱使得电路设计师可以快速进行性能分析和优化,大大提高了设计效率。
第二部分:Mat1ab在电路布局中的应用除了电路模拟,电路布局也是电路设计中不可或缺的一环。
在电路布局中,我们需要考虑电路元件之间的连接以及信号的传输效果。
MatIab提供了一系列布局设计工具,可以帮助我们完成电路的布局设计。
以一个简单的放大器电路为例,我们可以利用Mat1ab的电路布局设计工具箱,将电路元件按照特定的规则进行布局。
具体来说,我们可以设置元件的排列方式、位置和连接规则,并通过Mat1ab的仿真功能来验证布局的性能。
通过以上实例,我们可以看到MaUab在电路布局中的灵活性和可靠性。
其强大的布局设计工具和仿真功能使得电路设计师可以更好地控制和优化电路的布局效果,从而提高电路的性能和稳定性。
第三部分:Mat1ab在噪声分析中的应用在电路设计中,噪声分析是一个非常重要的环节。
噪声分析可以帮助我们评估电路的抗噪声性能,从而提高电路的可靠性和稳定性。
电力电子MatLab仿真学习例子

前言MATLAB的简介MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。
随着版本的升级,内容不断扩充,功能更加强大。
近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。
MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。
MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。
在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。
MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。
如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。
MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。
现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ⑤Mux模块:在Simulink 模块库中的Signal Routings模 块库中调用;
• ⑥To Workspace模块:在Simulink 模块库中的“Sinks” 模块库中调用;
• ⑦input Ground和output Ground:在
SimPowerSystems的模块库中的Connectors模块库中调
k V DC
R C
3
RC充电电路仿真模型
4
所需功能模块
• ①直流电压源(DC Voltage Source):在 SimPowerSystems的模块库中的Electrical Sources模 块库中调用;
• ②开关Breaker模块:在SimPowerSystems的模块库中 的Elements模块库中调用;
16
可控交流电流源仿真电路模型
17
所需功能模块
• ①交流电流源(AC Current Source):在 SimPowerSystems的模块库中的Electrical Sources模块库中调用,连续调用两次,按照图5-39 中所示参数进行设置;
• ②可控电流源(Controlled Current Source):在 SimPowerSystems的模块库中的Electrical Sources模块库中调用,按照图5-27中所示参数进行 设置;
• ④Mux模块:在Simulink 模块库中的Signal Routings 模块库中调用;
• ⑤To Workspace模块:在Simulink 模块库中的 Sinks模块库中调用。
10
交流电压源电路中电流和电阻端 电压波形
11
交流电流源电路仿真法
• 举例3:构建图5-37所示的交流电流源仿 真电路模型,保存为exm_3.mdl。需要观 察:(1)流过电阻的电流;(2)电阻端 电压。
• ③串联性分支模块series RLC Branch:在 SimPowerSystems的模块库中的Elements模块库中 调用,构建电阻R,其参数见图5-39中所示;
• ④Current Measurement和Voltage Measurement: 在SimPowerSystems的模块库中的measurements 模块库中调用,并按照图5-39中所示名称进行命名;
• ③Current Measurement和Voltage Measurement: 在SimPowerSystems的模块库中的measurements 模块库中调用,并按照图5-37所示名称进行命名;
• ④Mux模块:在Simulink 模块库中的Signal Routings模块库中调用;
• ⑤To Workspace模块:在Simulink 模块库中的 Sinks模块库中调用;
用。
5
设置Breaker模块参数
6
RC电路中充电电流和电容器端电压 波形
7
交流电压源电路仿真法
• 举例2:构建图5-35所示的交流电压源仿 真电路模型,保存为exm_2.mdl。需要观 察:(1)流过电阻的电流;(2)电阻端 电压。
8
交流电压源仿真电路模型
9
所需功能模块
• ①交流电压源(AC Voltage Source):在 SimPowerSystems的模块库中的Electrical Sources模块库中调用,连续调用两次,按照图 5-35所示参数进行设置;
• ⑤Mux模块:在Simulink 模块库中的“Signal Routings” 模块库中调用;
18
接前
• ⑥Constant模块:在Simulink的“Sources” 模块库中调用;按照图5-39中设置参数为5,
• ⑦Sum模块:在Simulink 模块库中的“Math Operations” 模块库中调用,按照图5-39中 所示,本例选择“rectangular”(矩形),将 List of signs栏置为++;
• ③串联性分支模块series RLC Branch:在 SimPowerSystems的模块库中的Elements模块库中调用, 需要连续调用两次,分别构建电阻R和电容Ct和Voltage Measurement:在 SimPowerSystems的模块库中的measurements模块库 中调用,并按照图5-32中所示名称进行命名;
• ②串联性分支模块series RLC Branch:在 SimPowerSystems的模块库中的Elements模块 库中调用,构建电阻R,其参数见图5-35所示;
• ③Current Measurement和Voltage Measurement:在SimPowerSystems的模块库 中的measurements模块库中调用,并按照图535所示名称进行命名;
12
交流电流源仿真电路模型
13
所需功能模块
• ①交流电流源(AC Current Source):在 SimPowerSystems的模块库中的Electrical Sources模块库中调用,连续调用两次,按照图5-37 所示参数进行设置;
• ②串联性分支模块series RLC Branch:在 SimPowerSystems的模块库中的Elements模块库中 调用,构建电阻R(构建方法同前),其参数见图537所示;
专题一
之 典型电路设计示例
1
直流电源电路仿真法
• 举例1:构建图5-31所示的RC电路如图532 所 示 , 保 存 为 exm_1.mdl , 直 流 电 源 10V , 电 阻 R=1 , C=500F , 需 要 观 察 : (1)流过电阻的电流波形;(2)电容器 端电压波形。
2
RC充电电路模型
• ⑥Scope模块:在Simulink的sinks模块库中调用,并 按照图5-37所示名称进行命名。
14
交流电流源电路中电流和电阻端 电压波形
15
可控交流电流源电路仿真法
• 举例4:构建图5-39所示的可控交流电流 源仿真电路模型,保存为exm_4.mdl。需 要观察:(1)流过电阻的电流;(2)电 阻端电压。