金属焊接性

合集下载

金属材料的焊接性

金属材料的焊接性
车辆、船舶等结构。)

普通低合金结构钢:
σs<400MPa ω(C)<0.4% 低强度普通低合金结构钢: 16Mn、09Mn2Si 焊接性良好。 高强度普通低合金结构钢: σs>400MPa ω(C)<0.4%~0.5%
15MnVN、18MnMoNb、14MnMoV 焊接性较差。
焊前预热(150~250 ℃ ),焊后缓冷;选用低氢型焊条; 焊件开坡口,且采用细焊条、小电流、多层焊。
3. 高碳钢的焊接
高碳钢:C>0.60% 问题
ω(C)>0.60%
焊接性差。
焊缝区易产生热裂纹 热影响区易产生冷裂纹
措施 与中碳钢类似,采用较高的温度的焊前预热 (250~350 ℃ ),焊后缓冷。
避免选用高碳钢作为焊接结构件。
焊补
合金结构钢的焊接
合金结构钢 机械制造用结构钢 (调质钢、渗碳钢) 普通低合金结构钢 (压力容器、锅炉、桥梁、
氩弧焊、气焊、钎焊、碳弧焊。
2. 冷焊法
焊前不预热或低温预热(400 ℃)的焊补方法。 ①钢芯铸铁焊条: 适用于非加工表面的焊补 ②石墨化铸铁焊条: 适用于较大灰口铸铁件的焊补 焊缝性能与母材基本相同,具有良好的加工性 焊条
③铜基铸铁焊条: 主要用于一般铸铁件的焊补
抗裂性好,可进行机械加工。 ④镍基铸铁焊条: 主要用于重要件加工表面的焊补 具有良好的抗裂性与加工性 ⑤高钒铸铁焊条: 主要用于一般铸铁件的焊补 可进行机械加工、塑性和抗裂较好。
焊接性
3)焊件化学成分
4)工艺参数
3. 焊接性的评定方法
1)实验法
2)碳当量估算法 C — 影响最显著 — 基本元素
其它元素 — 折合成碳的相当含量对焊接性的影响

常用金属材料的焊接性

常用金属材料的焊接性

常用金属材料的焊接性焊接是指将两个或多个金属材料通过加热或施加压力等方式连接在一起的工艺。

常用的金属材料包括钢铁、铝、铜、镍、钛等。

这些金属材料在焊接时拥有不同的特性和焊接性能。

下面将针对常见金属材料的焊接性进行详细介绍。

1.钢铁焊接性钢铁是最常见的金属材料之一,其焊接性能较好。

在钢铁焊接中常用的方法包括电弧焊、气焊、激光焊等。

其中,电弧焊是最常见的焊接方法,在焊接钢铁时通常使用熔化电极和熔化极性相同的焊条。

钢铁的焊接性能取决于其成分、组织结构以及焊接方法等因素。

2.铝焊接性铝是一种常见的轻金属,其焊接性能较差。

由于铝的氧化膜容易形成,这会降低焊接接头的强度和质量。

为了提高铝的焊接性能,可以采用预处理、焊接保护气体等方法。

常见的铝焊接方法有气焊、TIG焊等。

在气焊中需要使用钡剂等预处理剂来清除氧化膜,而TIG焊则可以通过惰性气体的保护来减少氧化膜的生成。

3.铜焊接性铜是一种良好的导电材料,其焊接性能较好。

常见的铜焊接方法有气焊、TIG焊、电弧焊等。

在铜焊接中,氧化膜的清除很重要,可以使用钝化剂等预处理剂来清除氧化膜。

TIG焊和电弧焊是常用的铜焊接方法,可以通过选择合适的焊接材料和控制焊接参数来获得理想的焊接接头。

4.镍焊接性镍是一种耐腐蚀性较好的金属材料,其焊接性能较好。

常见的镍焊接方法有电弧焊、TIG焊等。

镍焊接时,需要注意选择合适的焊接材料和适当的焊接参数来获得理想的焊接接头。

在镍焊接中,尤其需要注意焊接电缆和接地端之间的电气连接,以避免电弧腐蚀。

5.钛焊接性钛是一种重要的结构材料,其焊接性能较好。

常用的钛焊接方法有电弧焊、激光焊等。

在钛焊接中,需要注意选择合适的焊接材料和适当的焊接参数,以避免产生气泡和裂纹等缺陷。

此外,钛焊接还需要进行保护气体的控制,以避免氧化等不良影响。

综上所述,常用金属材料的焊接性能因成分、组织结构以及焊接方法等因素的不同而有所差异。

了解和掌握这些材料的焊接性能对于实际应用和工程设计具有重要意义,能够确保焊接接头的质量和可靠性。

金属的焊接性

金属的焊接性

金属的焊接性一、金属焊接性1.概念:金属焊接性就是金属是否能适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。

含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行的能力。

评价标准:如果某种金属采用简单的焊接工艺就可获得优质焊接接头并且具有良好的使用性能或满足技术条件的要求,就称其焊接性好;如果只有采用特殊的焊接工艺才能不出缺陷,或者焊接热过程会使接头热影响区性能显著变坏以至不能满足使用要求,则称其焊接性差。

2.影响焊接性的因素1)材料因素材料是指用于制造结构的金属材料及焊接所消耗的材料。

前者称为母材或基本金属,即被焊金属。

后者称为焊接材料包括焊条、焊丝、焊剂、保护气体等。

材料因素包括化学成分、冶炼轧制状态、热处理状态、组织状态和力学性能等。

其中化学成分(包括杂质的分布与含量)是主要的影响因素。

碳对钢的焊接性影响最大。

含碳量越高,焊接热影响区的淬硬倾向越大,焊接裂纹的敏感性越大。

也就是说,含碳量越高焊接性越差。

除碳外钢中的一些杂质如氧、硫、磷、氢、氮以及合金钢中常用的合金元素锰、铬、钴、铜、硅、钼、钛、铌、钒、硼等都不同程度地增加了钢的淬硬倾向使焊接性变差。

若焊接材料选择不当或成分不合格,焊接时也会出现裂纹、气孔等缺陷,甚至会使接头的强度、塑性、耐蚀性等使用性能变差。

2)设计因素设计因素是指焊接结构在使用中的安全性不但受到材料的影响而且在很大程度上还受到结构形式的影响。

例如结构刚度过大或过小,断面突然变化,焊接接头的缺口效应,过大的焊缝体积以及过于密集的焊缝数量,都会不同程度地引起应力集中,造成多向应力状态而使结构或焊接接头脆断敏感性增加。

3)工艺因素工艺因素包括施焊方法(如手工焊、埋弧焊、气体保护焊等)、焊接工艺(包括焊接规范参数、焊接材料、预热、后热、装配焊接顺序)和焊后热处理等。

在结构材料和焊接材料选择正确、结构设计合理的情况下工艺因素是对结构焊接质量起决定性作用的因素。

11-1金属的焊接性

11-1金属的焊接性

工艺措施对防止焊接接头的缺陷也起到重要作用 焊前预热、焊后缓冷和消氢处理对防止热影响区的 淬硬变脆降低焊接应力防止裂纹是比较有效的措施。 构件类型方面: 焊接构件的结构设计会影响应力状态,从而影响焊接性。 接头处于刚度较小的状态,能自由收缩。可防止裂纹 注意避免缺口、截面突变、焊缝余高过大、交叉焊缝 不必增大焊件厚度和焊缝体积,否则产生多向应力。 使用条件方面: 高温工作时,易产生蠕变。 低温工作或冲击载荷时,容易发生脆性破坏。 在腐蚀介质下工作时,接头要求具有耐腐蚀性。
常用金属材料的焊接
目的与要求: ①掌握金属焊接性的含义、内容、影响因素。 ②掌握碳当量的含义、计算公式及评定方法。 重点: ①碳当量焊接性的含义、焊接性的评定方法及工艺的拟订。 ②掌握碳当量的含义、计算公式及评定方法。 难点: 焊接性能的影响因素及碳当量的计算公式和评定方法。
一、焊接性概念 金属的焊接性:指金属材料对焊接加工的适应性。也就是 说在一定的焊接工艺条件下,获得优质焊 接接头的难易程度。 内容:包括接合性能和使用性能。 接合性能:在一定的焊接工艺条件下,一定的金属形成 焊接缺陷的敏感性。 使用性能:在一定的焊接工艺条件下,一定的金属的焊 接接头对使用要求的适应性。
同时具有预期的使用性能。
焊接性细分 工艺焊接性——金属材料对各种焊接方法的适应能力。 金属材料本身、焊接热源、工艺措施。 使用焊接性——焊接接头满足技术条件中所规定的使用 性能的能力。
焊接性还可以分为:冶金焊接性和热焊接性。
二、焊接性影响因素 主要有四个方面:材料方面、焊接方法及工艺方面、 构件类型方面、使用条件方面。 材料方面: 母材和焊接材料(如:焊条、焊丝、焊剂、保护气体等)。 母材的性质起决定性影响 焊接材料起关键性作用 如母材与焊接材料匹配不当时,就会造成焊缝金属的化 学成分不合格,力学性能和其他使用性能降低。 焊接方法及工艺方面: 焊接方法对焊接性的影响主要在两个方面 焊接热源的特点 影响热循环 对熔池和接头的保护 影响焊接冶金过程

金属材料的焊接性

金属材料的焊接性

第三节 金属材料的焊接性1. 焊接性的概念—定焊接技术条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性称为金属材料的焊接性。

2.焊接性的评价1) 碳当量法碳当量是把钢中的合金元素(包括碳)的含量,按其作用换算成碳的相对含量。

国际焊接学会推荐的碳当量(CE)公式为:%)++++++=10015)Cu ()Ni (5)V ()Mo ()Cr (6)Mn ()C ([CE ⨯ωωωωωωω 式中,ω(C)、ω(Mn)等-碳、锰等相应成分的质量分数(%)。

当CE<0.4%时,钢材的塑性良好,淬硬倾向不明显,焊接性良好。

在一般的焊接技术条件下,焊接接头不会产生裂纹,但对厚大件或在低温下焊接,应考虑预热;当CE 在0.4~0.6%时,钢材的塑性下降,淬硬倾向逐渐增加,焊接性较差。

焊前工件需适当预热,焊后注意缓冷,才能防止裂纹;当CE>0.6%时,钢材的塑性变差。

淬硬倾向和冷裂倾向大,焊接性更差。

工件必须预热到较高的温度,要采取减少焊接应力和防止开裂的技术措施,焊后还要进行适当的热处理。

2)冷裂纹敏感系数法 冷裂纹敏感系数的其计算式为:%++++++=100]60060]H [)B (510)V (15)Mo (60)Ni (20)Cu ()Mn ()Cr (30)Si ()C ([⨯++++h P W ωωωωωωωωω式中P W -冷裂纹敏感系数;h -板厚;[H]-100g 焊缝金属扩散氢的含量(mL)。

冷裂纹敏感系数越大,则产生冷裂纹的可能性越大,焊接性越差。

3.低碳钢的焊接低碳钢的CE 小于0.4%,塑性好,一般没有淬硬倾向,对焊接热过程不敏感,焊接性良好。

4.中、高碳钢的焊接中碳钢的CE 一般为0.4%~0.6%,随着CE 的增加,焊接性能逐渐变差。

高碳钢的CE 一般大于0.6%,焊接性能更差,这类钢的焊接—般只用于修补工作。

为了保证中、高碳钢焊件焊后不产生裂纹,并具有良好的力学性能,通常采取以下技术措施:1)焊前预热、焊后缓冷 焊前预热和焊后缓冷的主要目的是减小焊接前后的温差,降低冷却速度,减少焊接应力,从而防止焊接裂纹的产生。

金属材料的焊接性

金属材料的焊接性

金属材料的焊接性一、焊接性的概念焊接性是指金属材料对焊接加工的适应性。

主要指在一定焊接工艺条件下,获得优质焊接接头的难易程度。

它包括两个方面的内容,其一是接合性能:即在一定焊接工艺条件下,一定的金属形成焊接缺陷的敏感性;其二是指使用性能:即在一定焊接工艺条件下,一定金属的焊接接头对使用要求的适应性。

金属的焊接是一个复杂的物理和化学变化、反应的过程。

在焊接过程中焊接接头几乎出现所有的冶金现象,如熔化、结晶、蒸发、金属反应、熔渣与金属的反应、固态相变等;此外焊缝和热影响区各不同位置,由于加热、冷却、相变都是不均匀的。

这样就会造成很大的内应力和集中应力,甚至可以导致各种类型的裂纹或形成焊接接头的其它缺陷。

一般低碳钢焊接,不需要复杂的工艺措施就能获得良好的焊接质量,因而说低碳钢的焊接性良好。

但如果用同样的工艺焊接铸铁,则会出现裂纹、断裂等严重缺陷,得不到完好的焊接接头。

从这个意义上讲,铸铁的焊接性能差。

但是,在焊接铸铁时,如果使用适当的气焊丝和气焊熔剂(焊接材料)并采取相适应的焊接工艺,如高温预热、缓冷、锤击等工艺措施,就能获得满意的焊接接头。

由此可见,金属材料的焊接性不仅与母材本身的化学成分及性能有关,而且还与焊接材料、焊接工艺措施有关。

金属材料的焊接性包括接合、使用两方面的性能。

有时,完整的无缺陷的焊接接头并不一定具备满足要求的使用性能。

例如,镍钼不锈钢的焊接,比较容易获得接合性能良好的焊接接头,但如果焊接方法和工艺措旋不合适,则焊缝金属和焊接热影响区的抗腐蚀性就有可能达不到使用性能的要求,造成使用上的不合格。

总之,影响焊接性的因素包括:(一)母材、焊接材料母材和焊接材料(如气焊丝、气焊熔剂等),它们直接影响焊接性,所以正确选用母材是保证焊接性良好的重要基础。

(二)焊接工艺对同一母材采用不同的工艺方法和措施,所表现的焊接性就不同。

例如,钛合金对氧、氮、氢极为敏感,用气焊和手工电弧焊很难实现焊接,而用氩弧焊或等离子孤焊则可以取得满意的效果。

金属焊接性

金属焊接性
主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂 纹的敏感性。
试验焊缝在各种温度下施焊,焊后静置24小时再检测 和解剖,计算表面裂纹率,根部裂纹率和断面裂纹率。
表面裂纹率
C f
l f 100 % L
根部裂纹率
Cr
lr 100 % L
断面裂纹率(在试样焊缝上切下4-6试片,检查5个断面上裂纹
横向拘束主要用于测试焊缝中央结晶裂纹和高温失塑裂 纹;纵向拘束主要用于测试结晶裂纹和液化裂纹。
Cr 5
Mo 4
V 14
(%)
适用于低合金调质钢,其成分范围:
C≤0.20 Si≤0.55 Mn≤1.50 Cu≤0.50
Cr≤1.25 Mo≤0.70 V≤0.10 B≤0.006
Ni≤2.50
δ<25mm,手弧焊E=17kJ/cm,预热范围
σb=500MPa σb=600MPa σb=700MPa σb=800MPa
当于若干碳量折合并叠加起来评估其综合影响的方法。
CE( W )
C
Mn 6
Cu Ni 15
Cr
MoV 5
(%)
适用于非调质低合金高强钢,CE 0.45% 25mm
可不预热;CE 0.41% C 0207 % 37mm 可
不预热。
日本JIS和WES采用
Ceq
C
Mn 6
Si 24
Ni 40
H
Pc C 30
20
5B %
60 15 10
600 60
适用条件
C=0.07~0.22 Si≤0.60 Mn=0.4~1.40 Mo≤0.70
Cu≤0.50 V≤0.12
Ni≤1.20 Cr≤1.20 Nb≤0.04 Ti≤0.05

金属焊接性及其试验方法

金属焊接性及其试验方法
• (2)严格按规定处理焊接材料 焊条、焊剂应按规定烘干和保存;焊丝应 严格除油、除锈;保护气体要经提纯去除杂质后使用。
• (3)合理安排焊接顺序 大件或复杂形状的工件焊接时,为减少应力及变 形,必须安排好各条焊缝的焊接次序。焊接次序安排不当,会影响接头 性能,甚至引起焊接缺陷,从而使焊接性变差。
• (4)正确制定焊接规范 只有焊接规范适当时,才能保证良好的熔合比 和焊缝形状系数。这不仅对防止产生裂纹等缺陷是必要的,而且对保证 接头性能也是十分重要的。除了控制线能量外,还要控制焊接电流、电 弧电压及焊接速度,使之保持在一定的范围内。此外,预热温度和层间 温度的控制也是不可忽视的。
• 二、烽接性试验方法分类
• 评定焊接性的方法有许多种,按照其特点可以归纳为以下 几种类别:
• (一)直接模拟试验类
• 这类焊接性评定方法一般是仿照实际焊接的条件,通过焊 接过程观察是否发生某种焊接缺陷或发生缺陷的程度,直 观地评价焊接性的优劣,有时还可以从中确定必要的焊接 条件。
• (1)焊接冷裂纹试验 常用的有插销试验、斜Y坡口对接裂 纹试验、拉伸拘束裂纹试验(TRC)、刚性拘束裂纹试验 (RRC)等。
• (2)焊接热裂纹试验 常用的有可调拘束裂纹试险、压板对 接(FISCO)焊接裂纹试验、窗形拘束对接裂纹试验、刚 性固定对接裂纹试验等
• (3)再热裂纹试验 有H型拘束试验、缺口试棒应力松弛试 验、U形弯曲试验等。还可以利用插销试验进行再热裂纹 试验。
• (4) 层状撕裂试验 常用的有Z向拉伸试验、Z向窗口试验、 Cranfield试验等。
通常是通过热裂纹试验来进行的。
(二)焊缝及热影响区金属抵抗产生冷裂纹的能力

焊缝及热影响区金属在焊接热循环作用下,由于组织
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属焊接性文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]2012太原科技大学期末考试试题金属焊接性:是金属是否能适应焊接加工而形成完整的,具备一定使用性能的焊接接头的特性。

含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行能力。

影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。

1.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性中碳调质钢的焊接有冷裂纹,热裂纹热影响区性能的变化(脆化,软化)等问题。

特殊性能的低合金钢分为低温刚,耐候钢,低合金耐蚀钢三类。

珠光体耐热钢提高高温强度的途径是碳含量低,合金元素少(不超过3%-5%)热膨胀系数小导热性好,并有良好的冷热加工性,加入Cr,Mo,W,V,等主要强化铁素体,提高钢的高温强度。

不锈钢空冷后室温组织分为铁素体钢,奥氏体钢,马氏体钢,奥氏体-铁素体双相钢,沉淀硬化型或时效硬化型钢。

耐热钢的脆化形式淬火脆化,回火脆化,时效脆化,二次淬火脆化或高铬铁素体钢的晶粒长大脆化,及铬镍奥氏体钢沿晶界析出碳化物脆化,475℃脆化和σ相脆化。

珠光体耐热钢以Cr,Mo,W,V,为主加元素的中低合金钢。

铝及铝合金焊接时会出现氢气孔,还存在强的氧化能力,热导率和比热容大,热裂纹倾向大,容易形成气孔,焊接接头容易软化,合金元素蒸发和烧损,焊接接头的耐腐蚀性低于母材,固态和液态无色泽变化等问题。

铜及铜合金焊接时易出现难融合及易变形,焊缝易产生热裂纹,易生成气孔,焊缝塑形下降,导电性下降,耐蚀性下降等问题。

焊接紫铜常会出现哪些问题答:1难融合及易变形2产生热裂纹3产生气孔4接头塑形导电性耐蚀性下降。

出现问题的原因1热导率大使热量很快消失,线胀系数和收缩率大,易变形。

2铜在融化状态易与其中杂质氧反应生成Cu2O,Cu2O与Cu形成低熔点共晶,且共晶温度低于铜的熔点,使焊缝形成热裂纹,S与O相同。

3焊缝为单质α组织,易生成粗大的晶粒加剧热裂纹生成,收缩率及线胀系数大,应力较大促使热裂纹生成。

4氢及水蒸气在焊接时形成氢气孔.5焊缝及热影响区出现粗大晶粒,加入一定量的脱氧元素,降低了焊缝塑性与导电性,合金元素的氧化和蒸发,接头的各种缺陷。

晶界上脆性共晶存在导致耐蚀性下降。

如何防止1使用大功率的热源,在焊前或焊中采取预热或保温措施,提高加工刚度,增加防变形。

2对融化金属进行脱氧,且严格控制焊缝中S的含量3控制焊接时氢的来源,降低熔池的冷却速度,使气体容易逸出使气体容易析出减少氧氢来源和对熔池进行适当的脱氧使熔池慢冷。

4采用埋弧焊或惰性气体保护焊提高焊缝金属的纯度。

铸铁与低合金钢产生裂纹的原因有何不同论述产生裂纹的特点。

答:铸铁产生裂纹主要是冷裂纹(热应力超过其塑性变形能力而发生突然断裂)和热裂纹(焊缝C,S,P含量不均形成低熔点共晶在奥氏体间分布),低合金钢产生的裂纹主要是冷裂纹(淬硬组织引起)和热裂纹(随碳及合金元素增加结晶偏析倾向形成),再热裂纹(焊后消除应力热处理或焊后高温加热)。

特点:铸铁:1焊缝和热影响区都有较大的冷裂纹敏感性2一般在400℃以下伴随脆性断裂声3尺寸较大,甚至贯穿整个焊缝的宏观裂纹4焊缝底部形成热裂纹甚至宏观热裂纹。

低合金钢:1随着钢材强度级别的提高,合金元素的增加,淬硬倾向逐渐增大,冷裂纹倾向加大2热裂纹一般不会出现,但随碳含量和合金元素含量的增加,也可出现热裂纹3为加强淬透性和回火稳定性加入的一些合金元素易引起再热裂纹。

含铌及钛的不锈钢在焊接接头产生刀状腐蚀的原因是什么答:固化之后加上敏化,其敏化机理是晶界析出碳化物,紧靠熔合线的金属加热到1000℃以上时,原先析出的碳化钛开始分解,碳和钛都向奥氏体中溶解,变成固溶态,如果达到1300℃以上,如果时间允许,碳化钛几乎可以完全溶解,于是金属就变成了固溶处理,如果该处正好是下一道焊缝热影响的800-1000℃区带,冷却过程中肯定要经过450-800℃的敏化温度,产生晶间腐蚀的倾向。

单道焊缝的结构经过敏化温度的受热,同样要在热影响区的过热段出现晶间腐蚀的倾向,由于前次焊缝的过热区段很窄,再次受热而敏化区也就很窄放在腐蚀介质作用下形成刀状腐蚀。

低碳钢与其它钢为什么要预热,预热的作用是什么答:(1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。

同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。

(2)预热可降低焊接应力。

均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。

这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。

(3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。

合金钢结构的强化途径有哪些钢的强化途径有哪些简述它的机理。

(1)细晶强化(2)相变强化(3)加工强化(4)合金强化(5)热处理强化珠光体不锈钢,奥氏体不锈钢与异种钢焊接时易出现什么问题1、焊缝化学成份的控制2、凝固过渡层的形成3碳迁移过渡层的形成4残余应力的形成。

铝及铝合金焊接时易出现什么气孔氢气孔产生原因由于铝的本质特性决定与钢相比产生气孔所需临界氢分压最低,在高温时融化的铝中吸收大量氢,在凝固时,请的溶解度突变,以气泡形式溢出,因铝导热率大,熔池冷却速度快,所以气孔来不及逸出,尤其是纯铝。

如何预防1限制氢来源2控制焊接工艺3调整电弧气氛。

焊接预热的作用是什么1减少焊缝及热影响区的淬硬程度,提高抗裂性2降低焊接应力,降低焊接应变速率3降低焊接结构的拘束度。

镁合金焊接时容易出现哪些问题如何防止答:粗晶问题、氧化和蒸发、热应力、焊缝下榻、气孔、热裂纹。

其中气孔和裂纹是最常见的缺陷。

防止措施:一、减少氢的来源。

二、选择合理的焊接工艺参数。

三、焊前预热。

奥氏体不锈钢产生裂纹的主要原因答:热导率小,线膨胀系数小,在焊接区降温期焊接接头必然要承受较大的拉应力,促成各种类型裂纹的产生。

σ相析出脆化的原因是一些镍含量不是很高的奥氏体不锈钢,为提高焊缝的抗热裂纹性而设计的体积分数为3-5%或更高的铁素体组织的焊缝,在650-850℃高温持续服役的过程中会发生六相脆变。

与焊缝金属的化学成份,组织,加热温度保温时间等有关。

如何防止1选择焊接材料时不能只考虑防止热裂纹而选用使焊缝出现多量铁素体的组织2严格限制加速σ相形成的元素(硅、铌等)3适当降低铬含量提高镍含量4选用热输入小的焊接方法5避免焊件在650-850℃进行焊后热处理,减少在此温度停留时间。

低碳调质钢和中碳调质钢哪类对冷裂纹敏感中碳调质钢更敏感。

为什么答:因为中碳调质钢含碳量高,加入合金元素也多,在500℃以下的温度区间过冷奥氏体具有更大的稳定性所致,由于Ms点较低在低温下形成的马氏体,难于产生自回火效应,使其冷裂纹敏感性变高。

奥氏体不锈钢焊接时希望焊缝获得奥氏体组织和少量铁素体组织,为什么答:焊缝金属中添加一定量的铁素体组织使焊缝成为奥氏体-δ铁素体双相组织,有效的防止热裂纹的产生同时提高焊缝金属的抗晶间腐蚀能力。

分析18-8Ti或18-8Nb产生刀状腐蚀的原因答:固溶之后加上敏化,其敏化机理是晶界析出碳化物,紧靠熔合线的金属加热到1000℃以上时,原先析出的碳化钛开始分解,碳和钛都向奥氏体中溶解,变成固溶态,如果达到1300℃以上,如果时间允许,碳化钛几乎可以完全溶解,于是金属就变成了固溶处理,如果该处正好是下一道焊缝热影响的800-1000℃区带,冷却过程中肯定要经过450-800℃的敏化温度,产生晶间腐蚀的倾向。

单道焊缝的结构经过敏化温度的受热,同样要在热影响区的过热段出现晶间腐蚀的倾向,由于前次焊缝的过热区段很窄,再次受热而敏化区也就很窄放在腐蚀介质作用下形成刀状腐蚀。

防止措施:1采用低碳的18-8型不锈钢材和相应的低碳型不锈钢焊接材料2采用合理的焊接参数和工艺。

分析钛及钛合金焊接时气体污染引起的接头脆化的原因答:钛在高温下,尤其是在熔融状态下对气体(O2,N2,H2)有很大的活泼性,这些气体被吸收后直接引起焊接接头脆化,氧和氮原子以固溶方式溶解于钛中,使得钛发生晶格畸变,强化硬度增加,塑形,韧性降低,随焊缝的氢含量增加显着降低,而焊缝氢含量对焊缝的强度提高及韧性降低作用不明显。

防止措施:1表面油污清理2表面打磨去除氧化膜3用惰性气体作为保护气体4对温度超过400℃的焊缝和热影响区要加以妥善保护5限制基本金属及焊丝中的氧含量,选用含氢低的焊接材料。

奥氏体不锈钢(18-8)或铁素体不锈钢如Gr25产生晶间腐蚀有何不同答:1出现位置不同,铁素体在紧靠焊缝的高温区,奥氏体在热循环峰值温度600-1000℃的热影响区也可发生在焊缝金属上。

2奥氏体中在多层多道焊中常出现,铁素体无此特性。

3铁素体在700-800℃进行短时间保温退火处理可恢复耐蚀性,奥氏体无次特性。

4铁素体在加热到950℃以上温度区域冷却时会发生倾向,而奥氏体敏化温度为450-850℃且需长时加热。

分析它的机理机理相同都是贫格理论,由于金属晶粒内部过饱和的固溶体碳原子会逐步向晶粒边界扩散与晶粒边界的铬原子结合而成碳化物并沿晶界沉淀析出由于铬原子的扩散速度比碳原子慢得多来不及补充形成的碳化物所消耗的铬,导致晶粒边缘贫铬降低了耐腐蚀能力防止措施一铁素体:焊后热处理在700-900℃短时间保。

二奥氏体,工艺1选用适当的焊接方法采用小线能量2工艺参数的制定原理以熔池停留时间最短为宗旨。

3采用窄焊缝,多层多道焊,不许摆动操作。

4进行稳定化处理或固溶处理。

冶金1使焊缝金属具有奥氏体-铁素体双相组织其中δ铁素体体积分数为5-12% 。

2在焊缝中加入比铬跟容易与碳结合的稳定元素。

3降低焊缝金属的含碳量。

相关文档
最新文档