(完整)09川大高等代数及答案
四川大学931高等代数2009年(回忆版)考研专业课真题试卷

X ′M
+ MX
= 0},∀X
∈ M 2r+1(F ), eX
=
∞ k =0
Xk k!
,
(1)求B的维数和一组基
(2)证明det(eX ) = 1
i
(3)设(,
)是F上的一个双线性型,ε = i
(0,...,1,...0),
i
=
1,
2,
..,
2r
+ 1.
M 是这个双线性型在上述基下的一个度量矩阵,证明对任意的α,β
精都教育——全国 100000 考生的选择
我们的梦想,为成就更多人的梦想
四 川 大 学 研 究 生 入 学 考 试 试 题
原版考研真题试卷
更多考研真题、笔记、模拟、题库、讲义资料就上精都考研网 /
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
证明Ax=β 在F中有解当且仅当它在K中有解
2 2 −2
3.
A
=
2 −2
−1 4
−41 大概数字是这样吧,具体忘了
(1)A在F上是否相似与对角矩阵,说明理由 (2)求A的最小多项式 (3)f (X)=X′AX,求f (X)的一个标准形
4.好像是前几年的一个类似题吧,说明 A 与 B 在任何数域上都不相似,另一问忘记了,这 些忘记的题一般都不难,掌握方法都很简单的。呵呵
有(eXα, eXβ ) = (α , β )
五、证明数域 F 上的任意一个 n 元多项式都可以表示成一次齐次多项式幂的线性组合。
f (x)使得f (A) = 0
4.设 f (x) = 3x2 + 2x +1,α1,α2,α3是f (x)的三个根,求值
高等代数习题答案

《高等代数》习题答案一、1、存在多项式()()()()()()1,=+x v x g x u x f x v x u 使得与2、()()x f x f '和互质3、()()的重因式为x f x p4、05、1,-26、()k n n --121 7、3 8、- 48 9、相 10、相11、1或2(有非零解) 12、()()A r A r = 13、无 14、12 15、9816、⎥⎦⎤⎢⎣⎡-0001 17、E 18、()2222121,,r n Z Z Z x x x f ++= 19、()22122121,,r p p n Z Z Z Z x x x f --++=+ 20、大于零21、α为非零向量,α不能由β线性表出 22、无 23、关于V 的加法和数乘封闭 24、对于 V 中任意向量α、β和数域P 中任意数K 都有()()()βαβαA A A +=+和()()ααkA k A = 25、相似 26、线性无关的27、线性变量A 在数域P 中有个互异的特征的值 28、1 29、T A ,1 30、线性无关的 31、正交矩阵二、1、1)()()7422+--x x x 有理根22)()()333122+⎪⎭⎫ ⎝⎛-+x x x 有理根31,2-2、()()()n mx x n mx x n mx x x ---++=++-2342211=b ax x x x +++-23463 由7,37,3-==⇒=-=b a n m3、1)0211211211=+++→cba2)31131031605510019182402113------→9532001235250019182402113-----→409201235250019182402113=-----→3)1103100321011111033100321011111993952032101111=→→→4)()()()xaan x a x an x a a an x111-+-+-+→()[]a n x 1-+=xaa x a a111→()[]a n x 1-+ax a x a a --001=()[]()11---+n a x a n x5)n n y x +6)nna a a a a1001010011110---→nn a a a a a a 211011⎥⎦⎤⎢⎣⎡---=4、1)系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11178424633542 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→572527003542 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→000570005442通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-===-=24231221157522t x t x t x t t x 则基础解系[]⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--==57,1,0,520,0,1,221x x2)系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----7931181332111511⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→0000004720123018144472047201511通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=241321221122723t x t x t t x t t x 则基础解系为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=1,0,2,10,1,27,2321x x5、1)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----112131111202121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→00000151505205301151501515002121通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-+===+=21423122151515352t t x t x t x t x 令21,t t 为0,则特解⎥⎦⎤⎢⎣⎡=51,0,0,520x通解⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=511053101051005221t t x , 21,t t 为任意常数2)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---787695754636323⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→0000015100090232102001510036323通解为⎪⎪⎩⎪⎪⎨⎧=-==+=24231221151332t x t x t x t t x 令21,t t 为0,则特解[]0,1,0,00=x通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=150300132010021t t x , 21,t t 为任意常数6、扩展矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------11111111112111111111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00220020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→022********220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→02200020*******11111 则⎪⎪⎩⎪⎪⎨⎧=+-=--=-=+++022022141434244321x x x x x x x x x ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒414141454321x x x x则432141414145ααααβ--+=5、因四元非齐次线性方程组的系数矩阵秩为3, 则通解形式为110x t x x +=则通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=432154321t x , 1t 为任意常数6、()()A A x A x A 122--=⇒=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1111221124100111032100111011x ⎥⎥⎦⎤⎢⎢⎣⎡411010103⎥⎥⎦⎤⎢⎢⎣⎡-----=3222352257、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1012010411001210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→1012001210010411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1283001210010411⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→2112311240101120011232001210011201则逆矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----21123124112 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1243012210011101101201221000111110111010012001111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→3132341032313201031313100112430323132010313131001,则逆矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3132343231323131318、原式=()1123---AA A 3421322123111=⎪⎭⎫⎝⎛⋅=⋅-=--A9、⎥⎦⎤⎢⎣⎡22211211X X X X ⎥⎦⎤⎢⎣⎡00CA ⎥⎦⎤⎢⎣⎡==A X CX A X CX E 21221112⎪⎪⎩⎪⎪⎨⎧====⇒--112121221100C A AX X X 则⎥⎦⎤⎢⎣⎡=---00111ACX10、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----524212425,,011225,05>=>01524212425>=---- 正定 2)064320222210,02422210,010,3020222210<-=-<-=->⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 不正定11、0545212111,0111,01,521211122>--=-->-=>⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--t t t tt t t t t则054<<-t12、1)031610213510610213112311213≠-=---→---→----03321021112210211131021211≠=-→--→,故为3P 的两组基 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----173510101610211213131112021311211213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→0721010161031280313、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----00000110201000003306031155033033311341335512333则基为[][]3,3,1,34,5,2,3---与, 维数为214、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100,0010101001M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡131211232221333231a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111213212223313233a a a a a a a a a2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10010001,11000011k M k M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211111a a a a k a k a k a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33323123222113121111a ka a a k a a k a ka a3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100011001,100110011M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-333231231322122111131211a a a a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-++--+=33323231231322122221121113121211a a a a a a a a a a a a a a a a15、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111101011B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101则=B 110010001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111101011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21122011016、1)()()215122212221+-=---------=-λλλλλλA E 特征值1,521-==λλ(二重)51=λ代入()01=-X A E λ得基础解系[],1,1,11=X 特征向量为321εεε++12-=λ代入()02=-X A E λ得基础解系[][]1,1,0,1,0,132-=-=X X特征向量为3231εεεε--和由3dim dim dim 21P w w =+λλ知可对角化。
2009年普通高等学校招生全国统一考试(四川卷)数学试题及详细解答(文科)

2009年高考数学试题四川卷(文)全解全析一、选择题(5×12=60分)1、设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂= A. {x |-7<x <-5 } B. {x | 3<x <5 }C. {x | -5 <x <3}D. {x | -7<x <5 } 【答案】C【解析】S ={x |55<<-x },T ={x |37<<-x }∴T S ⋂={x | -5 <x <3}2、函数)(21R x y x ∈=+的反函数是A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y 【答案】C 【解析】由y x y x y x 221log 1log 12+-=⇒=+⇒=+,又因原函数的值域是0>y ,∴其反函数是)0(log 12>+-=x x y3、等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 【答案】B【解析】设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1004、已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数【答案】D【解析】∵x x x f cos )2sin()(-=-=π,∴A 、B 、C 均正确,故错误的是D【易错提醒】利用诱导公式时,出现符号错误。
5、设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。
(完整)09川大高等代数及答案

四川大学2009年攻读硕士学位研究生入学考试题一、解答下列各题.1.(5分)设)(x f 是数域F 上次数为2008的多项式,证明:20092不可能是)(x f 的根.F 为有理数域该命题成立如题:设)(x f 是有理数域Q 上一个m 次多项式(0≥m ),n 是大于m 的正整数,证明:n2不可能是)(x f 的根.证明:反证法:假设n2是)(x f 的根,有)2()2(--n nx x 对于2-nx ,存在素数2=p110,,,-n a a a p Λ、p 不能整除n a 、2p 不能整除0a由艾森斯坦判别法,有2-nx 在有理数域不可约,则有)()2(x f x n -则n x f ≥∂))((与题设矛盾,故假设不成立,即n 2不可能是)(x f 的根.2.(10分)用代数基本定理证明,实数域R 上的任意不可约多项式只能是一次多项式或满足042<-ac b 的二次多项式:c bx ax ++2.证明:由代数基本定理,任意多项式在复数域都可以分解为一次多项式的乘积 则令多项式为)())(()(21n a x a x a x k x f ---=Λ (C a i ∈,R k ∈且0≠k ) 当R a i ∈时,则i a x -是实数域R 上的一次不可约多项式当R a i ∉时,有i a 也是)(x f 的根,有i i i i i i a a x a a x a x a x ++-=--)())((2i i i i a a x a a x ++-)(2满足042<-ac b由)(i i a a +-,R a a i i ∈,则i i i i a a x a a x ++-)(2是实数域R 上的二次不可约多项式故实数域R 上的任意不可约多项式只能是一次多项式或满足042<-ac b 的二次多项式:c bx ax ++2.3.(5分)设A 是数域F 上的n 阶方阵.要求不用Hamilton-Caylay 定理,证明:存在F 上的多项式)(x f 使得O A f =)(. 证明:取A 的特征多项式A E g -=λλ)(设)(λB 为A E -λ的伴随矩阵,有E g E A E A E B )())((λλλλ=-=- 由)(λB 的元素是A E -λ各个代数余子式,则1))((-≤∂n B λ 有11201)(---+++=n n n B B B B Λλλλ令n n n a a g +++=-Λ11)(λλλ,得E a E a E E g n n n +++=-Λ11)(λλλ ①A B A B B A B B A B B B A E B n n n n n n 1211220110)()()())((-------++-+-+=-λλλλλλΛ ②比较①、②,有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=----E a A B Ea A B B E a A B B E a A B B EB n n n n n 11212121010ΛΛΛ,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=---------Ea A B A a A B A B A a A B A B A a A B A B A A B n n n n n n n n n nn n n 11221221122110110ΛΛΛ左边和右边全部相加,有O E g =)(λ,即0)(=λg 任取)()()(x g x q x f =,则有O A f =)(4.(10分)设1α、2α、3α是多项式123)(3++=x x x f 的全部根.求下式的值 ))()((212331223221ααααααααα+++解:由根与系数的关系得0321=++ααα、32323121=++αααααα、31321-=ααα)31)(31)(31())()((323222121212331223221ααααααααααααααα---=+++]1)()([91)1)(1)(1(271333231333233313231333231333231321-+++++--=---=αααααααααααααααααα)(91)(9124328333231333233313231ααααααααα++-++-=① )(91)111(243124328333231333231αααααα++-++-=)(91243124328333231333231333233313231αααααααααααα++-++-= ② 由①、②得,0333233313231=++αααααα,则原式)(9124328333231ααα++-=由13))((3)(3213231213213321333231-=+++++-++=++αααααααααααααααααα得原式24355=二、解答下列各题.1(10分)叙述并证明线性方程组的克莱默(Cramer )法则.2(5分)设F ,K 都是数域且K F ⊆,设β=AX 是数域F 上的线性方程组. 证明:β=AX 在F 上有解当且仅当β=AX 在K 上有解. 证明:令A 为n m ⨯矩阵 必要性:令X 为β=AX 在F 上的解,有n F X ∈,由K F ⊆,得nK X ∈X 也为β=AX 在K 上的解充分性:β=AX 在K 上有解, 有)()(A r A r =由A ,)(F M A n m ⨯∈,则在F 上,也有)()(A r A r =,故β=AX 在F 上有解3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=142412222A (1)(5分)在任意数域F 上,A 能否相似于一个对角阵?说明理由. (2)(5分)求A 的极小多项式.(3)(5分)设AX X X f ')(=,其中)',,(321x x x X =是列向量.求)(X f 的一个标准型.解:(1))6()3(1424122222+-=+---+--=-λλλλλλA EA 的特征值为3,3,6-当3=λ时,000002214424422213-=----=-A E基础解系由2)3(=--A E r n 个线性无关的向量构成)'1,1,4(-、)'1,1,0(当6-=λ时,0009904525424522286--→-------=--A E 基础解系由1)6(=---A E r n 个向量构成)'2,2,1(- 故A 对应3个线性无关的特征向量,A 可对角化取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211211104P ,则有)6,3,3(1-=-diag AP P 由)(,3Q M C A ∈、又Q ∈-6,3,则A 在有理数域可以对角化由任何数域都包含有理数域,故在任意数域F 上,A 都能相似于一个对角阵(2)A 的特征多项式为O E A E A A f =+-=)6()3()(2由O E A E A =+-)6)(3(,有A 的极小多项式为)6)(3()(+-=λλλm(3)把P 的列向量单位化,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=32212313221231310234C ,C 为正交矩阵 令CY X =,有232221633''')(y y y ACY C Y AX X X f -+===4.(10分)证明:在任意数域F 上矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111001012A 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001B 都不相似. 证明:3)1(11101012-=----=-λλλλλA E 有A 的特征值为1,1,1 1=λ时,00000001101101111-=---=-A E基础解系有2)(=--A E r n 个线性无关的向量构成 ①3)1(11011001-=-----=-λλλλλB E 有B 的特征值为1,1,1 1=λ时,01000100--=-B E 基础解系有1)(=--B E r n 个向量构成 ②由①、②,得在任意数域F 上矩阵A 与B 都不相似5.(5分)设A 是n 阶实对称矩阵.证明:A 是正定矩阵的充分必要条件是,对任意整数k ,k A 也是正定的.证明:必要性:令A 的特征值为i λ(n i ,,2,1Λ=),则k A 的特征值为k i λ A 是正定矩阵,0>i λ,则0>ki λ,有k A 为正定矩阵充分性:k A 的特征值为k i λ,有0>ki λ,由k 的任意性,有0>i λ,故A 是正定矩阵三、(15分)设)(F M n 是数域F 上的全体n 阶方阵组成的集合.对任意可逆矩阵)(F M A n ∈,定义集合})({1X XA A F M X n A =∈=T -. 设A A F M A n V T =≠∈0):(I,即V 是所有可能的A T 的交集(A 可逆).求V dim 和V 的一个基.解: 取)(F M n 的一个基nn E E E Λ,,1211,令n n ij a A ⨯=)(、n n ij x X ⨯=)( 有nn nn E a E a E a A +++=Λ12121111由X XA A =-1,有AX XA =,则X E XE ij ij =有行第列第i 111j 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=j j j ijnii i ij x x x X E x x x XE ΛM 得0=ij x (j i ≠)且nn x x x ===Λ2211,故kE X =为数量矩阵 有)(E L A =T ,则V 由数量矩阵和全体对角元素为零的矩阵构成令V B ∈,有∑=+=nj i ij ij E k kE B 1,(j i ≠),有1dim 2+-=n n VE 与全体ij E (j i ≠)构成V 的一个基.四、设)(12F M r +是数域F 上的全体12+r 阶方阵组成的集合.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=O E O E O O O OM r r 2是分块矩阵,其中r E 是r 阶单位阵.设}')({12O MX M X F M X B r =+∈=+,其中'X 表示X 的转置矩阵.进一步B X ∈,设∑∞==0!1k kXX k e .已知:)(12F M e r X+∈.1.(15分)求B dim 和B 的一个基.2.(15分)证明:对任意B X ∈都有行列式1)det(=Xe3.(10分)设列向量空间12+r F上的一个双线性函数),(--在它的基)'0,,0,1(1Λ=ε,)'0,,1,0(2Λ=ε,……,)'1,,0,0(12Λ=+r ε下的度量矩阵为上述M .证明:对任意B X ∈和列向量12,+∈r Fβα都有),(),(βαβα=XX e e .1.解:令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211X X X X X X X X x X (12X 、13X 为r 维行向量,21X 、31X 为r 维列向量,22X 、23X 、32X 、33X 为r 阶方阵)有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=232221333231131211222X X X X X X X X x MX ,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='''2'''2''2)'(233313223212213111X X X X X X X X x MX 由O MX M X =+',又M 为对称矩阵,有O MX MX =+)'(则O X X X X X X X X X X XX X X X X x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++2323223321133322323231121321123111'''2'''22'2'4,有011=x 自由变量有12X 、13X 、22X 、23X 、32X 且23X 、32X 为反对称矩阵有r r r r r r r r r B +=-+-+++=2222222dim2.证明:根据矩阵指数的性质,有)()det(X tr X e e =)'()()'()()()()(3322332233223322X X tr X tr X tr X tr X tr X X tr X tr e e e e e ++++====由O X X =+3322',有10)'(3322==+e e X X tr ,则1)det(=X e注:关于)()det(X tr X e e =的证明由存在可逆矩阵P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-n XP P λλλ******211O有121******-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=P P X k n kk k λλλO11020100******!1***!1***!1!121--∞=∞=∞=∞=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑P e e e P P k k k P X k n k nk kk k k k kλλλλλλOO有)(2121)det(X tr Xe e e e e e n n ===+++λλλλλλΛΛ3.证明:五、(20分)证明:在数域F 上的任意n 元多项式都是线性多项式(即:一次齐次多项式)的幂的线性组合.证明:由任何一个m 次n 元多项式f 都可以唯一的表示成∑==mi i f f 0,其中i f 是n 元i 次齐次多项式由i f 是i 次齐次多项式,那么n x x x ,,,21Λ有ii n C k 1-+=种组合方式令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++=--k i n i i i n k i i i b b b x x x x x b x x b x b f M ΛΛ212111211211),,,(取k 个一次齐次多项式k g g g ,,,21Λ,它们的i 次方为ik i i g g g ,,,21Λ令ij g 的k 个系数为kj j j a a a ,,,21Λ(k j ,,2,1Λ=)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=+++=--kj j j i n i i i n kj i j i j i j a a a x x x x x a x x a x a g M ΛΛ212111211211),,,( 得到系数方程⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k k kk k k k k b b b y y y a a a a a aa a a M MΛM MM ΛΛ2121212222111211 只要k g g g ,,,21Λ选取得当,则此方程有解则有∑==+++=kl i ll i kki ii g y g y g y g y f 12211Λ,故∑∑===m i kl il l g y f 01,即证.。
川大线性代数习题册答案4

二次型的基本概念一.如果不要求二次型的矩阵是对称的,那么它的矩阵表示唯一吗?解:不唯一二.是,其矩阵为n 阶单位阵 三.写出下列二次型的矩阵1.121242121⎛⎫ ⎪ ⎪ ⎪⎝⎭秩为一 2.0004001401014410⎛⎫⎪ ⎪⎪ ⎪⎝⎭秩为四 四.写出下列矩阵对应的二次型:1.2212311213223(,,)2236f x x x x x x x x x x x =-+--2.1234121314232434(,,,)f x x x x x x x x x x x x x x x x =+++++五.填空题. 1.22212344y y y -++ 2.r 化二次型为标准形一.分别用配方法和初等变换化下列二次型为标准形,并写出所用的可逆线性变换.1.2222123112*********(,,)434443f x x x x x x x x x x x x x x x =+-=++--2222122233322212233399(2)4()4641639(2)4()816x x x x x x x x x x x x =+-+++=+-++令11222333238y x x y x x y x =+⎧⎪⎪=+⎨⎪=⎪⎩ ,则11232233332438x y y y x y y x y ⎧=-+⎪⎪⎪=-⎨⎪=⎪⎪⎩为可逆线性变换使:2221231239(,,)416f x x x y y y =-+ 2.222123123121323(,,)254484f x x x x x x x x x x x x =+++--()()()2221121323232221121323232222211232323232324854422454422(2)(2)(2)544x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+-++-=+-++-=+-+---++-22221232323232(2)2(2)544x x x x x x x x x =+---++-22222123223323232(2)2(44)544x x x x x x x x x x x =+---+++- 22212323232(2)334x x x x x x x =+-+-+2221232332132(2)3()39x x x x x x =+-++- 令:112322333223y x x x y x x y x =+-⎧⎪⎪=+⎨⎪=⎪⎩ ,所以可逆变换为:1123223334323x y y y x y y x y ⎧=--⎪⎪⎪=-⎨⎪=⎪⎪⎩22212312313(,,)239f x x x y y y =+- 3.令:11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩ ,写成矩阵形式为X CY =,其中:110110001C ⎛⎫ ⎪=- ⎪ ⎪⎝⎭则:22123121323(,,)24f x x x y y y y y y =--+ 22213233()(2)3y y y y y =---+令:113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,变换为:113223332y z z y z z y z=+⎧⎪=+⎨⎪=⎩,写成矩阵形式为:Y PZ =,其中:101012001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则:2221233f z z z =-+ 变换为:X CY CPZ ==,其中:113111001CP ⎛⎫⎪=-- ⎪ ⎪⎝⎭二.用正交变换化下列二次型为标准形,并写出所用的正交变换.1.解:120222023A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,其特征值为:-1,2,51λ=-时,对应特征向量为:()221T,2λ=时,对应特征向量为:()212T-,5λ=时,对应特征向量为:()122T-作正交变换为:221333212333122333X Y ⎛⎫-⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,22212325f y y y =-++ 2.解:0041001441001400A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,特征值为:-3,-5,3,5 3λ=-时,对应特征向量为:()1111T--, 5λ=-时,对应特征向量为:()1111T--, 3λ=时,对应特征向量为:()1111T --, 5λ=时,对应特征向量为:()1111T. 作正交变换:11112222111122221111222211112222X Y ⎛⎫--⎪ ⎪ ⎪--⎪= ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭,222212343535f y y y y =--++ 三.解:2000303A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,2003(2)(3)(3)03E A a a a aλλλλλλλ--=--=--+---- 特征值为:2,3,3a a λλλ==-=+有A 的特征值分别为:1,2,5和0a >知:2a =1λ=时,对应特征向量为:()011T-, 2λ=时,对应特征向量为:()100T,5λ=时,对应特征向量为:()011T。
2009川大数学分析及答案

四川大学2009年攻读硕士学位研究生入学考试题一、(每题7分,共28分)求下列极限1. ∑=∞→nk k nn Cn2ln 1lim解:定理(∞∞型Stolz 公式,数列极限)设}{n x 严格递增(即N n ∈∀,有1+<n n x x ),且+∞=∞→n n x lim . 若1)a x x y y n n n n n =----∞→11lim(有限数),则a x y nnn =∞→lim . 2)a 为∞+或∞-,结论任然成立. 因2n ↗∞+,用Stolz 公式1211ln lim 12ln lim )1(ln ln lim ln 1lim 00122010102+-++=+=-+-=∑∑∑∑∑=∞→=+∞→=+=+∞→=∞→n k n n n C C n n C C C n nk n nk kn k n n nk kn n k k n n n k k n n 12ln )1ln()1(lim12)1ln()1ln(lim 11+-++=+-+-+=∑∑∑+=∞→==∞→n kn n n k n n n k n nk n k n (再次用Stolz 公式)212)11ln(lim )12()12()ln ln (]ln )1ln()1[(lim111=+=--+---++=∞→=+=∞→∑∑nn n k n k n n n n k n n k n n2. )(sin lim 22n n n +∞→π 解:)111(sin )(sin )(sin 22222++=-+=+nn n n n n ππππ 初等函数在有定义的地方皆连续12s i n l i m )111(s i n l i m )(s i n l i m 2222==++=+∞→∞→∞→πππn n n nn n3. dtt t t dtt x x x ⎰⎰-+→0230)sin (sin lim 2解:x x x x x x x x x x x x x dt t t t dtt x x x x x x sin 2lim )sin ()(2)(sin lim )sin ()(sin 2lim )sin (sin lim 30232223202320002302-=-⋅=-=-++++→→→→⎰⎰1226lim cos 16lim 22020==-=++→→x x x x x x4. xx xe x x cos 11lim 0----→ 解:泰勒公式∑∞==++++++=032!!!3!21n nn xn x n x x x x e ,(+∞<<∞-x ) +----++--+-++=+!)]1([)2)(1(!3)2)(1(!2)1(1)1(2n n x x x ααααααααααα,(11<<-x )∑∞=-=+-+-+-+-=022642)!2()1()!2()1(!6!4!21cos n n n n n n x n x x x x x ,(+∞<<∞-x ) )](!4)(!2)(1[)(!2)121(21)(2111)(21lim cos 11lim 24222220x o x x x o x x xx o x x x x xe x x x ++--+-+-+--+++=----→→3)(24181)(2lim 222220-=+--+=→x o x x x o x x二、(每题10分,共40分)计算下列积分 (1)dxdy y x yx D⎰⎰--+222,其中}1:),{(222≤+∈=y x R y x D 解:2222)221()221(412----=--+y x y x y x 当),(y x 在41)221()221(22=-+-y x 内和上时0222≥--+y x yx ,记作1D ; 当),(y x 在41)221()221(22=-+-y x 外,且在122≤+y x 内时0222<--+y x y x ,记作2D 则dxdy y x yx dxdy y x y x I D D ⎰⎰⎰⎰--+---+=21)2()2(2222 2122222)2()2(2211I I d x d y y x y x d x d y y x y x I DD D D -=--+---+=⎰⎰⎰⎰=+ d x d y y x y x I D ⎰⎰--+=1)2(221 令θcos 221r x =-、θsin 221r y =- πθπ321)81(213201=-=⎰⎰dr r r d I d x d y y x yx I D⎰⎰--+=)2(222 令θcos r x =、θsin r y = πθθθπ21)2c o s s i n (1032202-=-+=⎰⎰dr r r d Iπ169221=-=I I I(2)ds yz l⎰,其中l 是球面2222a z y x =++与平面1=++z y x 的交线。
高等代数习题答案

目录第一章 多项式 第二章 行列式 第三章 线性方程组 第四章 矩阵 第五章 二次型 第六章 线性空间 第七章 线性变换 第八章 λ—矩阵第九章 欧氏空间第十章 双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
(完整word版)高等代数试卷及答案(二),推荐文档

一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学2009年攻读硕士学位研究生入学考试题一、解答下列各题.1.(5分)设)(x f 是数域F 上次数为2008的多项式,证明:20092不可能是)(x f 的根.F 为有理数域该命题成立如题:设)(x f 是有理数域Q 上一个m 次多项式(0≥m ),n 是大于m 的正整数,证明:n2不可能是)(x f 的根.证明:反证法:假设n2是)(x f 的根,有)2()2(--n nx x 对于2-nx ,存在素数2=p110,,,-n a a a p Λ、p 不能整除n a 、2p 不能整除0a由艾森斯坦判别法,有2-nx 在有理数域不可约,则有)()2(x f x n -则n x f ≥∂))((与题设矛盾,故假设不成立,即n 2不可能是)(x f 的根.2.(10分)用代数基本定理证明,实数域R 上的任意不可约多项式只能是一次多项式或满足042<-ac b 的二次多项式:c bx ax ++2.证明:由代数基本定理,任意多项式在复数域都可以分解为一次多项式的乘积 则令多项式为)())(()(21n a x a x a x k x f ---=Λ (C a i ∈,R k ∈且0≠k ) 当R a i ∈时,则i a x -是实数域R 上的一次不可约多项式当R a i ∉时,有i a 也是)(x f 的根,有i i i i i i a a x a a x a x a x ++-=--)())((2i i i i a a x a a x ++-)(2满足042<-ac b由)(i i a a +-,R a a i i ∈,则i i i i a a x a a x ++-)(2是实数域R 上的二次不可约多项式故实数域R 上的任意不可约多项式只能是一次多项式或满足042<-ac b 的二次多项式:c bx ax ++2.3.(5分)设A 是数域F 上的n 阶方阵.要求不用Hamilton-Caylay 定理,证明:存在F 上的多项式)(x f 使得O A f =)(. 证明:取A 的特征多项式A E g -=λλ)(设)(λB 为A E -λ的伴随矩阵,有E g E A E A E B )())((λλλλ=-=- 由)(λB 的元素是A E -λ各个代数余子式,则1))((-≤∂n B λ 有11201)(---+++=n n n B B B B Λλλλ令n n n a a g +++=-Λ11)(λλλ,得E a E a E E g n n n +++=-Λ11)(λλλ ①A B A B B A B B A B B B A E B n n n n n n 1211220110)()()())((-------++-+-+=-λλλλλλΛ ②比较①、②,有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=----E a A B Ea A B B E a A B B E a A B B EB n n n n n 11212121010ΛΛΛ,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=---------Ea A B A a A B A B A a A B A B A a A B A B A A B n n n n n n n n n nn n n 11221221122110110ΛΛΛ左边和右边全部相加,有O E g =)(λ,即0)(=λg 任取)()()(x g x q x f =,则有O A f =)(4.(10分)设1α、2α、3α是多项式123)(3++=x x x f 的全部根.求下式的值 ))()((212331223221ααααααααα+++解:由根与系数的关系得0321=++ααα、32323121=++αααααα、31321-=ααα)31)(31)(31())()((323222121212331223221ααααααααααααααα---=+++]1)()([91)1)(1)(1(271333231333233313231333231333231321-+++++--=---=αααααααααααααααααα)(91)(9124328333231333233313231ααααααααα++-++-=① )(91)111(243124328333231333231αααααα++-++-=)(91243124328333231333231333233313231αααααααααααα++-++-= ② 由①、②得,0333233313231=++αααααα,则原式)(9124328333231ααα++-=由13))((3)(3213231213213321333231-=+++++-++=++αααααααααααααααααα得原式24355=二、解答下列各题.1(10分)叙述并证明线性方程组的克莱默(Cramer )法则.2(5分)设F ,K 都是数域且K F ⊆,设β=AX 是数域F 上的线性方程组. 证明:β=AX 在F 上有解当且仅当β=AX 在K 上有解. 证明:令A 为n m ⨯矩阵 必要性:令X 为β=AX 在F 上的解,有n F X ∈,由K F ⊆,得nK X ∈X 也为β=AX 在K 上的解充分性:β=AX 在K 上有解, 有)()(A r A r =由A ,)(F M A n m ⨯∈,则在F 上,也有)()(A r A r =,故β=AX 在F 上有解3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=142412222A (1)(5分)在任意数域F 上,A 能否相似于一个对角阵?说明理由. (2)(5分)求A 的极小多项式.(3)(5分)设AX X X f ')(=,其中)',,(321x x x X =是列向量.求)(X f 的一个标准型.解:(1))6()3(1424122222+-=+---+--=-λλλλλλA EA 的特征值为3,3,6-当3=λ时,000002214424422213-=----=-A E基础解系由2)3(=--A E r n 个线性无关的向量构成)'1,1,4(-、)'1,1,0(当6-=λ时,0009904525424522286--→-------=--A E 基础解系由1)6(=---A E r n 个向量构成)'2,2,1(- 故A 对应3个线性无关的特征向量,A 可对角化取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211211104P ,则有)6,3,3(1-=-diag AP P 由)(,3Q M C A ∈、又Q ∈-6,3,则A 在有理数域可以对角化由任何数域都包含有理数域,故在任意数域F 上,A 都能相似于一个对角阵(2)A 的特征多项式为O E A E A A f =+-=)6()3()(2由O E A E A =+-)6)(3(,有A 的极小多项式为)6)(3()(+-=λλλm(3)把P 的列向量单位化,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=32212313221231310234C ,C 为正交矩阵 令CY X =,有232221633''')(y y y ACY C Y AX X X f -+===4.(10分)证明:在任意数域F 上矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111001012A 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001B 都不相似. 证明:3)1(11101012-=----=-λλλλλA E 有A 的特征值为1,1,1 1=λ时,00000001101101111-=---=-A E基础解系有2)(=--A E r n 个线性无关的向量构成 ①3)1(11011001-=-----=-λλλλλB E 有B 的特征值为1,1,1 1=λ时,01000100--=-B E 基础解系有1)(=--B E r n 个向量构成 ②由①、②,得在任意数域F 上矩阵A 与B 都不相似5.(5分)设A 是n 阶实对称矩阵.证明:A 是正定矩阵的充分必要条件是,对任意整数k ,k A 也是正定的.证明:必要性:令A 的特征值为i λ(n i ,,2,1Λ=),则k A 的特征值为k i λ A 是正定矩阵,0>i λ,则0>ki λ,有k A 为正定矩阵充分性:k A 的特征值为k i λ,有0>ki λ,由k 的任意性,有0>i λ,故A 是正定矩阵三、(15分)设)(F M n 是数域F 上的全体n 阶方阵组成的集合.对任意可逆矩阵)(F M A n ∈,定义集合})({1X XA A F M X n A =∈=T -. 设A A F M A n V T =≠∈0):(I,即V 是所有可能的A T 的交集(A 可逆).求V dim 和V 的一个基.解: 取)(F M n 的一个基nn E E E Λ,,1211,令n n ij a A ⨯=)(、n n ij x X ⨯=)( 有nn nn E a E a E a A +++=Λ12121111由X XA A =-1,有AX XA =,则X E XE ij ij =有行第列第i 111j 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=j j j ijnii i ij x x x X E x x x XE ΛM 得0=ij x (j i ≠)且nn x x x ===Λ2211,故kE X =为数量矩阵 有)(E L A =T ,则V 由数量矩阵和全体对角元素为零的矩阵构成令V B ∈,有∑=+=nj i ij ij E k kE B 1,(j i ≠),有1dim 2+-=n n VE 与全体ij E (j i ≠)构成V 的一个基.四、设)(12F M r +是数域F 上的全体12+r 阶方阵组成的集合.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=O E O E O O O OM r r 2是分块矩阵,其中r E 是r 阶单位阵.设}')({12O MX M X F M X B r =+∈=+,其中'X 表示X 的转置矩阵.进一步B X ∈,设∑∞==0!1k kXX k e .已知:)(12F M e r X+∈.1.(15分)求B dim 和B 的一个基.2.(15分)证明:对任意B X ∈都有行列式1)det(=Xe3.(10分)设列向量空间12+r F上的一个双线性函数),(--在它的基)'0,,0,1(1Λ=ε,)'0,,1,0(2Λ=ε,……,)'1,,0,0(12Λ=+r ε下的度量矩阵为上述M .证明:对任意B X ∈和列向量12,+∈r Fβα都有),(),(βαβα=XX e e .1.解:令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211X X X X X X X X x X (12X 、13X 为r 维行向量,21X 、31X 为r 维列向量,22X 、23X 、32X 、33X 为r 阶方阵)有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=232221333231131211222X X X X X X X X x MX ,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='''2'''2''2)'(233313223212213111X X X X X X X X x MX 由O MX M X =+',又M 为对称矩阵,有O MX MX =+)'(则O X X X X X X X X X X XX X X X X x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++2323223321133322323231121321123111'''2'''22'2'4,有011=x 自由变量有12X 、13X 、22X 、23X 、32X 且23X 、32X 为反对称矩阵有r r r r r r r r r B +=-+-+++=2222222dim2.证明:根据矩阵指数的性质,有)()det(X tr X e e =)'()()'()()()()(3322332233223322X X tr X tr X tr X tr X tr X X tr X tr e e e e e ++++====由O X X =+3322',有10)'(3322==+e e X X tr ,则1)det(=X e注:关于)()det(X tr X e e =的证明由存在可逆矩阵P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-n XP P λλλ******211O有121******-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=P P X k n kk k λλλO11020100******!1***!1***!1!121--∞=∞=∞=∞=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑P e e e P P k k k P X k n k nk kk k k k kλλλλλλOO有)(2121)det(X tr Xe e e e e e n n ===+++λλλλλλΛΛ3.证明:五、(20分)证明:在数域F 上的任意n 元多项式都是线性多项式(即:一次齐次多项式)的幂的线性组合.证明:由任何一个m 次n 元多项式f 都可以唯一的表示成∑==mi i f f 0,其中i f 是n 元i 次齐次多项式由i f 是i 次齐次多项式,那么n x x x ,,,21Λ有ii n C k 1-+=种组合方式令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++=--k i n i i i n k i i i b b b x x x x x b x x b x b f M ΛΛ212111211211),,,(取k 个一次齐次多项式k g g g ,,,21Λ,它们的i 次方为ik i i g g g ,,,21Λ令ij g 的k 个系数为kj j j a a a ,,,21Λ(k j ,,2,1Λ=)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=+++=--kj j j i n i i i n kj i j i j i j a a a x x x x x a x x a x a g M ΛΛ212111211211),,,( 得到系数方程⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k k kk k k k k b b b y y y a a a a a aa a a M MΛM MM ΛΛ2121212222111211 只要k g g g ,,,21Λ选取得当,则此方程有解则有∑==+++=kl i ll i kki ii g y g y g y g y f 12211Λ,故∑∑===m i kl il l g y f 01,即证.。