导数与零点专题
专题11 利用导数解决零点问题(解析版)

专题11 利用导数解决零点问题1.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2 所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a xf x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <= 故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '> 所以()f x 在(0,)+∞上单调递增,()(0)0f x f >= 故()f x 在(0,)+∞上没有零点,不合题意 3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增 (0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减 当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<= 当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增 1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '= 当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '= 当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减 有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点 即()f x 在(1,0)-上有唯一零点 所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-2.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x < 因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x xx x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增 即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 3.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111xf x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-;(2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞.4.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-.(1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)先求出函数的定义域,再求出()31af x x '=-+,然后分0a >,0a ≤可得出函数的单调性. (2)设()()ln 1sin g x x x =+-,将问题转化为函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点,又当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,求出其导数,由零点存在原理即可证明. (1)函数()()ln 13f x a x x =+-的定义域是()1,-+∞,()31af x x '=-+. 当0a >时,令()0f x '<,得33a x ->;令()0f x '>,得313a x --<<, 故()f x 在31,3a -⎛⎫- ⎪⎝⎭上单调递增,在3,3a -⎛⎫+∞ ⎪⎝⎭上单调递减;当0a ≤时,()0f x '<恒成立,故()f x 在()1,-+∞上单调递减. (2)当1a =时,方程()sin 3f x x x =-即为()ln 13sin 3x x x x +-=-,即()ln 1sin 0x x +-=. 令()()ln 1sin g x x x =+-,则()1cos 1g x x x '=-+, 则“方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解”等价于“函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点”.当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以()0g x >在()e 1,-+∞上恒成立, 所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点.因为e 1π-<,所以当,e 12x π⎛⎤∈- ⎥⎝⎦时,cos 0x <,101x >+, 所以()0g x '>在,e 12π⎛⎤- ⎥⎝⎦上恒成立.所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上单调递增,又ln 1sin ln 1102222g ππππ⎛⎫⎛⎫⎛⎫=+-=+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()e 11sin e 1g -=--,所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,即()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.故方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.5.(2022·湖北·大冶市第一中学模拟预测)已知函数()e sin xf x x ax =+,其中e 是自然对数的底数.(1)若1a =时,试判断f (x )在区间(2π-,0)的单调性,并予以证明;(2)从下面两个条件中任意选一个,试求实数a 的取值范围. ①函数()f x 在区间[0,2π]上有且只有2个零点; ①当2,0x π⎡⎤∈⎢⎥⎣⎦时,()2f x x ≥.【答案】(1)f (x )在(π2-,0)上单调递增,证明见解析;(2)选择①:π22e 1πa -≤<-;选择①:1a ≥-.【解析】 【分析】(1)求导,通过判定导函数在(π2-,0)上的正负确定单调性; (2)选择①:易得()00f =,则因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点,求导通过讨论找出符合条件的a 的取值范围;选择①:构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦,此时()00m =,可通过端点效应或隐零点等思路求a的取值范围. (1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()πe sin e cos 1sin 14x x xf x x x x ⎛⎫=++=++ ⎪⎝⎭'.当π,02x ⎛⎫∈- ⎪⎝⎭时,πππ,444x ⎛⎫+∈- ⎪⎝⎭,所以sin 1144x x ππ⎛⎫⎛⎫<+<-+< ⎪ ⎪⎝⎭⎝⎭, 又0e 1x <<,πsin 14xx ⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(π2-,0)上单调递增. (2) 选择①,由函数()e sin 0π,2xf x x ax x ⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++, 则()2e cos 0xh x x '=≥在[0.π2]上恒成立.即()f x '在[0,π2]上单调递增,()2ππ01e 2f a f a ⎛'⎫=+=⎪⎭'+ ⎝,,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.π2]上单调递增.则f (x )在(0,π2]上无零点,不合题意,舍去,当π2e a ≤-时,()0π2f x f ⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,π2]上单调递减,则()f x 在(0,π2]上无零点,不合题意,舍去,当2e 1a π-<<-时,π2(0)10,()e 2π0f a f a '=+<'=+≥则()f x '在(0,π2)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′ 所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(x0,π2)上单调递增,又()π200e ππ22f f a ⎛⎫==+ ⎪⎝⎭,因此只需20π22πe f a ⎛⎫=+≥ ⎪⎝⎭即可,即π22e 1πa -≤<-,综上所述:2π2e 1πα-≤<-选择①,构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦此时()2π2e π244π00x m m a ⎛⎫==+- ⎪⎝⎭,则2π()e sin e cos 2(0)π1,(e 2π)xxm x x x a x m a m a'=++-'=+'=-+,易知(1)π)(2m m '>'令()e sin e cos 2,()2e cos 2,(0)0,()2π2x x xt x x x a x t x x t t =++-'=-'='=-令2π()2e cos 2,()2e (cos sin ),(0)2,()2πe 2xxp x x p x x x p p =-=-'='=-', 令()2e (cos sin )x q x x x =-,则()4e sin 0x q x x '=-≤ 所以()2e (cos sin )x q x x x =-在(0,π2)上单调递减.又π20π(0)(0)20,()()2e 22πq p q p ='=>='=-<在(0,π2)上存在唯一实数1x 使得()10q x =,且满足当()10,x x ∈时,()0q x >当1π(,)2x x ∈时.()0q x <即p (x )在(0,x 1)上单调递增,在(x 1,π2)上单调递减.又()()ππ0002022p t p t ⎛⎫⎛⎫==-=-< ⎪'' ⎪⎝⎭⎝⎭,,所以()2e cos 2x p x x =-在1π(,)2x 上存在一实数2x 使得()20p x =,且满足当2(0,)x x ∈时,()0p x >;当2π()2x x ∈⋅时,()0p x <即()()t x m x ='在(0,x2)上单调递增,在(2x ,2π)上单调递减, 当()010m a ='+≥时,即()10a m x ≥-'≥,,函数()2e sin x m x x ax x =+-在[0,π2]上单调递增,又()00m =,因此()2e sin 0x m x x ax x =+-≥恒成立,符合题意,当()010m a '=+<,即1a <-,在π20,x ⎛⎫∈ ⎪⎝⎭上必存在实数3x ,使得当()30,x x ∈时,()0m x '<,又()00m =,因此在()30,x x ∈上存在实数()0m x <,不合题意,舍去 综上所述1a ≥-.6.(2022·浙江湖州·模拟预测)已知函数12()e x f x =(e 为自然对数的底数). (1)令1()||()()g x a x f x f x =--,若不等式()0g x ≤恒成立,求实数a 的取值范围; (2)令3()()x xf x m ϕ=-,若函数()ϕx 有两不同零点()1212,x x x x <. ①求实数m 的取值范围;①证明:21e e 21x x m -<+. 【答案】(1)(,1]-∞;(2)①2,03e m ⎛⎫∈- ⎪⎝⎭;①证明见解析.【解析】 【分析】(1)根据()g x 为偶函数,将问题转化为0x ≥时()0g x ≤恒成立,根据(0)0g =及参变分离求0x >有1122ee x x a x--≤恒成立,求参数范围;(2)①利用导数研究()ϕx 的单调性,及区间值域情况,进而判断()0x ϕ=有两不同解时m 的范围即可;①由(1)知:0x <时1122e e x x x -≥-且120x x <<,应用放缩法有2()e e x x x ϕ≥-,构造2()e e x x F x =-研究极值并判断()F x m =的两根与12,x x 大小关系得到3214e e e e x x x x -<-即可证结论. (1)由题设,1122()||e ex x g x a x -=--,则()()g x g x =-,所以()g x 为偶函数,故只需0x ≥时,()0g x ≤恒成立,而(0)0g =满足, 所以0x >有1122ee x x a x--≤恒成立,令02t x =>,则e e 2t ta t--≤,若()e e 2t t h t t -=--,则()e e 220t t h t -'=+-≥=,仅当0=t 时等号成立, 所以()0h t '>,即()h t 在(0,)+∞上递增,则()(0)0h t h >=,即e e 2t t t -->, 所以,在(0,)+∞上e e 12t tt-->,则1a ≤, 综上:a 的范围为(,1]-∞. (2)①由题设,323()1e 2x x x ϕ⎛⎫=+ ⎪'⎝⎭,若()0x ϕ'>得:23x >-,故()ϕx 在2,3⎛⎫-∞- ⎪⎝⎭单调减,在2,3⎛⎫-+∞ ⎪⎝⎭单调增,且x 趋向负无穷()ϕx 趋向于0,x 趋向正无穷()ϕx 趋向于正无穷,又2233e ϕ⎛⎫-=- ⎪⎝⎭,()00ϕ=,则0x <时,()0x ϕ<;0x >时,()0x ϕ>,要使()0x ϕ=有两个不同解12,x x 且120x x <<,则2,03e m ⎛⎫∈- ⎪⎝⎭;①由(1)知:0x <时1122e ex x x -≥-,则1132222()e e e e e x x x x xx ϕ-⎛⎫≥-=- ⎪⎝⎭;记2()e e x x F x =-且0x <,则(()e e 1)2x x F x '=-,所以(,ln 2)-∞-上()0F x '<,(ln 2,0)-上()0F x '>,故()F x 在(,ln 2)-∞-上递减,(ln 2,0)-上递增,且12()(ln 2),043e F x F ⎛⎫≥-=-∈- ⎪⎝⎭,所以()F x m =也有两根,记为34x x <,又(,0)-∞上)(()x F x ϕ≥,则31240x x x x <<<<, 令e x t =,则34e ,e xx 为20t t m --=的两根,故34e e 1x x +=,34e e x x m =-,所以34e e x x -=3124e e e e x x x x <<<,所以3214(41)1e e e e 212x x x xm m ++-<-==+. 7.(2022·湖北·模拟预测)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性; (2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【答案】(1)单调性见解析 (2)(][),22,λ∈-∞-+∞【解析】 【分析】(1)求导可得()()()21x a x f x x +-'=,再根据a -与0,1的关系分类讨论即可;(2)由题()ln g x a x x =+,,设()120,1x t x =∈根据零点关系可得21ln x x a t -=,再代入1222x x g λλ+⎛⎫' ⎪+⎝⎭化简可得()()21ln 02t t t λλ+-+<+恒成立,设()()()21ln 2t ht t t λλ+-=++,再求导分析单调性与最值即可(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x+--+-'=-+-== ①)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x > ①)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立 ①)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a >- 综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增 1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈ ①212112ln ln ln x x x xa x x t--==-()1a g x x'=+ ①122112122221122ln 2x x x x g a x x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,①ln 0t < ①()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,①()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ ①)24λ≥时,204t λ-<,①()0h t '>,①()h t 在()0,1上单调递增 ①()()10h t h <=恒成立, ①(][),22,λ∈-∞-+∞合题①)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,①()0h t '>,①()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<, ①()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减①2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了双零点与恒成立问题的综合,需要根据题意消去参数a ,令()120,1x t x =∈,再化简所求式关于t 的解析式,再构造函数分析最值.属于难题 8.(2022·浙江绍兴·模拟预测)设a 为实数,函数()e ln 1=++x f x a x x . (1)当1a e=-时,求函数()f x 的单调区间;(2)判断函数()f x 零点的个数.【答案】(1)减区间为()0,∞+,无增区间. (2)当0a ≥,函数()f x 在(0,)+∞上没有零点;当210e a -≤<,函数()f x 在(0,)+∞上有1个零点;当21e a <-,函数()f x 在(0,)+∞上有2个零点. 【解析】 【分析】(1)利用二次求导研究函数()f x 的单调性,进而得出结果; (2)利用分类讨论的思想,根据函数()f x 与()()f x g x x=具有相同的零点,结合导数分别研究当0a ≥、210e a -≤<、21e a <-时()g x 的单调性,利用零点的存在性定理即可判断函数()g x 的零点个数,进而得出结果. (1)函数()f x 的定义域为(0,)+∞, 当1a e=-时,1()e ln 1e xf x x x =-++,则1()e ln 1x f x x -'=-++,且()01f '=, 有1111e ()ex x x f x x x---''=-+=,令()01f x x ''=⇒=, 所以当(0,1)x ∈时()0f x ''>,则()'f x 单调递增, 当(1,)x ∈+∞时()0f x ''<,则()'f x 单调递减, 所以max ()(1)0f x f ''==,即()0f x '≤,则函数()f x 在(0,)+∞上单调递减, 即函数()f x 的减区间为(0,)+∞,无增区间; (2)由(1)知当1a e=-时函数()f x 在(0,)+∞上单调递减,又(1)0f =,此时函数()f x 只有1个零点; 因为函数()f x 的定义域为(0,)+∞,所以()f x 与()f x x具有相同的零点, 令()e 1()ln (0)x f x a g x x x x x x ==++>, 则222(1)e 11(1)(e 1)()x x a x x a g x x x x x --+'=+-=, 当0a ≥时,e 10x a +>,令()01g x x '=⇒=,则函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)e 10g x g a ==+>,此时函数()g x 无零点,即函数()f x 无零点;当0a <时,令()01g x x '=⇒=或1ln()x a=-,若10e a -<<,则11ln()a<-,列表如下:当211e ea -≤≤-时,222e 2e 222e 4222e e e (e )2e 2e e 2e 0e ea g ------=++<++=-++<, 当210e a -<<即21e a ->时,131e ()a a->-,1121111()e ln()[e ln()1]aa g a a a a a a a a---=-+--=---+3111[()(1)1]0a a a a a <-----+<,又(1)0g >,此时函数()g x 有1个零点,则函数()f x 有1个零点; 若1e <-a ,则11ln()a>-,列表如下:所以ln()min 1e 111()(ln())ln ln()ln ln()ln1011ln()ln()aa g x g a a a a a -=-=+-+=-<=--, 又(1)0g >,2(e )0g <,则此时函数()g x 有2个零点,即函数()f x 有2个零点; 综上,当0a ≥时,函数()f x 在(0,)+∞上没有零点, 当210ea -≤<时,函数()f x 在(0,)+∞上有1个零点, 当21e a <-时,函数()f x 在(0,)+∞上有2个零点.【点睛】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题.9.(2022·河南·开封市东信学校模拟预测(理))已知函数()ln 12a af x x x =+-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)讨论函数()f x零点的个数.【答案】(1)当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭(2)当4a ≤,函数()f x 有且仅有一个零点;当4a >时,函数()f x 有且仅有3个零点 【解析】 【分析】(1)求导,再分0a <,04a ≤≤和4a >分类讨论即可;(2)根据单调性及零点存在性定理分析即可. (1)函数()f x 的定义域为(0,)+∞,2221(2)1()(1)(1)a x a x f x x x x x +-+'=-=++,在一元二次方程2(2)10x a x +-+=中,22Δ(2)44(4)a a a a a =--=-=-, ①当0a <时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当04a ≤≤时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当4a >时,一元二次方程2(2)10x a x +-+=有两个不相等的根, 分别记为()1221,x x x x >,有122x x a +=-,1210x x =>,可得210x x >>, 有12x x ==可得此时函数()f x 的增区间为()()120,,,x x +∞减区间为()12,x x , 综上可知,当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭; (2)由(1)可知:①当4a ≤时,函数()f x 单调递增,又由(1)0f =,可得此时函数只有一个零点为1x =; ①当4a >时,由122110,x x x x =>>,可得1201x x <<<,又由(1)0f =,由函数的单调性可知()()12(1)0,(1)0f x f f x f >=<=, 当01x <<且20e ax -<<时,可得2ln ln e ax -<,有ln 02ax +<, 可得()ln ln 022a af x x a x <+-=+<, 当2e ax >时,2()ln ln e 02222aa a a af x x >->-=-=可知此时函数()f x 有且仅有3个零点,由上知,当4a ≤时,函数()f x 有且仅有一个零点; 当4a >时,函数()f x 有且仅有3个零点.10.(2022·贵州·贵阳一中模拟预测(文))已知函数()323.f x ax x a b =-++(1)讨论()f x 的单调性;(2)当()f x 有三个零点时a 的取值范围恰好是()()()3,22,00,1,--⋃-⋃求b 的值. 【答案】(1)答案见解析 (2)3b = 【解析】 【分析】(1)求函数()f x 的导函数()'f x ,讨论a ,并解不等式()0f x '>,()0f x '<可得函数的单调区间;(2)由(1)结合零点存在性定理可求b . (1)()f x 的定义域为R ,()()23632,f x ax x x ax =-=-'若0a =,则()0600f x x x '>⇒->⇒<,()00f x x <⇒>'∴ ()f x 在(),0∞-单调递增,()0,∞+单调递减,若0a >,则()00'>⇒<f x x 或2x a>, ()200f x x a>⇒<<', ()f x ∴在(),0∞-单调递增,20,a ⎛⎫ ⎪⎝⎭单调递减,2,a ⎛⎫+∞ ⎪⎝⎭单调递增,若0a <,则()200f x x a'>⇒<< ()20f x x a>⇒<'或0x >, ()f x ∴在2,a ⎛⎫-∞ ⎪⎝⎭单调递减,2,0a ⎛⎫⎪⎝⎭单调递增,()0,∞+单调递减.(2)可知()f x 要有三个零点,则0a ≠, 且2(0)0f f a ⎛⎫< ⎪⎝⎭由题意也即是()200f f a ⎛⎫< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃,也就是关于a 的不等式()()()32224400a b a ba a b a b a a ++-⎛⎫++-<⇒< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃, 令()()()32240a b a ba h a a+++=<,时()()()()()1114130h b b b b =++-=+-=, 所以有1b =-或3b =, 当3b =时,()()()()()323222233434400a a a a a a a h a aa++-+-+-=<⇒<,()()()2231440a a a a a+-++<的解是()()()3,22,00,1--⋃-⋃,满足条件,当1b =-时,()()()322140a a a h a a---=<,当1a =-时,()1120h -=>,不满足条件, 故1b ≠-,综合上述3b =.11.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数()()e 12()exx xf x a a =+--∈R . (1)若()e ()=⋅x g x f x ,讨论()g x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)答案见解析;(2)()0,1. 【解析】 【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形,根据导数与0的关系可得单调性;(2)函数有两个零点即()e ()=⋅x g x f x 有两个零点,根据(1)中的单调性结合零点存在定理即可得结果. (1)由题意知,()()()e ()e e 12e e 12e e x x x x x xx x g x f x a a x ⎡⎤=⋅=⋅+--=+--⎢⎥⎣⎦,()g x 的定义域为(,)-∞+∞,()e (e 1)e e 2e 1(2e 1)(e 1)x x x x x x x g x a a a '=++⋅--=+-.若0a ≤,则()0g x '<,所以()g x 在(,)-∞+∞上单调递减; 若0a >,令()0g x '=,解得ln x a =-.当(,ln )x a ∈-∞-时,()0g x '<;当(ln ,)x a ∈-+∞时,()0g x '>, 所以()g x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增. (2)因为e 0x >,所以()f x 有两个零点,即()e ()=⋅x g x f x 有两个零点. 若0a ≤,由(1)知,()g x 至多有一个零点.若0a >,由(1)知,当ln x a =-时,()g x 取得最小值,最小值为1(ln )1ln g a a a-=-+. ①当1a =时,由于(ln )0g a -=,故()g x 只有一个零点: ①当(1,)∈+∞a 时,由于11ln 0a a-+>,即(ln )0g a ->,故()g x 没有零点; ①当(0,1)a ∈时,11ln 0a a-+<,即(ln )0g a -<. 又2222(2)e (e 1)2e 22e 20g a -----=+-+>-+>,故()g x 在(,ln )a -∞-上有一个零点.存在03ln 1,x a ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,则0000000000()e (e 1)2e e (e 2)e 0x x x x x xg x a x a a x x =+--=+-->->.又3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()g x 在(ln ,)a -+∞上有一个零点.综上,实数a 的取值范围为(0,1).12.(2022·青海·大通回族土族自治县教学研究室三模(理))已知函数()ln 1f x ax x =++. (1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围; (2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围. 【答案】(1)0a ≥或1a =- (2)(,2]-∞ 【解析】 【分析】(1)求导1()f x a x'=+,0x >,分0a ≥和0a <讨论求解; (2)对任意的0x >,2()e x f x x ≤恒成立,转化为2ln 1e xx a x+≤-在(0,)+∞上恒成立求解. (1)解:1()f x a x'=+,0x >, 当0a ≥时,()0f x '>恒成立,所以()f x 在(0,)+∞上单调递增.又()11ee 11a af a a ----=--+()1e 10a a --=-≤,(1)10f a =+>, 所以此时()f x 在(0,)+∞上仅有一个零点,符合题意; 当0a <时,令()0f x '>,解得10x a <<-;令()0f x '<,解得1x a>-, 所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.要使()f x 在(0,)+∞上仅有一个零点,则必有10f a ⎛⎫-= ⎪⎝⎭,解得1a =-.综上,当0a ≥或1a =-时,()f x 在(0,)+∞上仅有一个零点. (2)因为()ln 1f x ax x =++,所以对任意的0x >,2()e x f x x ≤恒成立,等价于2ln 1e xx a x+≤-在(0,)+∞上恒成立. 令2ln 1()e (0)xx m x x x+=->,则只需min ()a m x ≤即可, 则2222e ln ()+'=x x xm x x ,再令22()2e ln (0)x g x x x x =+>,则()221()4e 0'=++>xg x x x x, 所以()g x 在(0,)+∞上单调递增.因为12ln 204g ⎛⎫=< ⎪⎝⎭,2(1)2e 0g =>,所以()g x 有唯一的零点0x ,且0114x <<, 所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>, 所以()m x 在()00,x 上单调递减,在()0,x +∞上单调递增. 因为022002eln 0x x x +=,所以()()()00002ln 2ln ln ln x x x x +=-+-,设()ln (0)S x x x x =+>,则1()10'=+>S x x, 所以函数()S x 在(0,)+∞上单调递增.因为()()002ln S x S x =-,所以002ln x x =-,即0201ex x =.所以()0()m x m x ≥=02000000ln 1ln 11e 2x x x x x x x +-=--=, 则有2a ≤.所以实数a 的取值范围为(,2]-∞.13.(2022·福建省福州第一中学三模)已知函数()e sin 1x f x a x =--在区间0,2π⎛⎫⎪⎝⎭内有唯一极值点1x .(1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)+∞ (2)证明见解析 【解析】 【分析】(1)先求导,再讨论1a 时,函数单增不合题意,1a >时,由导数的正负确定函数单调性知符合题意; (2)先由导数确定函数()f x 在区间(0,)π上的单调性,再由零点存在定理即可确定在区间(0,)π内有唯一零点;表示出()12f x ,构造函数求导,求得()120f x >,又由()20f x =,结合()f x 在()1,x x π∈上的单调性即可求解. (1)()e cos x f x a x '=-,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos (0,1)x ∈,21e e x π<<,①当1a 时,()0f x '>,()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,没有极值点,不合题意,舍去;①当1a >时,显然()'f x 在0,2π⎛⎫ ⎪⎝⎭上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()'f x 在0,2π⎛⎫ ⎪⎝⎭上有唯一零点1x ,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在0,2π⎛⎫⎪⎝⎭上有唯一极值点,符合题意.综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10<f x ,又因为()e 10f ππ=->,所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x x f x a x a x x =--=--,由(1)知()10f x '=,所以11e cos xa x =,则()112112e 2e sin 1x xf x x =--,构造2()e 2e sin 1,0,2t t p t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t t p t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e cos sin t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】本题关键点在于先表示出()12f x ,构造函数()p t 求导,令导数为新的函数再次求导,进而确定函数()p t 的单调性,从而得到()120f x >,再结合()20f x =以及()f x 在()1,x x π∈上的单调性即可证得结论. 14.(2022·安徽·合肥市第八中学模拟预测(文))已知函数()e (sin cos )sin .x f x x x a x =+-.(1)当1a =时,求函数f (x )在区间[0]2π,上零点的个数; (2)若函数()y f x =在(0,2π)上有唯一的极小值点,求实数a 的取值范围 【答案】(1)2个(2)2]∞-⋃(,3222[2e ,)2e ,2e πππ⎧⎫+∞⋃⎨⎬⎩⎭【解析】 【分析】(1)利用导数判断函数f x ()在[0]2π,上的单调性,结合零点存在性定理确定零点个数;(2)利用导数,通过分类讨论确定函数f x ()的单调性及极值,由此确定a 的取值范围.(1)因为1a =,所以()e (sin cos )sin .x f x x x x =+-()(2e 1)cos x f x x '=-,则当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 又32223(0)10,()e 10,()1e 0,(2)e 022f f f f ππππππ=>=->=-<=>,则f x ()在322ππ⎛⎫ ⎪⎝⎭,,322ππ⎛⎫⎪⎝⎭,上各有一个零点,所以f x ()在区间[0]2π,上共有两个零点, (2)2()(2e )cos ,(02),22e 2e x x f x a x x ππ'=-∈<<,①当2a ≤时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 此时f x ()在32x π=的时候取得极小值,则2a ≤时符合题意: ①当22e a π≥时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在02π⎛⎫⎪⎝⎭,上单调递减,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递增, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,单词递减, 此时f x ()在2x π=的时候取得极小值,则22a e π≥时符合题意①当222e a π<<时,0ln 22a π<<,此时f x ()在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减,在ln ,22a π⎛⎫ ⎪⎝⎭,上单调递增,在3,22ππ⎛⎫ ⎪⎝⎭上单调递减,在3(,2)2ππ上单调递增,此时有两个极小值点,不符合题意: ①当22e a π=时,ln22a π=,此时f x ()在(0,32π)上单调递减,在3,22ππ⎛⎫ ⎪⎝⎭上单调递增,此时f x ()在32x π=的时候取得极小值,则22e a π=时符合题意;①当3222e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在,ln 22a π⎛⎫ ⎪⎝⎭上单调递增,在3ln 22a π⎛⎫⎪⎝⎭,上单调递减,在3,22ππ⎛⎫⎪⎝⎭上单调递增,此时有两个极小值点,不符合题意; ①当322e a π=时,3ln22a π=,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在22ππ⎛⎫ ⎪⎝⎭,上单调递增,此时f x ()在2x π=的时候取得极小值,则322e a π=时符合题意;①当322e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在322ππ⎛⎫⎪⎝⎭,上单调递增,在3(,ln )22a π上单调递减,在(ln ,2)2aπ上单调递增,此时有两个极小值点,不符合题意;综上所述3222(,22e ,)2 ][e ,2e a πππ⎧⎫∈-∞+∞⎨⎬⎩⎭.【点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.15.(2022·江西·上高二中模拟预测(理))已知函数()()2ln 0ax af x x a x -=->.(1)讨论()f x 的单调性;(2)设()()2ag x f x x=-+有两个零点12,x x ,若212x x >,证明:3312672e x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导得()2221b ax x af x a x x x -+-=--=',对导函数进行分情况讨论其正负,即可得()f x 的单调性. (2)通过函数有两个零点,转化成1212ln 2ln 2x x a x x ++==,然后根据比例,构造出221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,得到122111,e t x t x t x --==,进而构造函数33313ln ()ln[(1)]ln(1)1t t h t t t t t -=+=++-,利用导数处理单调性,进而可求. (1))()2221b ax x af x a x x x -+-=--=' 令2()F x ax x a =-+- ,则()00F a =-< ,且对称轴102x a=> 而214a ∆=-易知当10,2a ⎛⎫∈ ⎪⎝⎭ 时()f x 在0⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 单调递减,在⎝⎭单调递增当)12a ∞⎡∈+⎢⎣, 时()f x 在()0+∞,单调递减. (2)()g x 有两个零点12,x x 且0x >,则1212ln 2ln 2ln 2ln 20x x x x ax a a x x x +++-+=⇒=⇒==, 设21x t x =, 212x x >,2t ∴> ∴221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,∴11ln ln 2ln 2t x t x ++=+,所以12111ln ln 2e 1t t x x t t --=-⇒=-, ∴33333631121(1)e (1)t x x t x t t --+=+=+,设33313ln ()ln[(1)]ln(1)1t t h t tt t t -=+=++-,2t >,则222331(1)()[1ln ](1)1t t h t t t t t -'=--+-+, 设2231(1)()1ln 1t t t t t tϕ-=--++,则7437323223211()(441)[(1)4(1)](1)(1)t t t t t t t t t t t t t ϕ--'=+--=-+-++, 当(1,)t ∈+∞时,()0t ϕ'>,所以函数()t ϕ在(1,)t ∈+∞上递增,()()10t ϕϕ∴>=,则()0h t '>,()h t ∴在(1,)+∞递增,又2t >,∴()(2)ln72h t h >=,故3361272e x x -+>. 【点睛】本题考查了含参函数的单调性,最值问题,方程与函数零点的综合问题,利用导数解决单调性的问题,分情况讨论,转化,构造函数证明不等式,二阶求导等综合性的函数知识,在做题时要理清思路,是一道导数的综合题.16.(2022·山东师范大学附中模拟预测)已知函数()()ln h x x a x a =-∈R . (1)若()h x 有两个零点,a 的取值范围;(2)若方程()e ln 0xx a x x -+=有两个实根1x 、2x ,且12x x ≠,证明:12212e ex x x x +>. 【答案】(1)()e,+∞ (2)证明见解析 【解析】 【分析】(1)分析可知0a ≠,由参变量分离法可知直线1y a=与函数()ln xf x x=的图象有两个交点,利用导数分析函数()f x 的单调性与极值,数形结合可求得实数a 的取值范围;(2)令e 0x t x =>,其中0x >,令111e x t x =,222e xt x =,分析可知关于t 的方程ln 0t a t -=也有两个实根1t 、2t ,且12t t ≠,设120t t >>,将所求不等式等价变形为12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭>+,令121t s t =>,即证()21ln 1s s s ->+,令()()21ln 1s g s s s -=-+,其中1s >,利用导数分析函数()g s 的单调性,即可证得结论成立. (1)解:函数()h x 的定义域为()0,∞+.。
导数与函数的零点

导数与函数的零点考点一判断零点的个数【例1】已知函数f(x)=ln x-x2+ax,a∈R.(1)证明ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.【训练1】已知函数f(x)=13x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.考点二根据零点个数求参数的值(范围)【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.【训练2】已知函数f(x)=1x2+a ln x(a∈R).(1)求f(x)的单调递减区间;(2)已知函数f(x)有两个不同的零点,求实数a的取值范围.考点三函数零点的综合问题【例3】设函数f(x)=e2x-a ln x. (1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.【训练3】已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.强化训练一、选择题1.函数f(x)=ln x-x的零点个数是( )A.3B.2C.1D.02.已知函数f(x)的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( ) A.1 B.2C.3D.43.若方程8x =x 2+6ln x +m 仅有一个解,则实数m 的取值范围为( ) A.(-∞,7) B.(12-6ln 3,+∞)C.(15-6ln 3,+∞)D.(-∞,7)∪(15-6ln 3,+∞)二、填空题 4.若函数f (x )=ax -ae x+1(a <0)没有零点,则实数a 的取值范围为________.5.已知函数f (x )=x 3-x 2+ax -a 存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,则x 1+2x 0=________.三、解答题6.已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围.7.已知函数f (x )=2ln x -x 2+ax (a ∈R),若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围.8.已知函数f (x )=e x +(a -e)x -ax 2. (1)当a =0时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.9.设函数f (x )=ln x -a (x -1)e x ,其中a ∈R. (1)若a ≤0,讨论f (x )的单调性; (2)若0<a <1e ,10.(多填题)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________;若函数f (x )恰有2个零点,则λ的取值范围是________.答 案 导数与函数的零点考点一判断零点的个数【例1】已知函数f (x )=ln x -x 2+ax ,a ∈R. (1)证明ln x ≤x -1;(2)若a ≥1,讨论函数f (x )的零点个数.(1)证明 令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1x -1=1-x x,可得x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1.(2)解 f ′(x )=1x -2x +a =-2x 2+ax +1x,x >0.令-2x 20+ax 0+1=0,解得x 0=a +a 2+84(负值舍去),在(0,x 0)上,f ′(x )>0,函数f (x )单调递增; 在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0).当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1. 当a >1时,f (1)=a -1>0,f ⎝⎛⎭⎫12a =ln 12a -14a 2+12<12a -1-14a 2+12 =-⎝⎛⎭⎫12a -122-14<0,f (2a )=ln 2a -2a 2<2a -1-2a 2=-2⎝⎛⎭⎫a -122-12<0. ∴函数f (x )在区间⎝⎛⎭⎫12a ,1和区间(1,2a )上各有一个零点. 综上可得:当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点.规律方法1.利用导数求函数的零点常用方法:(1)构造函数g (x )(其中g ′(x )易求,且g ′(x )=0可解),利用导数研究g (x )的性质,结合g (x )的图象,判断函数零点的个数.(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有多少个零点. 2.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”. 【训练1】已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减. (2)证明 由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-13=-6⎝⎛⎭⎫a-162-16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.考点二根据零点个数求参数的值(范围)【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,-1<m+1<0,即-2<m<-1.所以m的取值范围是(-2,-1).规律方法 1.函数零点个数可转化为图象的交点个数,根据图象的几何直观求解.2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点判断函数的大致图象,进而求出参数的取值范围.【训练2】已知函数f(x)=1x2+a ln x(a∈R).(1)求f(x)的单调递减区间;(2)已知函数f(x)有两个不同的零点,求实数a的取值范围.解(1)由题意可得,f′(x)=-2x3+ax=ax2-2x3(x>0),当a≤0时,f′(x)<0,函数f(x)在(0,+∞)上单调递减,当a >0时,f ′(x )=a ⎝⎛⎭⎫x +2a ⎝⎛⎭⎫x -2a x 3,由f ′(x )≤0,解得0<x ≤2a, ∴此时函数f (x )的单调递减区间为⎝⎛⎭⎫0,2a a . 综上可得:a ≤0时,函数f (x )的单调递减区间为(0,+∞), a >0时,函数f (x )的单调递减区间为⎝⎛⎭⎫0,2a a . (2)由(1)可得若函数f (x )有两个不同的零点,则必须满足a >0, 且f ⎝⎛⎭⎫2a =a 2+a 2ln 2a<0, 化为ln 2a <-1,解得a >2e.所以实数a 的取值范围是(2e ,+∞). 考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4,且b <12ln 2时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a. 故当a >0时,f (x )≥2a +a ln 2a.规律方法 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f ′(x )存在唯一零点x 0,则f (x 0)为函数的最小值,从而把问题转化为证明f (x 0)≥2a +a ln 2a.【训练3】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.(1)证明 设g (x )=f ′(x ),则g (x )=cos x +x sin x -1,g ′(x )=x cos x . 当x ∈⎝⎛⎭⎫0,π2时,g ′(x )>0; 当x ∈⎝⎛⎭⎫π2,π时,g ′(x )<0,所以g (x )在⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫π2,π上单调递减. 又g (0)=0,g ⎝⎛⎭⎫π2>0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)解 由题设知f (π)≥a π,f (π)=0,可得a ≤0. 由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0, 当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,π)时,f ′(x )<0, 所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0].强化训练一、选择题1.(2020·重庆一中训练)函数f (x )=ln x -x 的零点个数是( ) A.3B.2C.1D.0解析 f ′(x )=1x -12x =2-x 2x ,定义域(0,+∞).当0<x <4时,f ′(x )>0;当x >4时,f ′(x )<0. ∴f (x )在(0,4)上递增,在(4,+∞)上递减, 则f (x )max =f (4)=ln 4-2=ln4e 2<0. ∴f (x )<0恒成立,故f (x )没有零点. 答案 D2.已知函数f (x )的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020f(x)的导函数y=f′(x)( )A.1B.2C.3D.4解析根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.答案 D3.若方程8x=x2+6ln x+m仅有一个解,则实数m的取值范围为()A.(-∞,7)B.(12-6ln 3,+∞)C.(15-6ln 3,+∞)D.(-∞,7)∪(15-6ln 3,+∞)解析方程8x=x2+6ln x+m仅有一个解等价于函数m(x)=x2-8x+6ln x+m(x>0)的图象与x 轴有且只有一个交点.又m′(x)=2x-8+6x=2(x-1)(x-3)x.当x∈(0,1)时,m′(x)>0,m(x)是增函数;当x∈(1,3)时,m′(x)<0,m(x)是减函数;当x∈(3,+∞)时,m′(x)>0,m(x)是增函数,∴m(x)极大值=m(1)=m-7,m(x)极小值=m(3)=m+6ln 3-15.∵当x趋近于0时,m(x)趋近于负无穷,当x趋近于正无穷时,m(x)趋近于正无穷,∴要使m(x)的图象与x轴有一个交点,必须有m(x)极大值=m-7<0或m(x)极小值=m+6ln 3-15>0,故m<7或m>15-6ln 3.答案 D二、填空题4.若函数f(x)=ax-ae x+1(a<0)没有零点,则实数a的取值范围为________.解析f′(x)=a e x-(ax-a)e xe2x=-a(x-2)e x(a<0).当x<2时,f′(x)<0;当x>2时,f′(x)>0,∴当x=2时,f(x)有极小值f(2)=ae2+1.若使函数f(x)没有零点,当且仅当f(2)=ae2+1>0,解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)5.(2020·湖南长郡中学检测)已知函数f (x )=x 3-x 2+ax -a 存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,则x 1+2x 0=________.解析 由f (x )=x 3-x 2+ax -a ,得f ′(x )=3x 2-2x +a . ∵x 0为f (x )的极值点,知3x 20-2x 0+a =0.① 因为f (x 1)=f (x 0),其中x 1≠x 0,所以x 31-x 21+ax 1-a =x 30-x 20+ax 0-a , 化为x 21+x 1x 0+x 20-(x 1+x 0)+a =0,把a =-3x 20+2x 0代入上述方程可得x 21+x 1x 0+x 20-(x 1+x 0)-3x 20+2x 0=0, 化为x 21+x 1x 0-2x 20+x 0-x 1=0,即(x 1-x 0)(x 1+2x 0-1)=0, ∵x 1-x 0≠0,∴x 1+2x 0=1. 答案 1 三、解答题6.已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解 (1)f ′(x )=ax 2-3x +a +1,由f ′(1)=0,得a =1, ∴f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点,则g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m 有三个零点.由g ′(x )=x 2-3x =0,得x =0或x =3.由g ′(x )>0,得x <0或x >3;由g ′(x )<0,得0<x <3.∴函数g (x )在(-∞,0)和(3,+∞)上为增函数,在(0,3)上为减函数. 要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g (0)>0,g (3)<0,解得12<m <5.故实数m 的取值范围为⎝⎛⎭⎫12,5. 7.已知函数f (x )=2ln x -x 2+ax (a ∈R),若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1.当1e≤x <1时,g ′(x )>0;当1<x ≤e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 8.已知函数f (x )=e x +(a -e)x -ax 2.(1)当a =0时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.解 (1)当a =0时,f (x )=e x -e x ,则f ′(x )=e x -e ,f ′(1)=0,当x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1处取得极小值,且极小值为f (1)=0,无极大值.(2)由题意得f ′(x )=e x -2ax +a -e ,设g (x )=e x -2ax +a -e ,则g ′(x )=e x -2a .若a =0,则f (x )的最大值f (1)=0,故由(1)得f (x )在区间(0,1)内没有零点.若a <0,则g ′(x )=e x -2a >0,故函数g (x )在区间(0,1)内单调递增.又g (0)=1+a -e<0,g (1)=-a >0,所以存在x 0∈(0,1),使g (x 0)=0.故当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减;当x ∈(x 0,1)时,f ′(x )>0,f (x )单调递增.因为f (0)=1,f (1)=0,所以当a <0时,f (x )在区间(0,1)内存在零点.若a >0,由(1)得当x ∈(0,1)时,e x >e x .则f (x )=e x +(a -e)x -ax 2>e x +(a -e)x -ax 2=a (x -x 2)>0,此时函数f (x )在区间(0,1)内没有零点.综上,实数a 的取值范围为(-∞,0).9.(2019·天津卷)设函数f (x )=ln x -a (x -1)e x ,其中a ∈R.(1)若a ≤0,讨论f (x )的单调性;(2)若0<a <1e, ①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.(1)解由已知,f (x )的定义域为(0,+∞),且f ′(x )=1x -[a e x +a (x -1)e x ]=1-ax 2e x x. 因此当a ≤0时,1-ax 2e x >0,从而f ′(x )>0,所以f (x )在(0,+∞)内单调递增.(2)证明①由(1)知,f ′(x )=1-ax 2e x x. 令g (x )=1-ax 2e x ,由0<a <1e,知g (x )在(0,+∞)内单调递减. 又g (1)=1-a e>0,且g ⎝⎛⎭⎫ln 1a =1-a ⎝⎛⎭⎫ln 1a 2·1a=1-⎝⎛⎭⎫ln 1a 2<0, 故g (x )=0在(0,+∞)内有唯一解,从而f ′(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a. 当x ∈(0,x 0)时,f ′(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增;当x ∈(x 0,+∞)时,f ′(x )=g (x )x <g (x 0)x=0, 所以f (x )在(x 0,+∞)内单调递减,因此x 0是f (x )的唯一极值点.令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x-1<0, 故h (x )在(1,+∞)内单调递减,从而当x >1时,h (x )<h (1)=0,所以ln x <x -1,从而f ⎝⎛⎭⎫ln 1a =ln ⎝⎛⎭⎫ln 1a -a ⎝⎛⎭⎫ln 1a -1eln 1a=ln ⎝⎛⎭⎫ln 1a -ln 1a+1=h ⎝⎛⎭⎫ln 1a <0.又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,⎩⎪⎨⎪⎧f ′(x 0)=0,f (x 1)=0,即⎩⎪⎨⎪⎧ax 20e x 0=1,ln x 1=a (x 1-1)e x 1, 从而ln x 1=x 1-1x 20e x 1-x 0,即e x 1-x 0=x 20ln x 1x 1-1. 因为当x >1时,ln x <x -1,又x 1>x 0>1,故e x 1-x 0<x 20(x 1-1)x 1-1=x 20,两边取对数, 得ln e x 1-x 0<ln x 20,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.10.(多填题)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________;若函数f (x )恰有2个零点,则λ的取值范围是________.解析 当λ=2时,f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2, 其图象如图(1).由图知f (x )<0的解集为(1,4).若f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况: ①二次函数有两个零点,一次函数无零点;②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y =x -4与y =x 2-4x +3的图象,如图(2),平移直线x =λ,可得λ∈(1,3]∪(4,+∞).答案 (1,4) (1,3]∪(4,+∞)。
高考微专题三 利用导数研究函数的零点

22
规律总结
根据函数零点的情况求参数值或取值范围的基本方法:①利用零点存在定理构建不 等式求解;②分离参数后转化为函数的值域(最值)问题求解;③转化为两个熟悉的函数图 象的位置关系问题,从而构建不等式求解.
返回导航
23
【对点训练 2】 (1)(2020·全国Ⅰ卷节选)已知函数 f (x)=ex-a(x+2).若 f (x)有两个 零点,求 a 的取值范围.
返回导航
20
当 a=1 时,f ′(x)=x-x212≥0,所以 f (x)单调递增,又 f (1)=a-1=0,所以 f (x)有 唯一零点,符合题意;
当 a>1 时,1a<1,在0,1a,(1,+∞)上,f ′(x)>0,f (x)单调递增; 在1a,1上,f ′(x)<0,f (x)单调递减,此时 f (1)=a-1>0, 易证当 0<x<1 时,
2
a2-4a, a2-4a .
2
②由①可知:
a.当 a≤4 时,函数 f (x)单调递增,又由 f (1)=0,可得此时函数只有一个零点为 x
x1x2=1>0,x2>x1,可得 0<x1<1<x2,又由 f (1)=0,由函数的单调 性可知 f (x1)>f (1)=0,f (x2)<f (1)=0,
解:①函数 f (x)的定义域为(0,+∞),f ′(x)=1x-x+a12=x2+x2x-+a1x2+1, 在一元二次方程 x2+(2-a)x+1=0 中,Δ=(2-a)2-4=a2-4a=a(a-4), a.当 a<0 时,f ′(x)>0,此时函数 f (x)单调递增,增区间为(0,+∞),没有减区间;
导数中的零点问题

导数中的零点问题题型一:零点的基本解法1、已知函数$f(x)=2\ln x-x+mx,x\in[2e,+\infty)$,求实数$m$的取值范围。
2、已知函数$f(x)=x\mathrm e^x-a(x+1)^2/2,x\in[0,+\infty)$有两个零点,求实数$a$的取值范围。
1) 若$a=\mathrm e$,求函数$f(x)$的极值。
2) 若函数$f(x)$有两个零点,求实数$a$的取值范围。
3、已知函数$f(x)=a\mathrm e^{2x}+(a-2)\mathrm e^x-x$。
1)讨论$f(x)$的单调性。
2)若$f(x)$有两个零点,求$a$的取值范围。
4、已知函数$f(x)=-(2ax+ax+(x-2)\mathrm e^x)/2,a>0$。
1)求函数$f(x)$的单调区间。
2)若函数$f(x)$存在$3$个零点,求$a$的取值范围。
题型二:切线与零点关系1、曲线在点$(1,1)$处的切线方程为;过点$(1,1)$处的切线方程为。
2、已知函数$f(x)=\frac{1}{2}x^3+mx+n(m,n\in\mathbb{R})$。
1)若$f(x)$在$x=1$处取得极大值,求实数$m$的取值范围。
2)若$f(1)=\frac{1}{2}$,且过点$p(2,1)$有且只有两条直线与曲线$y=f(x)$相切,求实数$m$的值。
3、已知函数$f(x)=ax^2+bx-3x$在$x=\pm 1$处取得极值。
1)求函数$f(x)$的解析式。
2)若过点$A(1,m)$可作曲线$y=f(x)$的三条切线,求实数$m$的取值范围。
题型三:极值与零点关系1、已知函数$f(x)=x^3-6x^2+3x+t(t\in\mathbb{R})$。
1)求函数$f(x)$的单调区间。
2)设函数$g(x)=f(x)$有三个不同的极值点,求$t$的取值范围。
3)设函数$g(x)=\mathrm e^{f(x)}$有三个不同的极值点,求$t$的取值范围。
导数零点不可求考点与题型归纳

导数零点不可求考点与题型归纳导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢? 考点一 猜出方程f ′(x )=0的根[典例] 设f (x )=1+ln x x. (1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围.[解题观摩] (1)因为f ′(x )=-ln x x 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以⎩⎪⎨⎪⎧a <1,a +1>1,即0<a <1,故所求实数a 的取值范围是(0,1). (2)方程f (x )=x 2-2x +k 有实数解,即f (x )-x 2+2x =k 有实数解.设g (x )=f (x )-x 2+2x ,则g ′(x )=2(1-x )-ln x x 2. 接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解.因为g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2].[关键点拨]当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0.考点二 隐零点代换[典例] 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)求证:当a >0时,f (x )≥2a +a ln 2a. [解题观摩] (1)法一:f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-a x, 因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x在(0,+∞)上单调递增, 所以f ′(x )在(0,+∞)上单调递增.又因为f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0, 所以当a >0时,f ′(x )存在唯一零点.法二:f ′(x )=2e 2x -a x(x >0). 令方程f ′(x )=0,得a =2x e 2x (x >0).因为函数g (x )=2x (x >0),h (x )=e 2x (x >0)均是函数值为正值的增函数,所以由增函数的定义可证得函数u (x )=2x e 2x (x >0)也是增函数,其值域是(0,+∞). 由此可得,当a ≤0时,f ′(x )无零点;当a >0时,f ′(x )有唯一零点.(2)证明:由(1)可设f ′(x )在(0,+∞)上的唯一零点为x 0.当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.所以f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,当且仅当x =x 0时,f (x )取得最小值,最小值为f (x 0).因为2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a (当且仅当x 0=12时等号成立). 所以当a >0时,f (x )≥2a +a ln 2a. [关键点拨]本题第(2)问的解题思路是求函数f (x )的最小值,因此需要求f ′(x )=0的根,但是f ′(x )=2e 2x -a x=0的根无法求解.故设出f ′(x )=0的根为x 0,通过证明f (x )在(0,x 0)和(x 0,+∞)上的单调性知f (x )min =f (x 0)=a 2x 0+2ax 0+a ln 2a,进而利用基本不等式证得结论,其解法类似解析几何中的设而不求. 考点三 证——证明方程f ′(x )=0无根[典例] 已知m ∈R ,函数f (x )=mx -m x -2ln x ,g (x )=2e x,若∃x 0∈[1,e],使得f (x 0)>g (x 0)成立,求实数m 的取值范围.[解题观摩] 因为当x =1时,f (x )=0,g (x )=2e ,不存在f (x 0)>g (x 0),所以关于x 的不等式f (x )>g (x )在[1,e]上有解,即关于x 的不等式2e +2x ln x x 2-1<m (1<x ≤e)有解. 设u (x )=2e +2x ln x x 2-1(1<x ≤e), 则u ′(x )=2x 2-4e x -2-(2x 2+2)ln x (x 2-1)2(1<x ≤e),但不易求解方程u ′(x )=0. 可大胆猜测方程u ′(x )=0无解,证明如下:由1<x ≤e ,可得-(2x 2+2)ln x <0,2x 2-4e x -2=2(x -e)2-2e 2-2<0,所以u ′(x )<0,u (x )在(1,e]上是减函数,所以函数u (x )的值域是⎣⎢⎡⎭⎪⎫4e e 2-1,+∞, 故所求实数m 的取值范围是⎝ ⎛⎭⎪⎫4e e 2-1,+∞. [关键点拨]当利用导函数求函数f (x )在区间[a ,b ],[a ,b )或(a ,b ]上的最值时,可首先考虑函数f (x )在该区间上是否具有单调性,若具有单调性,则f (x )在区间的端点处取得最值(此时若求f ′(x )=0的根,则此方程是无解的).第五课时 构造函数利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键.考点一 “比较法”构造函数证明不等式当试题中给出简单的基本初等函数,例如f (x )=x 3,g (x )=ln x ,进而证明在某个取值范围内不等式f (x )≥g (x )成立时,可以类比作差法,构造函数h (x )=f (x )-g (x )或φ(x )=g (x )-f (x ),进而证明h (x )min ≥0或φ(x )max ≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g (x )>0(f (x )>0)的前提下,也可以类比作商法,构造函数h (x )=f (x )g (x )⎝⎛⎭⎫φ(x )=g (x )f (x ),进而证明h (x )min ≥1(φ(x )max ≤1).[典例] 已知函数f (x )=e x -ax (e 为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)求证:当x >0时,x 2<e x .[解题观摩] (1)由f (x )=e x -ax ,得f ′(x )=e x -a .因为f ′(0)=1-a =-1,所以a =2,所以f (x )=e x -2x ,f ′(x )=e x -2,令f ′(x )=0,得x =ln 2,当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-2ln 2,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.所以当x >0时,g (x )>g (0)=1>0,即x 2<e x .[关键点拨]在本题第(2)问中,发现“x 2,e x ”具有基本初等函数的基因,故可选择对要证明的“x 2<e x ”构造函数,得到“g (x )=e x -x 2”,并利用(1)的结论求解.考点二 “拆分法”构造函数证明不等式当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为f (x )≤g (x )的形式,进而证明f (x )max ≤g (x )min 即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.[典例] 已知函数f (x )=eln x -ax (a ∈R).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.[解题观摩] (1)f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a 时,f ′(x )>0,当x >e a时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明:法一:因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.记g (x )=e x x-2e(x >0), 则g ′(x )=(x -1)e xx 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e ,即xf (x )-e x +2e x ≤0.法二:要证xf (x )-e x +2e x ≤0,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e x e x. 设函数g (x )=ln x -x +2,则g ′(x )=1x-1. 所以当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1.设函数h (x )=e x e x ,则h ′(x )=e x(x -1)e x 2. 所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1.综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0.[关键点拨]对于第(2)问xf (x )-e x +2e x ≤0的证明直接构造函数h (x )=x eln x -ax 2-e x +2e x ,求导后不易分析,故可将不等式合理拆分为f (x )≤e x x -2e 或ln x -x +2≤e x e x,再分别对不等式两边构造函数证明不等式. 考点三 “换元法”构造函数证明不等式若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m (x 1,x 2)的表达式(其中m (x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m (x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.[典例] 已知函数f (x )=ln x x-k 有两个不同的零点x 1,x 2,求证:x 1x 2>e 2. [解题观摩] f (x )=ln x x-k ,设x 1>x 2>0, 由f (x 1)=f (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,得ln x 1+ln x 2=k (x 1+x 2),ln x 1-ln x 2=k (x 1-x 2).要证x 1x 2>e 2,即证ln x 1x 2>2,只需证ln x 1+ln x 2>2,也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2(x 1-x 2)x 1+x 2. 令x 1x 2=t (t >1),则只需证ln t >2(t -1)t +1(t >1). 令h (t )=ln t -2(t -1)t +1(t >1), 则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 故函数h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=0,即ln t >2(t -1)t +1. 所以x 1x 2>e 2.[关键点拨]不妨设x 1>x 2>0,由f (x 1)=f (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,利用分析法将要证明的不等式转化为ln x 1-ln x 2x 1-x 2>2x 1+x 2,再利用换元法,通过求导证明上述不等式成立. 考点四 “转化法”构造函数在关于x 1,x 2的双变元问题中,若无法将所给不等式整体转化为关于m (x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.[典例] 设函数f (x )=ln x +m x ,m ∈R ,若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.[解题观摩] 对任意的b >a >0,f (b )-f (a )b -a<1等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), 故(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立,故m ≥14,当且仅当x =12时等号成立,所以m 的取值范围为⎣⎡⎭⎫14,+∞.。
高考数学专题一 微专题8 利用导数研究函数零点问题

④当x∈(π,+∞)时,ln(x+1)>1, 所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点.
跟踪训练1 (2023·常德模拟)已知函数f(x)=x2+2-aln x(a∈R). x
(1)若f(x)在x=2处取得极值,求f(x)在点(1,f(1))处的切线方程;
因为 f(x)=x2+2x-aln x,x>0,
2x3-ax-2
所以 f′(x)= x2
(x>0),
令g(x)=2x3-ax-2,则g′(x)=6x2-a,
由 a>0,g′(x)=0,可得 x= a6,
所以 g(x)在0,
a6上单调递减,在
a6,+∞上单调递增,
由于 g(0)=-2<0,故当 x∈0,
a6时,g(x)<0,
又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,
从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,
由于f(x)有唯一零点x0,故x1=x0,且x0>1,
所以有 2x30-ax0-2=0,x20+x20-aln x0=0,
联立得 2ln x0-x30-3 1-1=0,
(*)
令 h(x)=2ln x-x3-3 1-1,可知 h(x)在(1,+∞)上单调递增,
由于 h(2)=2ln 2-170<2×0.7-170<0,h(3)=2ln 3-2296>2×1-2296>0, 故方程(*)的唯一解,即f(x)的唯一零点x0∈(2,3),故[x0]=2.
考点二 由零点个数求参数范围
③若a<-1, (ⅰ)当x∈(0,+∞)时, 则g′(x)=ex-2ax>0, 所以g(x)在(0,+∞)上单调递增, 又g(0)=1+a<0,g(1)=e>0, 所以存在m∈(0,1), 使得g(m)=0,即f′(m)=0, 当x∈(0,m)时,f′(x)<0,f(x)单调递减, 当x∈(m,+∞)时,f′(x)>0,f(x)单调递增, 所以当x∈(0,m)时,f(x)<f(0)=0,
导数与函数的零点专题

导数与函数的零点专题考点一判断零点的个数【例1】(2019·青岛期中)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.【训练1】已知函数f(x)=e x-1,g(x)=x+x,其中e是自然对数的底数,e=2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.【训练2】已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;(2)若函数f(x)不存在零点,求实数a的取值范围.考点三 函数零点的综合问题【例3】 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a.【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数).(1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值; (2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.【分层训练】【基础巩固题组】(建议用时:30分钟)一、选择题1.已知函数f (x )的定义域为[-1,4],部分对应值如下表:x-1 0 2 3 4 f (x ) 1 2 0 2 0f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4二、填空题2.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________.3.若函数f (x )=ax -a e x +1(a <0)没有零点,则实数a 的取值范围为________.三、解答题 4.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝⎛⎭⎪⎫4,103. (1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围.5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x 3零点的个数.【能力提升题组】(建议用时:25分钟)6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R)在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和.7.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a<e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根.答 案【例1】 (2019·青岛期中)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数. 【答案】见解析【解析】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R},∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∴f (x )min =f (1)=-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3. (2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x-4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x2,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(x ),g (x )的取值变化情况如下表:X(0,1) 1 (1,3) 3 (3,+∞) g ′(x )+ 0 - 0 +g (x )极大值 极小值当0<x ≤3时,g (x )≤g (1)=-4<0, 当x >3时,g (e 5)=e 5-3e5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点,故g (x )仅有1个零点.【规律方法】 利用导数确定函数零点或方程根个数的常用方法(1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.【训练1】 已知函数f (x )=e x -1,g (x )=x +x ,其中e 是自然对数的底数,e =2.718 28….(1)证明:函数h (x )=f (x )-g (x )在区间(1,2)上有零点;(2)求方程f (x )=g (x )的根的个数,并说明理由.【答案】见解析【解析】(1)证明 由题意可得h (x )=f (x )-g (x )=e x -1-x -x ,所以h (1)=e -3<0,h (2)=e 2-3-2>0,所以h (1)h (2)<0,所以函数h (x )在区间(1,2)上有零点.(2)解 由(1)可知h (x )=f (x )-g (x )=e x -1-x -x .由g (x )=x +x 知x ∈[0,+∞),而h (0)=0,则x =0为h (x )的一个零点.又h (x )在(1,2)内有零点,因此h (x )在[0,+∞)上至少有两个零点.h ′(x )=e x -12x -12-1,记φ(x )=e x -12x -12-1,则φ′(x )=e x +14x -32.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,易知φ(x )在(0,+∞)内至多有一个零点,即h (x )在[0,+∞)内至多有两个零点,则h (x )在[0,+∞)上有且只有两个零点,所以方程f (x )=g (x )的根的个数为2.考点二 已知函数零点个数求参数的取值范围【例2】 函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.【答案】见解析【解析】(1)函数f (x )=ax +x ln x 的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).【规律方法】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.【训练2】已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;(2)若函数f(x)不存在零点,求实数a的取值范围.【答案】见解析【解析】(1)由题意知,函数f(x)的定义域为R,又f(0)=1-a=2,得a=-1,所以f (x )=e x -x +1,求导得f ′(x )=e x -1.易知f (x )在[-2,0]上单调递减,在[0,1]上单调递增,所以当x =0时,f (x )在[-2,1]上取得最小值2.(2)由(1)知f ′(x )=e x +a ,由于e x >0,①当a >0时,f ′(x )>0,f (x )在R 上是增函数,当x >1时,f (x )=e x +a (x -1)>0;当x <0时,取x =-1a ,则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0.所以函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=0,得x =ln(-a ).在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减,在(ln (-a ),+∞)上,f ′(x )>0,f (x )单调递增,所以当x =ln(-a )时,f (x )取最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0. 综上所述,所求实数a 的取值范围是(-e 2,0).考点三 函数零点的综合问题【例3】 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a .【答案】见解析【解析】(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-a x 单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e2x 0-ax 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a. 故当a >0时,f (x )≥2a +a ln 2a. 【规律方法】 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f ′(x )存在唯一零点x 0,则f (x 0)为函数的最小值,从而把问题转化为证明f (x 0)≥2a +a ln 2a. 【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数). (1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值; (2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.【答案】见解析【解析】(1)解 f (x )=ln x -x -m (m <-2)的定义域为(0,+∞),且f ′(x )=1-x x=0, ∴x =1.当x ∈(0,1)时,f ′(x )>0,所以y =f (x )在(0,1)递增;当x ∈(1,+∞)时,f ′(x )<0,所以y =f (x )在(1,+∞)上递减.且f ⎝ ⎛⎭⎪⎫1e =-1-1e -m ,f (e)=1-e -m , 因为f ⎝ ⎛⎭⎪⎫1e -f (e)=-2-1e +e>0, 函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值为1-e -m . (2)证明 由(1)知x 1,x 2满足ln x -x -m =0,且0<x 1<1,x 2>1,ln x 1-x 1-m =ln x 2-x 2-m =0,由题意可知ln x 2-x 2=m <-2<ln 2-2.又由(1)可知f (x )=ln x -x 在(1,+∞)递减,故x 2>2,所以0<x 1,1x 2<1.则f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2=ln x 1-x 1-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =ln x 2-x 2-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =-x 2+1x 2+2ln x 2. 令g (x )=-x +1x+2ln x (x >2), 则g ′(x )=-1-1x 2+2x =-x 2+2x -1x 2=-(x -1)2x 2≤0, 当x >2时,g (x )是减函数,所以g (x )<g (2)=-32+ln 4. 因32-ln 4=ln e 324>ln 2.56324=ln (1.62)324=ln 1.634=ln 4.0964>ln 1=0,∴g (x )<0, 所以当x >2时,f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2<0, 即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 2. 因为0<x 1,1x 2<1,f (x )在(0,+∞)上单调递增.所以x 1<1x 2,故x 1x 2<1. 【反思与感悟】1.解决函数y =f (x )的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x 轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.2.通过等价变形,可将“函数F (x )=f (x )-g (x )的零点”与“方程f (x )=g (x )的解”问题相互转化.【易错防范】函数y =f (x )在某一区间(a ,b )上存在零点,必要时要由函数零点存在定理作为保证.【分层训练】【基础巩固题组】(建议用时:30分钟)一、选择题1.已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4【答案】 D【解析】 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4.二、填空题2.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________.【答案】 4-2ln 2【解析】 由题意得,|AB |=|e t +1-(2t -1)|=|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增,所以h (t )min =h (ln 2)=4-2ln 2>0,即|AB |的最小值是4-2ln 2.3.若函数f (x )=ax -ae x +1(a <0)没有零点,则实数a 的取值范围为________.【答案】 (-e 2,0)【解析】 f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x (a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0,∴当x =2时,f (x )有极小值f (2)=a e2+1. 若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0,解之得a >-e 2,因此-e 2<a <0.三、解答题 4.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝⎛⎭⎪⎫4,103. (1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围.【答案】见解析【解析】(1)因为函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝⎛⎭⎪⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2, 即f (x )=13x 3-12x 2-2x -2, 所以f ′(x )=x 2-x -2.由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞).(2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56, f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点,则-163<2m -3<-56,解得-76<m <1312. 所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312. 5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x 3零点的个数. 【答案】见解析 【解析】函数g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设h (x )=-13x 3+x (x >0), 所以h ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,h ′(x )>0,此时h (x )在(0,1)内单调递增;当x ∈(1,+∞)时,h ′(x )<0,此时h (x )在(1,+∞)内单调递减.所以当x =1时,h (x )取得极大值h (1)=-13+1=23. 令h (x )=0,即-13x 3+x =0,解得x =0(舍去)或x = 3. 作出函数h (x )的大致图象(如图),结合图象知:①当m >23时,函数y =m 和函数y =h (x )的图象无交点. ②当m =23时,函数y =m 和函数y =h (x )的图象有且仅有一个交点. ③当0<m <23时,函数y =m 和函数y =h (x )的图象有两个交点. 综上所述,当m >23时,函数g (x )无零点;当m =23时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.【能力提升题组】(建议用时:25分钟)6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R)在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和.【答案】见解析【解析】f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1,所以此时f (x )在(0,+∞)内无零点,不满足题意.当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3, 则f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,得a =3, 所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减.则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.7.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根.【答案】见解析【解析】(1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-x x (x >0);当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ;由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3.解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1,所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln xx 2.当0<x <e 时,g ′(x )>0;当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e +12<1,所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f(x)|=ln x x +12没有实数根.。
导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳导函数零点问题一、方法综述导数是研究函数性质的有力工具,其核心是由导数值的正负确定函数的单调性。
应用导数研究函数的性质或研究不等式问题时,绕不开研究$f(x)$的单调性,往往需要解方程$f'(x)=0$。
若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题。
二、解题策略类型一:察“言”观“色”,“猜”出零点例1】【2020·福建南平期末】已知函数$f(x)=x+ax+\frac{1}{e^{2x}}$1)讨论$f(x)$的单调性;2)若函数$g(x)=x+\frac{1}{e^{-mx}-1}$在$[-1,+\infty)$有两个零点,求$m$的取值范围。
分析】1)首先求出函数的导函数因式分解为$f'(x)=(x+a+1)(x+1)e^{-2x}$,再对参数$a$分类讨论可得:①当$a=0$时,$f'(x)=(x+1)e^{-2x}$,当且仅当$x=-1$时,等号成立。
故$f(x)$在$(-\infty,+\infty)$为增函数。
②当$a>0$时,$-10$得$x-1$,由$f'(x)<0$得$-a-1<x<-1$;所以$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数。
③当$aa+1$,由$f'(x)>0$得$x>-a-1$或$x<-1$,由$f'(x)<0$得$-1<x<-a-1$;所以$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。
综上,当$a=0$时,$f(x)$在$(-\infty,+\infty)$为增函数;当$a>0$时,$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数;当$a<0$时,$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:导数与零点一.导言导数与零点专题是高考考察的重点内容,下表列举了从16年起全国卷对这个点的考察:如表所示,导数与零点是高考导数大题部分的重要命题方向之一.二.题型1:判断或证明零点个数1.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.2.已知函数()11ln x f x x x -=-+.(1)讨论)(x f 的单调性,并证明)(x f 有且仅有两个零点;(2)设0x 是)(x f 的一个零点,证明:曲线x y ln =在点)ln ,(00x x A 处的切线也是曲线x e y =的切线.3.已知函数()ln f x m x =,()()10x g x x x-=>. (1)讨论函数()()()F x f x g x =-在()0,∞+上的单调性;(2)判断当m e =时,()y f x =与()y g x =的图象公切线的条数,并说明理由.4.已知函数()ln 2sin f x x x x =-+,()f x '为()f x 的导函数. (1)求证:()f x '在()0π,上存在唯一零点; (2)求证:()f x 有且仅有两个不同的零点.题型2:已知零点个数求参数范围5.已知函数()2xe xf x a =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在只有一个零点,求a 的值.6.已知函数2()(2)xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.:7.已知函数21()sin cos 2f x x x x ax =++,[,]x ππ∈- (1)当0a =时,求()f x 的单调区间; (2)当0a >,讨论()f x 的零点个数.8.已知函数()()1xf x x e =-,()lng x x =,其中e 是自然对数的底数.(1)求曲线()y f x =在1x =处的切线方程;(2)设函数()()()h x bf x g x =-,若函数()h x 恰好有2个零点,求实数b 的取值范围.(取ln3.5 1.25=,ln 4 1.40=)题型3:零点的分布特征9.设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.10.已知函数()()2112xf x e x kx k R =---∈.(1)当1k >时,讨论()f x 极值点的个数; (2)若分别为()f x 的最大零点和最小零点,当8a b -≥时,证明:2k >.11.已知函数xe xf =)(.(1)若曲线)(x f y =在点))(,(00x f x 处的切线为b kx y +=,求b k -的最小值; (2)当常数),2(+∞∈m 时,若函数2)()1()(2+--=mx x f x x g 在),0[+∞上有两个零点2121,,x x x x <,证明:m x ex <<+214ln.12.已知函数(1)(2)1,2()(0)(2)1,2x x x x f x a a x x --+≤⎧=>⎨-+>⎩和函数()(1)1g x k x =-+.(1)求函数()f x 的单调区间;(2)若2a k =,1()0,k ∈,且函数()()y f x g x =-有三个零点1x 、2x 、3x ,求123()()()f x f x f x ++的取值范围.题型4:零点(极值点)偏移,双零点(极值点)问题13.已知函数R a ax x x f ∈-=,ln )(,若0)()(21==x f x f ,证明:221e x x >.14.设函数22()ln ()f x a x x ax a R =-+-∈. (1)试讨论函数()f x 的单调性;(2)如果0a >且关于x 的方程()f x m =有两解1x ,212()x x x <,证明122x x a +>.15.已知R a ax x ax x x f ∈++-=,2ln 21)(2有两个不同的极值点21x x <. (1)求实数a 的取值范围; (2)求证:221a x x <.16.已知函数2)1()2()(-+-=x a e x x f x有两个零点. (1)求a 的取值范围;(2)设21,x x 是)(x f 的两个零点,证明:221<+x x .练习题1.已知函数1,0()ln ,0x xf x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( ) A .1(0,)eB .1(0,)2eC .1(,)2e-∞ D .11(,)2e e2.已知方程2mx e x =在(]0,8上有两个不等的实数根,则实数m 的取值范围为( ) A .1ln 2,84⎛⎫⎪⎝⎭B .1ln 2,164⎡⎫⎪⎢⎣⎭C .3ln 22,4e ⎡⎫⎪⎢⎣⎭ D .122,4n e ⎡⎫⎪⎢⎣⎭ 3. 已知函数()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( ) A .1(0,)eB .(0,)eC .1(,)e-∞D .1(,)e e4.若二次函数2()1f x x =+的图象与曲线:()1(0)xC g x ae a =+>存在公共切线,则实数a 的取值范围为A .(0,24]eB .(0,28]eC .24[e,)+∞ D .28[e,)+∞5.函数221x f x e a x ()()有且只有一个零点,则实数a 的取值范围是( )A .,14e ⎛⎫⎪⎝⎭B .(C .30,2e ⎛⎫⎪⎝⎭D .3,2e ⎛⎫-∞ ⎪⎝⎭6.已知函数()31f x x a =-++,1,x e e⎡⎤∈⎢⎥⎣⎦与()3ln g x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .30,4e ⎡⎤-⎣⎦B .310,2e ⎡⎤+⎢⎥⎣⎦C .3312,4e e ⎡⎤+-⎢⎥⎣⎦D .34,e ⎡⎤-+∞⎣⎦7.已知函数3()ln 2xf x x e =++与函数2()x g x e ax -=+的图象上存在两对关于y 轴对称的点,则实数a 的取值范围为( )A .2,3e ⎛⎫-∞ ⎪⎝⎭B .2,2e ⎛⎫-∞ ⎪⎝⎭C .20,3e ⎛⎫⎪⎝⎭D .20, 2e ⎛⎫ ⎪⎝⎭8.已知函数2ln ()2xf x ax x=--与函数2()3g x x ex =-+的图象上存在两对关于直线1y =对称的点,则实数a 的取值范围为( )A .(,)e -∞B .22,e e +⎛⎫-∞ ⎪⎝⎭C .220,e e +⎛⎫⎪⎝⎭D .(0,)e9.已知函数1()x f x xe -=,若对于任意的(200,x e ⎤∈⎦,函数()20()ln 1g x x x ax f x =-+-+在(20,e ⎤⎦内都有两个不同的零点,则实数a 的取值范围为( ). A .2231,e e ⎛⎤-⎥⎝⎦B .223,e e ⎛⎤-∞-⎥⎝⎦C .22,e e e e ⎛⎤-+ ⎥⎝⎦D .21,e e ⎛⎤-⎥⎝⎦10.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是( ) A .16,e e ⎛⎫⎪⎝⎭B .741,e e ⎡⎫⎪⎢⎣⎭ C .74160,,e e e ⎡⎫⎛⎤⎪⎢ ⎥⎝⎦⎣⎭ D .746,e e ⎡⎫⎪⎢⎣⎭11.已知函数()x xf x e =,关于x 的方程1()()f x m f x -=有三个不等实根,则实数m 的取值范围是( ) A .1(,)e e-+∞B .1(,)e e-+∞C .1(,)e e-∞-D .1(,)e e-∞-12.已知函数()ln xf x x=,若关于x 的方程()()22210f x mf x m ++-=⎡⎤⎣⎦恰有3个不同的实数解,则实数m 的取值范围是( ) A .()(),11,-∞⋃+∞B .11,22e e ⎛⎫-⎪⎝⎭ C .111,222e ⎛⎫-⎪⎝⎭ D .1,2e ⎛⎫ ⎪⎝⎭13.若关于x 的方程0xx xx e m e x e++=+有三个不相等的实数解123,,x x x ,且1230x x x <<<,其中m ∈R ,e 为自然对数的底数,则3122312111x x x x x x e e e ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( ) A .1+mB .eC .m-1D .114.若关于x 的方程10x x xx em e x e+++=+有三个不等的实数解123,,x x x ,且1230x x x <<<,其中m R ∈, 2.71828e =为自然对数的底数,则3122312x x x x x x m m m e e e ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( ) A .eB .2eC .()42m m +D .()41m m +15.已知()(ln 1)(ln 1)f x ax x x x =++++与2()g x x =的图像至少有三个不同的公共点,则实数a 的取值范围是( )A.1,22⎛⎫- ⎪ ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C.2⎛⎫ ⎪ ⎪⎝⎭D.16.已知函数4)(,cos sin )(2+=+=x x g x x x x f .(1)讨论函数)(x f 在],[ππ-上单调性;(2)设)(4)()(x f x g x h -=,试证明)(x h 在R 上有且仅有三个零点.17.设函数()ln mf x x x=+,m R ∈. (1)当m e =(e 为自然对数的底数)时,求()f x 的极小值; (2)讨论函数()()3xg x f x -'=零点的个数.18.设函数()()211ln 2f x x ax a x =+-+. (1)讨论函数()f x 的单调性:(2)若函数()f x 有两个零点,求实数a 的取值范围.19.已知函数()33f x x x =-.(1)求()f x 在区间[]()0,0m m >上的最大值和最小值; (2)在曲线2yx 上是否存在点P ,使得过点P 可作三条直线与曲线()y f x =相切?若存在,求出其横坐标的取值范围;若不存在,请说明理由.20.已知函数R x x ax e x x f x∈+--=,2131)1()(23. (1)0=a 时,求))1(,1(f 处的切线方程;(2)0>x 时,)(x f 是否存在两个极值点,若存在,求实数a 的最小整数解,若不存在,说明理由.21.已知函数0,,1ln )1()(≠∈-+--=k R k k x k x k x f . (1)讨论函数)(x f 的单调性;(2)设函数)(x f 的导函数为)(x g ,若函数)(x f 恰有2个零点2121,,x x x x <,证明:0)32(21>+x x g .22.已知函数()()cos xf x aex a R -=+∈.(1)若函数()f x 在,02π⎛⎫- ⎪⎝⎭上是单调函数,求实数a 的取值范围;(2)当1a =-时,0x 为函数()f x 在()0,π上的零点,求证:()000012sin cos x x e x x π-<-.23.已知函数21()ln 1,2f x x x mx x m R =--+∈. (1)若()f x 有两个极值点,求实数m 的取值范围;(2)若函数2()ln ln g x x x mx e x emx =--+有且只有三个不同的零点,分别记为123,,x x x ,且31x x 的最大值为2e ,求13x x 的最大值.24.已知函数0,21ln )(≠+-=a x x ax x f . (1)讨论函数)(x f 的单调性;(2)设0>a ,函数)(x f 恰有2个零点21x x <,证明:212177x ax x x >+.25.已知函数R a x ax x x f ∈++=,ln 22)(2在2=x 处取得极值. (1)求实数a 的值及函数()f x 的单调区间;(2)方程()f x m =有三个实根123123,,(),x x x x x x <<求证:32 2.x x -<26.设函数()()3211232xf x ex kx kx =--+. (1)若1k =,求()f x 的单调区间;(2)若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 的取值范围,并证明:1 3 22x x x >+.27.已知函数2()ln f x x a x =-,且()1f x ≥.(1)求a 的值;(2)在函数()f x 的图象上任意取定两点11(,())A x f x ,2212(,())()B x f x x x <,记直线AB 的斜率为k ,求证:存在唯一012(,)x x x ∈,使得0'()f x k =成立.。