相似三角形判定导学案(1)
《8.5怎样判断三角形相似》导学案

《8.5 怎样判定三角形相似》导学案山东潍坊滨海第一初级中学王品学习目标:1、掌握三边对应成比例两个三角形相似的判定方法。
2、能够运用三角形相似的条件解决简单的问题。
3、通过互动,使学生在自学习中体验获取数学知识的乐趣,培养学生多方位思考问题的能力,在亲身参与数学活动的过程中,培养学生的学习兴趣和学好数学的信心,在观察图形的过程中,发现数学中相似图形的美。
重点、难点:重点:三角形相似的判定方法3难点:判定三角形相似方法3的导出过程。
学习形式:自主学习、小组合作、展示交流。
学习过程:课前预习学案【知识回顾】相似三角形的判定方法1、判定方法2课内探究学案【实验与探究】按照下列条件分别画出△ABC和△DEF,使AB=3厘米,BC=4.5厘米,AC=6厘米,DE=2厘米,EF=3厘米,DF=4厘米。
(1)分别计算,,,这三个比值相等吗?(2)剪下画出的三角形,利用叠合的方法,检验对应内角之间具有怎样的大小关系。
(3)△ABC和△DEF相似吗?为什么?(4)适当改变△ABC和△DEF的边长,并保持==,还能得到同样的结论吗?1、【结论】:判定方法3:2、【火眼金睛】:你能找出下列图中的相似三角形吗?【自主学习】:自学课本第45页例3、例4自学提示:1、理解利用判定方法3进行解题的方法和步骤。
2、如有不明白的地方,请标出来。
【小组合作】 合作要求:1. 小组长带领小组成员交流自学所得。
2. 小组长对于小组成员出现的问题,应及时给予帮助。
3. 对于感到疑惑、困难或有不同看法的问题用△标出。
【变式题】1、如图一已知 = = ,找出图中相等的角,并说明你的理由。
图一2、如图二已知AB=6, BE=3, EA=4.5, CD=4, DF=2, CF=3 ,6cm3cm5cm(3)AB CDEAB ∥CD 吗?说明你的理由。
图二【班级展示】1. 请同学们积极展示本组的学习成果,认真倾听,大胆发表看法。
2. 谈一谈你们在自学中遇到的问题,又是怎样解决的。
《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的周长比、面积比与相似比之间的关系。
3、能运用相似三角形的性质解决简单的实际问题。
二、学习重点1、相似三角形的性质的理解和应用。
2、相似三角形周长比、面积比与相似比的关系。
三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。
四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。
2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。
解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。
解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。
设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。
(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。
解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。
六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。
相似三角形的判定(1)

许市中学九年级数学导学案 NO:课题:相似三角形的判定(1) 姓名: 使用日期 班 小组 组内编号 学习目标1.能推导“平行于三角形一边的直线与其它两边相交,截得的三角形与原三角形相似”,并能利用此定理证明三角形相似. 2.能利用此定理解决相关实际问题 一、基础预习(一)阅读教材77—78页 (二)预习要求与方法快速阅读教材,并用红笔标注重点,并记下自己的疑问 (三)预习要点1.从相似三角形的定义出发,满足什么条件的两个三角形相似?2.仔细阅读“动脑筋”的证明过程如图DE ∥BC ,则有哪些角相等,哪些线段成比例?(2)DE ∥BC 是否可以判定ADE ABC D D ∽?为什么? 试用几何语言表达.∵ ∴△ABC ∽ (四)预习检测如左下图,在ABC D中,DE ∥BC ,若AD=1,AB=3,DE=2,则BC 的长为( ) A .4 B .5 C .6 D .72. 如右上图,在ABC D中,DE ∥BC ,若12AD BD =,DE=3cm ,则BC 的长为( ) A .8cm B .9cm C .10cm D .12cm 二、 课堂探究1. 如左下图AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( )A .AB OA CD AD = B .OA OBOD BC = C .AB OB CD OC = D .BC OBAD OD=2. 如右上图,DE ∥BC ,EF ∥AB ,则图中相似三角形有________对.3. 如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE=2ED , CD=3cm ,则AF 的长为__________.4. 如图,点D 为ABC D的边AB 的中点,过点D 作DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使DE=EF ,求证CFE ABC DD ∽.拓展应用如图AD ∥EG ∥BC ,EG 分别交AB 、DB 、AC 于点E 、F 、G ,已知AD=6,BC=10,AE=3,AB=5,求EG 、FG 的长.许市中学九年级数学教学案 NO:课题:相似三角形的判定(1) 备课日期: 教出时间: 主备人: 使用人: 审核: 教学目标1.能推导“平行于三角形一边的直线与其它两边相交,截得的三角形与原三角形相似”,并能利用此定理证明三角形相似. 2.能利用此定理解决相关实际问题 一、基础预习(一)阅读教材77—78页 (二)预习要求与方法快速阅读教材,并用红笔标注重点,并记下自己的疑问 (三)预习要点1.从相似三角形的定义出发,满足什么条件的两个三角形相似?2.仔细阅读“动脑筋”的证明过程如图DE ∥BC ,则有哪些角相等,哪些线段成比例?(2)DE ∥BC 是否可以判定ADE ABC D D ∽?为什么? 试用几何语言表达.∵ ∴△ABC ∽ (四)预习检测1.如左下图,在ABC D 中,DE ∥BC ,若AD=1,AB=3,DE=2,则BC 的长为( )A .4B .5C .6D .72. 如右上图,在ABC D中,DE ∥BC ,若12AD BD =,DE=3cm ,则BC 的长为( ) A .8cm B .9cm C .10cm D .12cm 二、课堂探究1. 如左下图AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( )AB OA CD AD = B .OA OBOD BC=C .AB OB CD OC = D .BC OBAD OD=2. 如右上图,DE ∥BC ,EF ∥AB ,则图中相似三角形有________对.3. 如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE=2ED , CD=3cm ,则AF 的长为__________.4. 如图,点D 为ABC D的边AB 的中点,过点D 作DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使DE=EF ,求证CFE ABC DD ∽.四、拓展应用如图AD ∥EG ∥BC ,EG 分别交AB 、DB 、AC 于点E 、F 、G ,已知AD=6,BC=10,AE=3,AB=5,求EG 、FG 的长.教学反思:。
相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在△ABC和△中,, .问:△ABC和△是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或 .问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,∽ .例1 已知和中,,, .求证:∽ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:∽∽ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即∽△∽△.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
相似三角形的判定(1)导学案ywm

3.3.1相似三角形的判定(一)【学习目标】(1) 会用符号“∽”表示相似三角形如△ABC ∽ △A′B′C′; (2) 知道当△ABC 与△A′B′C′的相似比为k 时,△A′B′C′与△ABC 的相似比为1k .(3) 掌握两边对应成比例,夹角相等的两个三角形相似的判定方法。
【学习重点】理解掌握三边对应成比例的两个三角形相似的判定方法及应用.【学习难点】 运用三边对应成比例的两个三角形相似判定三角形相似. 一、知识回顾平行于三角形一边与其它两边(或其延长线)相交,所截得的对应线段_________。
1、如图:MN//BC,则: ①AM AN =______=______. ②AM AB =______=______. 2、如图,DE//BC ,则: ①ADAB =______=______. ②BDAB=______. 3、把一个△ABC 放大后得到△A′B′C′,那么△ABC 与△A′B′C′有什么关系?①放大后AB 边对应______,BC 边对应______,AC 边对应ABCM NC BA A′B′C′______,∠A 对应______,∠B 对应______,∠C 对应______. ②对应边有什么关系?对应角有什么关系? 二 合作探究阅读教材P “说一说”,思考下列问题:1、什么叫作相似三角形?如何表示相似三角形? 在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB A ′B ′=BC B ′C ′=AC A ′C ′=k .我们就说△ABC 与△A′B′C′相似,记作:△ABC ∽△A′B′C′,对应边的比AB A ′B ′=BC B ′C ′=ACA ′C ′=k 叫△ABC 与△A′B′C′的相似比.【注意】①△A′B′C′与△ABC②两个相似三角形的相似比具有顺序性。
根据相似三角形的定义,不难得到相似三角形性质:△ABC ∽△A′B′C′══>⎩⎨⎧∠A=_____、∠B=_____、∠C=____.AB A ′B ′=BC B ′C ′=AC A ′C ′2、【问题】如果k=1,这两个三角形有怎样的关系?3、【问题】已知:如图,DE//BC.求证:△AD E ∽△ABC.∵D E ∥BC∴∠B=∠ADE, ∠C=∠AEDAD AB =AE AC =DEBC;又:∠A=∠A∴△ADE ∽△ABC (相似三角形定义) 【归纳总结】相似三角形判定预备定理:平行于三角形一边的直线截其他两边(或两边延长线),所得的三角形与原三角形_________.∵D E ∥BC ∴△ABC ∽△ADE【注意】平行截相似的三种基本图形。
相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
青岛版数学九年级上册同步导学案:1

1.2.2 怎样判定三角形相似【学习目标】1、初步掌握相似三角形的判定定理(1),并且能够运用它们进行简单的证明及计算2、通过习题的引申练习,培养学生解决问题的能力3、渗透图形运动的思想,培养学生思维能力【学习重难点】相似三角形判定定理(1)理解相似三角形判定(1)的探究过程,并能归纳出“两角对应相等,两三角形相似”【学习过程】一、学习准备:1、相似多边形的主要特征是什么?2、平行线分线段成比例定理及其推论的内容是什么?二、自主探究在图一、图二中,即在相似三角形的预备定理中我们知道,由于BC ∥ B1C1,△ABC ∽△ A B1 C1图一图二若将△ A B1C1旋转一定的角度或将AB1与AC边重合,将AC1边与AB重合,如图三、图四,而△ABC与△A B1C1由于只改变了△AB1C1的位置,所以△ABC与△AB1C1肯定仍然相似.那么,用什么方法可以判定两个三角形的相似?图三图四判定方法一:___________________________________________结合图形用数学符号语言表示:∵∠ A= ∠A’ ,∠ B= ∠B’∴△ABC ∽△ A′B ′C′例1:如图 1-11,已知点 B,D 分别是∠A的两边AC,AE 上的点,连接BE , CD,相交于点 O,如果∠1=∠2,图中有哪几对相似三角形?说明理由.三、课堂小结:1、谈一谈,这节课你有哪些收获?2、对于本节所学内容你还有哪些疑惑?四、随堂训练1、下列三角形中哪些是相似的?2、若△(4)与△(1)相似,求∠A的度数3、已知:如图,在△ABC中,点D、E分别在AB、AC上,且∠1=∠B(1)求证:△ADE∽△ABC(2)若∠A=50°,∠C=70°,求∠1的度数(3)若AE=4,BE=2,求AC的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定导学案
【课前延伸】
1、全等三角形的性质:全等三角形的对应边、对应角。
全等三角形的判定方法:、、、。
(用字母表市即可)2、相似三角形的性质:相似三角形的对应边、对应角。
【学习目标】
1、通过画图、测量,了解两角对应相等两三角形相似三角形的判定方法。
2、会灵活选取条件,证明两三角形相似。
3、会利用三角形相似解决简单的实际问题。
4、进一步培养学生的逻辑推理能力,能简练地写出证明过程。
【课内探究】
实验与探究:
画一个三角形,使三个角分别为60°,45°,75°。
①同桌分别量出两个三角形三边的长度;
②同桌画的这两个三角形相似吗?换另三个角试试?
小组总结:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______。
小组讨论:两三角形相似一定要三个角相等吗?将你小组讨论的结果填写在下面:并说明理由。
知识应用一:
例:如图所示,D,E分别是△ABC边AB,AC上的点,DE//BC。
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由;
(3)写出成比例的线段。
知识应用二:
例:在阳光下,为了测量学校水塔的高度,小亮走进水塔的影子里,使自己的影子刚好被水塔的影子遮住,已知小亮的身高BC=1.6米,此时,他的影子的长AC=1米,他距水塔底部E处11.5米,水塔的顶部为点D,你能由此算出水塔的高度DE 吗?
小组总结:通过以上两个例题的解答,你们发现利用相似三角形可以:
练习:
1.有一个锐角对应相等的两个直角三角形是否相似?为什么?画图说明。
2.一个角相等的两个等腰三角形是否相似?为什么?画图说明。
【课堂小结】
小组谈谈本节课的收获和疑惑
【课堂检测】
1、图1中DE∥FG∥BC,找出图中所有的相似三角形。
2、图2中AB∥CD∥EF,找出图中所有的相似三角形。
3、在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么?
4、找出图中所有的相似三角形
你能写出对应边的比例式和相等的角吗? 图3
5、如图3,已知△ABC中D为AC的中点,AB=5,AC=7,∠AED=∠C,则ED=
【课后提升】
基础题:习题8.5A组1、2题
能力题:习题8.5A组3题【课堂检测】
1、图1中DE∥FG∥BC,找出图中所有的相似三角形。
2、图2中AB∥CD∥EF,找出图中所有的相似三角形。
3、在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么?
4、找出图中所有的相似三角形
你能写出对应边的比例式和相等的角吗? 图3
5、如图3,已知△ABC中D为AC的中点,AB=5,AC=7,∠AED=∠C,则ED=
【课后提升】
基础题:习题8.5A组1、2题
能力题:习题8.5A组3题。