信号转换 电路
信号转换电路

• CMOS开关电路
uGP
+E
ui
-E
uo
uGN a)
Ron Ron(P)
Ron(N)
Ron(C)
O
o
uiui
b)
集成模拟开关
• CMOS开关电路
u 1 1
uc DcG1
ui
V4 + E
V5
V3
V4
V2
V3
+
E
uo
1
V1
DG1D2 2
--E
图 6-6 含辅助电路的 CMOS 开关电路
多路模拟开关
对采样保持电路的主要要求: 精度和速度
为提高实际电路的精度和速度,可从元件和 电路两方面着手解决。
元件性能的影响和要求
• 输入输出缓冲器
特别需注意的参数:
∞
输入偏置电流以及带 宽,上升速率和最大
∞
-
S
+
-
+
+ N2
uo
输出电流等性能参数。 ui
+ N1
C
Uc
元件性能的影响和要求
• 模拟开关
模拟开关是一种在数字信号控制下将模拟信号接通 或断开的元件或电路。该开关由开关元件和控制(驱 动)电路两部分组成。
b) Ron1
R1
C1
∞ -
+ + N2
C
uo uo
精度提高的方法(电路)
(2)电容校正方法的矛盾
精度 《》 速度
Ron2
C1
∞
∞
-
-
Ron
+
+
uo
+ N2
mic差分转单端电路

mic差分转单端电路
将MIC(麦克风)的差分信号转换为单端电路通常需要使用差
分放大器和一些额外的电路。
差分信号是由两个相互对立的信号组
成的,而单端信号只包含一个信号。
首先,我们需要使用差分放大器来放大MIC的差分信号。
差分
放大器可以将两个输入信号进行放大,并且可以抑制共模噪声。
一
般来说,差分放大器的输出会是一个差分信号。
接下来,我们需要使用一个转换电路来将差分信号转换为单端
信号。
这可以通过使用差分到单端转换器来实现。
这个转换器可以
将差分信号的两个输出进行适当的处理,以得到一个单端输出信号。
另外,为了确保信号质量,我们可能需要添加一些滤波器和隔
离器来处理信号。
滤波器可以去除一些不需要的频率成分,而隔离
器可以帮助我们隔离一些干扰信号。
在设计和实现这样的电路时,需要考虑到MIC的工作特性、信
号的频率范围、电路的输入和输出阻抗匹配等因素。
另外,还需要
考虑到电路的稳定性、噪声抑制能力和功耗等方面的问题。
总的来说,将MIC的差分信号转换为单端电路需要使用差分放
大器和转换电路,并可能需要添加一些滤波器和隔离器来处理信号。
在设计和实现这样的电路时,需要考虑到多个因素,以确保电路的
性能和稳定性。
运放单端转差分电路

运放单端转差分电路
单端转差分电路是一种将单端输入信号转换为差分输出信号的电路。
它由一个运放和几个电阻组成。
以下是一个常见的单端转差分电路的示意图:
R1 R3
VIN ----/\/\-------|-------- VOUT1
|
A
|
R2
|
|
VOUT2
其中,VIN是输入信号,VOUT1和VOUT2是差分输出信号,A是运放。
这种电路的原理是,输入信号通过电阻R1连接到运放的非反馈输入端,同时也通过电阻R3连接到运放的反馈输入端。
电阻R2连接到运放的反馈输入端,形成反馈网络。
当输入信号为VIN时,通过电阻R1和R3的电流将会在电阻R2上产生两个不同的电压,分别是VOUT1和VOUT2。
由于运放的差分放大特性,差分输出信号可被放大,并且输出信号的共模幅度较小,抵抗了电磁干扰。
需要注意的是,单端转差分电路中的电阻值需要选择得合适,以确保输出信号的放大倍数、带宽和共模抑制比满足要求。
ttl转can电路

ttl转can电路(原创版)目录1.TTL 和 CAN 电路的概念2.TTL 转 CAN 电路的作用和需求3.TTL 转 CAN 电路的设计和实现4.TTL 转 CAN 电路的应用场景5.TTL 转 CAN 电路的优缺点正文1.TTL 和 CAN 电路的概念TTL(Transistor-Transistor Logic,晶体管 - 晶体管逻辑)是一种数字电子电路,常用于构建数字计算机和其他数字电子设备。
TTL 电路中的逻辑门和触发器都是由晶体管构成的,因此得名。
CAN(Controller Area Network,控制器局域网)是一种串行通信总线,主要用于汽车电子设备和工业自动化领域。
CAN 总线具有多主控制器、高噪声抗干扰性和高传输速率等特点。
2.TTL 转 CAN 电路的作用和需求TTL 转 CAN 电路是一种将 TTL 信号转换为 CAN 总线信号的电路,主要应用于以下场景:(1)数据采集系统:当需要将 TTL 信号传输到 CAN 总线上时,如传感器输出的信号。
(2)工业自动化设备:在工业自动化设备中,通常需要将不同类型的信号进行转换和集成,TTL 转 CAN 电路可实现这一功能。
(3)汽车电子设备:汽车电子设备中,CAN 总线是常用的通信方式,TTL 转 CAN 电路可实现各种传感器和执行器的信号传输。
3.TTL 转 CAN 电路的设计和实现TTL 转 CAN 电路的设计主要包括以下几个部分:(1)信号转换:将 TTL 信号转换为 CAN 总线信号,需要设计一个信号转换器,实现电平转换和信号整形等功能。
(2)CAN 控制器:CAN 控制器负责处理 CAN 总线上的信号,如发送、接收和错误检测等。
常见的 CAN 控制器有 MCP2515、PCA8201 等。
(3)滤波器:由于 CAN 总线通信距离较长,信号可能受到噪声干扰,因此需要设计滤波器来滤除噪声。
(4)电源管理:为保证电路的稳定性,需要设计合适的电源管理电路。
信号转换电路

传感检测技术基础信号转换电路信号转换电路模/数转换器A/D转换可分为直接法和间接法。
直接法是把电压直接转换为数字量,如逐次比较型的A/D转换器。
间接法是把电压先转换成某一中间量,再把中间量转换成数字量。
(1)逐次比较型模/数转换器逐次比较型A/D转换就是将输入模拟信号与不同的参考电压做多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量的对应值.模模//数与数数与数//模转换器模转换器逐次比较型A/D转换器简化框图如图10.20所示它由D/A转换、数码设定、电压比较和控制电路组成图10.20逐次比较型A/D转换框图(2)双积分型模/数转换电路双积分型A/D转换电路如图10.21所示,当t=T2时,U0(t)=0,如图(b)所示.图10.21双积分型A/D转换器原理图转换过程分两步,首先接通S1,对输入电压(-Ui)积分,积分电路输出电压为:(10.21)然后在T1时,开关切换到S2位置,对基准参考电压Ur反向积分,积分电路输出电压为:(10.22)当t=T2时,U0(t)=0,如图10.21(b),此时得:(10.23)设时钟脉冲频率为,当t=T1时,则时间T1为:此时开始对标准参考电压Ur反向积分,时间间隔T=T1-T2,计数值为N,则,所以:数/模转换器数/模(D/A)转换器是通过电阻网络,把数字按其数码权值转换成模拟量的输出.D/A转换器有两种类型:权电阻网络和T形电阻网络(1)权电阻数/模转换器图10.22是4位二进制权电阻D/A转换器原理图由上图可得:(10.24)(10.25)在上述电路中,权电阻分别为R、2R、4R、…、。
若数字量多于四位,可通过增加模拟开关和权电阻来增加其位数。
(2)T形电阻数/模转换器T形电阻D/A转换器原理如图10.23所示,该电路电阻形状成T形,故称T形网络.图10.23T型电阻D/A转换器由图10.23可知,根据叠加原理,运算放大器总输入的等效电压是各支路等效电压之和,即:(10.26)若取RF=3R,运算放大器的输入端电流为:(10.27)运算放大器的输出电压V0为:(10.28)电压/频率转换器(1)转换原理V/F转换器原理如图10.24所示电压电压//频率与频率频率与频率//电压转换器电压转换器图10.24V/F转换电路示意图1)当输入电压Ux>Uc时,放大器A输出为“1”状态,此时将单稳触发器置“1”,触发器驱动开关S 接通恒流源,使I0对电容CL充电;2)Uc上升,在Uc=Ux+△U时,电压比较器A输出为“0”状态,单稳触发器置“0”,使开关S断开,I0停止对电容CL充电;3)电容CL通过电阻RL放电,Uc下降。
电工与电子技术基础第11章 振荡与信号转换电路

高低阈值电压分别为:+UZR2 和
R1 + R2
-U ZR2 R1 + R2
⒉
振荡周期: T =2Rf C ln (1+
2R2 R1
)
⒊ 矩形波发生器
改变电容C充放电时间常数, 可使方波变为矩形波。
高电平时间ton与周期T的比值
称为占空比,
用q表示:q=
ton T
图11-18
图11-17
11.2.2 由门电路组成的多谐振荡器
解:D=10100000B=160,28=100000000B=256
【例11-9】已知UREF=5V,模拟电压UA=3V, 试求其相应的10位数字电压D。
解:
11.3.2 数模转换电路
⒈ 主要技术指标
⑴ 分辨率
定义: D/A转换器的最小输出电压与最大输出电压之比。 计算公式:1/(2n-1) 例如,对于一个8位D/A转换器,其分辨率为:
tW1 =(R1+R2)C ln2 tW2 =R2C ln2
11.3 数模转换和模数转换电路
11.3.1 数模转换和模数转换基本概念
⒈ 定义
⑴ 数模转换:将数字信号转换为相应的模拟信号称为数模转换 ⑵ 模数转换:将模拟信号转换为相应的数字信号称为模数转换
⒉ 数字信号与相应模拟信号之间的量化关系
【例11-8】已知UREF=10V,8位数字量D=10100000B, 试求其相应模拟电压UA。
11.1.1 正弦振荡基本概念
⒈ 自激振荡的条件 : AF =1
又可分解为振幅平衡条件和相位平衡条件。
振幅平衡条件: | AF |=1
相位平衡条件:φa +φf =2nπ(n=0,1,2,3,…)
第八章 信号变换电路

U o 2.09RL RtC t f i / Rs
D/A转换器工作原理
A R 2R 2R B 2R R C 2R R D 2R Rf 2R
S0
S1
S2
S3
Uo
UR
R2
iO
250C
1500C
iO=4mA iO=20mA
0.01F
铂电阻在00C时电阻为100,2660C时电阻为200 ,则 铂电阻的灵敏度为:R/ T=(200-100)/266 输入电压为eiN= 1mA· (150-25)R/ T=47mV
第三节 电流—电压变换
电流信号经过长距离传送到目的地后,往往需要在转 换成电压信号。下面介绍几种常用的转换电路:
+15V
UIN
RL I0
U1=UIN
T
U1
R1
U 1 U IN Io R1 R1
(2) 4~20mA V/I变换电路
+15V
UIN
R1 R6 R2
R7
T1 T2 IE R3 I0 RL
R4
Ub R5
由于R4、R5>>R3+RL,可认为I0=IE
U U IN IR R5 0 L R1 R1 R5 R1 R5
U i U c1 U c 2 R RL RL
同时可近似认为在半个周期内,电容两端电压 几乎不变,有Uc1=Uc2,代入上式得: c U i R L U
U o1 RL Ui R 2R L
Uo2 RL Ui R 2R L
R 2R L
调制器的构成是用一电子开关代替前面原理 图中的K。 调制器中的电子开关主要有三极管和场效应 管,构成的调制器原理图如下:
信号转换与处理电路

第三章:信号转换与处理电路
电磁耦合隔离放大器
变压器耦合隔离放大器本身构 成一个电磁辐射源。如果周围 其它的电路对电磁辐射敏感, 就应设法予以屏蔽。例如36 56的振荡频率为750kH z,BB公司根据它的封装专 门为它设计了屏蔽罩
第三章:信号转换与处理电路
隔离放大器的应用场合:
普通的差动放大器和测量放大器,虽然也能抑制共模干扰,但却 不允许共模电压高于放大器的电源电压。而隔离放大器不仅有很 强的共模抑制能力,而且还能承受上千伏的高共模电压。因此, 隔离放大器一般用于信号回路具有很高的共模电压的场合。
器的等效输入阻抗Rin
第三章:信号转换与处理电路
2) 同相比例放大器 同相比例放大器电路图如图所示:
Rr
输入阻抗
Ri
输出阻抗
Ro 0
同相放大器具有输入阻抗非常高,输出阻 抗很低的特点,广泛用于前置放大级。
第三章:信号转换与处理电路
3) 差动比例放大器
Af
2R2 R1
1
R2 RP
由于差动放大器具有双端输入单端输出、共模抑制比较高的 特点,通常用作传感放大器或测量仪器的前端放大器。
在隔离放大器中,信号的耦合方式主要有 两种:一种是通过光电耦合,称为光电耦 合隔离放大器(如美国 B-B 公司生产的 ISO100 );另一种是通过电磁耦合,即经过 变压器传递信号,称为变压器耦合隔离放 大器(如美国 AD 公司生产的 AD277 )。
图26 隔离放大器的 组成和符号
第三章:信号转换与处理电路
第三章:信号转换与处理电路
改进电路:
输入阻抗
Rin
Vi Ii
Rr R R Rr
上式表明:只要R稍大于Rr,就能获 得很高的输入阻抗,可高达100M。 但R绝对不能小于Rr,否则输入阻抗为 负,会产生严重自激。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A/D-D/A 仿真(采样频率 500Hz)
6.1 采样保持电路
• 基本性质u0来自ui tuit0
采样期 保持期(t0 为发出保持命令的时刻)
捕捉时间:从发出采样指令的时刻起,直到输出信号稳定地 跟踪上输入信号为止,所需的时间定义为捕捉时间。 关断时间:从发出保持指令的时刻起,直到输出信号稳定下 来为止,所需的时间定义为关断时间。
控制电路
VX
VK
R
L
I
x
IK
RL
(a) 电压开关
• 模拟开关的性能参数
(b) 电流开关
静态特性:主要指开关导通和断开时输入端与输 出端之间的电阻Ron和Roff,此外还有最大开关电压、 最大开关电流和驱动功耗等。
动态特性:开关动作延迟时间,包括开关导通延 迟时间Ton和开关截止延迟时间Toff, 通常Ton>Toff, 理想模拟开关时Ton→0,Toff→0 。
通用运算放大器组成的比较器 专用集成比较器
的区别?
(1)比较器的一个重要指标是它的响应时间,它一般低于1020ns。响应时间与放大器的上升速率和增益-带宽积有关。因 此,必须选用这两项指标都高的运算放大器作比较器,并在应 用中减小甚至不用相位补偿电容,以便充分利用通用运算放大 器本身的带宽来提高响应速度。
小结
• 模拟开关:要求模拟开关的导通电阻小, 漏电流小,极间电容小和切换速度快。
• 存储电容:要选用介质吸附效应小的和泄 漏电阻大的电容。
• 运算放大器:选用输入偏置电流小、带宽 宽及转换速率(上升速率)大的运算放大 器;输入运放还应具有大的输出电流。
3.单片集成采样-保持电路
Uc
+5V 14 13
(2)当在比较器后面连接数字电路时,专用集成比较器无需添 加任何元器件,就可以直接连接,但对通用运算放大器而言, 必须对输出电压采取嵌位措施,使它的高、低输出电位满足数 字电路逻辑电平的要求。
一 、电平比较电路(单阈值比较器) (a)差动比较电路
Uo
-1 ui
+1 UR
a)
# Uo
ui<UR
ui>UR
O UR
ui
b)
图 6-12 电压比较器及其特性
考虑同相输入的情况?如何求阈值电压?三要素?
(b)求和比较电路
(阈值可变)
ui
R1
∞
R2
Σ-
VR
R1 R2
U
U
+
Uo
+
优点:阈值可变
R
缺点:振零现象
a)
考虑同相输入的情况?如何求阈值电压?三要素?
结果。
t
O
Ts
t
f s (t) E0 E1 cos 2f st E2 cos 4f st
f (t) fs (t) E0 f (t) E1 f (t) cos2fst E2 f (t) cos4fst
第一项只使f(t)的幅度改变E0倍, 而不会改变f(t)的频谱结构。后面 的都可以用三角公式展开。
12
11
AD582
&
DG
∞ -
S
+ + N1
#
uo
10
98
∞ -
+ + N2
? /# AD571
状态
模拟量输入
1
2
ui
3
4
5
偏移调节
6
7
C
AD582:Low Cost Sample/Hold Amplifier AD571:10 bit A/D converter
6.2 电压比较电路(comparator)
按转换方式分:
线性转换
非线性转换
线性转换是采用线性电路来完成的,线性转 换只能改变信号频谱分量的相对大小,而不会产 生新的频率成分,某些波形转换、电压/电流转换 可依靠线性转换电路来完成。
利用非线性电路可以实现频率转换,例如混 频、分频和倍频。信号的非线性转换主要应用于 信号的传输方面,特别是信号的远距离传输。
精度
速度
为提高实际电路的精度和速度,可从 元件和电路两方面着手解决。
• 输入输出缓冲器
特别需注意的参数:输入偏置电流以及带宽, 上升速率和最大输出电流等性能参数。
• 模拟开关 模拟开关是一种在数字信号控制下
将模拟信号接通或断开的元件或电路。 该开关由开关元件和控制(驱动)电路 两部分组成。
开关元件
捕捉时间长,电路的跟踪特性差;关断时间长, 电路的保持特性不好,它们限制了电路的工作速度。
1. 基本原理
采样保持电路的组成:
缓冲放大器(跟随器) 模拟开关 模拟信号存储电容
时域
ui ,uo
O fs(t)
a)
采样后所获
uo
f(t)
得的离散信号uo是 模拟信号f(t)与采
样脉冲fs (t)相乘的
6章 信号转换电路
从信息形态变化的观点将各种转换分为三种: ① 自然界物理量到电量的转换。 ② 电量之间的转换。 ③ 从电量到物理量的转换。
在进行信号转换时,需要考虑以下问题:
转换电路应具有线性特性。
要求信号转换电路具有一定的输入阻抗和 输出阻抗,以与之相联的器件/电路阻抗匹配。
有足够的驱动能力和动态范围。
F (f)
O f min
f max
F s(f) E0
O
F (f)* F s(f)
输入信号频谱
频域
f
a)
采样信号频谱
E1
E2
fs
2 fs
f
b)
S/H电路输出信号频谱
即采样频率fs 应大于模拟信号最 高频率fmax的两倍, 这就是采样定理。
fs=(2.5-3)fmax
O f min f max f s - f max
常用的信号转换电路有:
采样/保持(S/H)电路
电压比较电路(comparator )
V/f(电压/频率)转换器
f/V(频率/电压)转换器
V/I(电压/电流)转换器 I/V(电流/电压)转换器
A/D-D/A 仿真(采样频率 100Hz)
※A/D(模/数)转换器
※D/A(数/模)转换器
fs
f s+ f max
2 fs
f
不难看出,只要离散信号的频谱互不重叠,
就可以用一个低通滤波器取出离散信号中fmax 以下的频谱。换句话说,欲从离散信号中恢复
fs fmax fmax
原信号的必要条件是:
2. 主要要求
对采样保持电路的主要要求:
(1)采样,充电快(反映变化)。 (2)保持,放电慢(保持久)。
• 存储电容 选用介质吸附效应小和泄漏电阻大的电容器,
如聚苯乙烯,钽电容和聚碳酸脂电容器等。
原因:1、当电路从采样转到保持,介质的吸附效应会使 电容器上的电压下降,被保持的电压低于采样转保持 瞬间的输入电压;当电容放电时,介质吸附效应会使 放电后的电容电压回升,引起小信号峰值的检测误差。 2、电容器的泄漏电阻引起电容上的保持电压随 时间逐渐减小,降低保持精度。