信号转换 电路

合集下载

信号转换电路

信号转换电路

• CMOS开关电路
uGP
+E
ui
-E
uo
uGN a)
Ron Ron(P)
Ron(N)
Ron(C)
O
o
uiui
b)
集成模拟开关
• CMOS开关电路
u 1 1
uc DcG1
ui
V4 + E
V5
V3
V4
V2
V3
+
E
uo
1
V1
DG1D2 2
--E
图 6-6 含辅助电路的 CMOS 开关电路
多路模拟开关
对采样保持电路的主要要求: 精度和速度
为提高实际电路的精度和速度,可从元件和 电路两方面着手解决。
元件性能的影响和要求
• 输入输出缓冲器
特别需注意的参数:

输入偏置电流以及带 宽,上升速率和最大

-
S
+
-
+
+ N2
uo
输出电流等性能参数。 ui
+ N1
C
Uc
元件性能的影响和要求
• 模拟开关
模拟开关是一种在数字信号控制下将模拟信号接通 或断开的元件或电路。该开关由开关元件和控制(驱 动)电路两部分组成。
b) Ron1
R1
C1
∞ -
+ + N2
C
uo uo
精度提高的方法(电路)
(2)电容校正方法的矛盾
精度 《》 速度
Ron2
C1


-
-
Ron
+
+
uo
+ N2

mic差分转单端电路

mic差分转单端电路

mic差分转单端电路
将MIC(麦克风)的差分信号转换为单端电路通常需要使用差
分放大器和一些额外的电路。

差分信号是由两个相互对立的信号组
成的,而单端信号只包含一个信号。

首先,我们需要使用差分放大器来放大MIC的差分信号。

差分
放大器可以将两个输入信号进行放大,并且可以抑制共模噪声。


般来说,差分放大器的输出会是一个差分信号。

接下来,我们需要使用一个转换电路来将差分信号转换为单端
信号。

这可以通过使用差分到单端转换器来实现。

这个转换器可以
将差分信号的两个输出进行适当的处理,以得到一个单端输出信号。

另外,为了确保信号质量,我们可能需要添加一些滤波器和隔
离器来处理信号。

滤波器可以去除一些不需要的频率成分,而隔离
器可以帮助我们隔离一些干扰信号。

在设计和实现这样的电路时,需要考虑到MIC的工作特性、信
号的频率范围、电路的输入和输出阻抗匹配等因素。

另外,还需要
考虑到电路的稳定性、噪声抑制能力和功耗等方面的问题。

总的来说,将MIC的差分信号转换为单端电路需要使用差分放
大器和转换电路,并可能需要添加一些滤波器和隔离器来处理信号。

在设计和实现这样的电路时,需要考虑到多个因素,以确保电路的
性能和稳定性。

运放单端转差分电路

运放单端转差分电路

运放单端转差分电路
单端转差分电路是一种将单端输入信号转换为差分输出信号的电路。

它由一个运放和几个电阻组成。

以下是一个常见的单端转差分电路的示意图:
R1 R3
VIN ----/\/\-------|-------- VOUT1
|
A
|
R2
|
|
VOUT2
其中,VIN是输入信号,VOUT1和VOUT2是差分输出信号,A是运放。

这种电路的原理是,输入信号通过电阻R1连接到运放的非反馈输入端,同时也通过电阻R3连接到运放的反馈输入端。

电阻R2连接到运放的反馈输入端,形成反馈网络。

当输入信号为VIN时,通过电阻R1和R3的电流将会在电阻R2上产生两个不同的电压,分别是VOUT1和VOUT2。

由于运放的差分放大特性,差分输出信号可被放大,并且输出信号的共模幅度较小,抵抗了电磁干扰。

需要注意的是,单端转差分电路中的电阻值需要选择得合适,以确保输出信号的放大倍数、带宽和共模抑制比满足要求。

ttl转can电路

ttl转can电路

ttl转can电路(原创版)目录1.TTL 和 CAN 电路的概念2.TTL 转 CAN 电路的作用和需求3.TTL 转 CAN 电路的设计和实现4.TTL 转 CAN 电路的应用场景5.TTL 转 CAN 电路的优缺点正文1.TTL 和 CAN 电路的概念TTL(Transistor-Transistor Logic,晶体管 - 晶体管逻辑)是一种数字电子电路,常用于构建数字计算机和其他数字电子设备。

TTL 电路中的逻辑门和触发器都是由晶体管构成的,因此得名。

CAN(Controller Area Network,控制器局域网)是一种串行通信总线,主要用于汽车电子设备和工业自动化领域。

CAN 总线具有多主控制器、高噪声抗干扰性和高传输速率等特点。

2.TTL 转 CAN 电路的作用和需求TTL 转 CAN 电路是一种将 TTL 信号转换为 CAN 总线信号的电路,主要应用于以下场景:(1)数据采集系统:当需要将 TTL 信号传输到 CAN 总线上时,如传感器输出的信号。

(2)工业自动化设备:在工业自动化设备中,通常需要将不同类型的信号进行转换和集成,TTL 转 CAN 电路可实现这一功能。

(3)汽车电子设备:汽车电子设备中,CAN 总线是常用的通信方式,TTL 转 CAN 电路可实现各种传感器和执行器的信号传输。

3.TTL 转 CAN 电路的设计和实现TTL 转 CAN 电路的设计主要包括以下几个部分:(1)信号转换:将 TTL 信号转换为 CAN 总线信号,需要设计一个信号转换器,实现电平转换和信号整形等功能。

(2)CAN 控制器:CAN 控制器负责处理 CAN 总线上的信号,如发送、接收和错误检测等。

常见的 CAN 控制器有 MCP2515、PCA8201 等。

(3)滤波器:由于 CAN 总线通信距离较长,信号可能受到噪声干扰,因此需要设计滤波器来滤除噪声。

(4)电源管理:为保证电路的稳定性,需要设计合适的电源管理电路。

信号转换电路

信号转换电路

传感检测技术基础信号转换电路信号转换电路模/数转换器A/D转换可分为直接法和间接法。

直接法是把电压直接转换为数字量,如逐次比较型的A/D转换器。

间接法是把电压先转换成某一中间量,再把中间量转换成数字量。

(1)逐次比较型模/数转换器逐次比较型A/D转换就是将输入模拟信号与不同的参考电压做多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量的对应值.模模//数与数数与数//模转换器模转换器逐次比较型A/D转换器简化框图如图10.20所示它由D/A转换、数码设定、电压比较和控制电路组成图10.20逐次比较型A/D转换框图(2)双积分型模/数转换电路双积分型A/D转换电路如图10.21所示,当t=T2时,U0(t)=0,如图(b)所示.图10.21双积分型A/D转换器原理图转换过程分两步,首先接通S1,对输入电压(-Ui)积分,积分电路输出电压为:(10.21)然后在T1时,开关切换到S2位置,对基准参考电压Ur反向积分,积分电路输出电压为:(10.22)当t=T2时,U0(t)=0,如图10.21(b),此时得:(10.23)设时钟脉冲频率为,当t=T1时,则时间T1为:此时开始对标准参考电压Ur反向积分,时间间隔T=T1-T2,计数值为N,则,所以:数/模转换器数/模(D/A)转换器是通过电阻网络,把数字按其数码权值转换成模拟量的输出.D/A转换器有两种类型:权电阻网络和T形电阻网络(1)权电阻数/模转换器图10.22是4位二进制权电阻D/A转换器原理图由上图可得:(10.24)(10.25)在上述电路中,权电阻分别为R、2R、4R、…、。

若数字量多于四位,可通过增加模拟开关和权电阻来增加其位数。

(2)T形电阻数/模转换器T形电阻D/A转换器原理如图10.23所示,该电路电阻形状成T形,故称T形网络.图10.23T型电阻D/A转换器由图10.23可知,根据叠加原理,运算放大器总输入的等效电压是各支路等效电压之和,即:(10.26)若取RF=3R,运算放大器的输入端电流为:(10.27)运算放大器的输出电压V0为:(10.28)电压/频率转换器(1)转换原理V/F转换器原理如图10.24所示电压电压//频率与频率频率与频率//电压转换器电压转换器图10.24V/F转换电路示意图1)当输入电压Ux>Uc时,放大器A输出为“1”状态,此时将单稳触发器置“1”,触发器驱动开关S 接通恒流源,使I0对电容CL充电;2)Uc上升,在Uc=Ux+△U时,电压比较器A输出为“0”状态,单稳触发器置“0”,使开关S断开,I0停止对电容CL充电;3)电容CL通过电阻RL放电,Uc下降。

电工与电子技术基础第11章 振荡与信号转换电路

电工与电子技术基础第11章  振荡与信号转换电路

高低阈值电压分别为:+UZR2 和
R1 + R2
-U ZR2 R1 + R2

振荡周期: T =2Rf C ln (1+
2R2 R1
)
⒊ 矩形波发生器
改变电容C充放电时间常数, 可使方波变为矩形波。
高电平时间ton与周期T的比值
称为占空比,
用q表示:q=
ton T
图11-18
图11-17
11.2.2 由门电路组成的多谐振荡器
解:D=10100000B=160,28=100000000B=256
【例11-9】已知UREF=5V,模拟电压UA=3V, 试求其相应的10位数字电压D。
解:
11.3.2 数模转换电路
⒈ 主要技术指标
⑴ 分辨率
定义: D/A转换器的最小输出电压与最大输出电压之比。 计算公式:1/(2n-1) 例如,对于一个8位D/A转换器,其分辨率为:
tW1 =(R1+R2)C ln2 tW2 =R2C ln2
11.3 数模转换和模数转换电路
11.3.1 数模转换和模数转换基本概念
⒈ 定义
⑴ 数模转换:将数字信号转换为相应的模拟信号称为数模转换 ⑵ 模数转换:将模拟信号转换为相应的数字信号称为模数转换
⒉ 数字信号与相应模拟信号之间的量化关系
【例11-8】已知UREF=10V,8位数字量D=10100000B, 试求其相应模拟电压UA。
11.1.1 正弦振荡基本概念
⒈ 自激振荡的条件 : AF =1
又可分解为振幅平衡条件和相位平衡条件。
振幅平衡条件: | AF |=1
相位平衡条件:φa +φf =2nπ(n=0,1,2,3,…)

第八章 信号变换电路

第八章 信号变换电路

U o 2.09RL RtC t f i / Rs
D/A转换器工作原理
A R 2R 2R B 2R R C 2R R D 2R Rf 2R
S0
S1
S2
S3
Uo
UR
R2
iO
250C
1500C
iO=4mA iO=20mA
0.01F
铂电阻在00C时电阻为100,2660C时电阻为200 ,则 铂电阻的灵敏度为:R/ T=(200-100)/266 输入电压为eiN= 1mA· (150-25)R/ T=47mV
第三节 电流—电压变换
电流信号经过长距离传送到目的地后,往往需要在转 换成电压信号。下面介绍几种常用的转换电路:
+15V
UIN
RL I0

U1=UIN
T
U1

R1
U 1 U IN Io R1 R1
(2) 4~20mA V/I变换电路
+15V
UIN
R1 R6 R2
R7
T1 T2 IE R3 I0 RL
R4
Ub R5
由于R4、R5>>R3+RL,可认为I0=IE
U U IN IR R5 0 L R1 R1 R5 R1 R5
U i U c1 U c 2 R RL RL

同时可近似认为在半个周期内,电容两端电压 几乎不变,有Uc1=Uc2,代入上式得: c U i R L U
U o1 RL Ui R 2R L
Uo2 RL Ui R 2R L
R 2R L
调制器的构成是用一电子开关代替前面原理 图中的K。 调制器中的电子开关主要有三极管和场效应 管,构成的调制器原理图如下:

信号转换与处理电路

信号转换与处理电路

第三章:信号转换与处理电路
电磁耦合隔离放大器
变压器耦合隔离放大器本身构 成一个电磁辐射源。如果周围 其它的电路对电磁辐射敏感, 就应设法予以屏蔽。例如36 56的振荡频率为750kH z,BB公司根据它的封装专 门为它设计了屏蔽罩
第三章:信号转换与处理电路
隔离放大器的应用场合:
普通的差动放大器和测量放大器,虽然也能抑制共模干扰,但却 不允许共模电压高于放大器的电源电压。而隔离放大器不仅有很 强的共模抑制能力,而且还能承受上千伏的高共模电压。因此, 隔离放大器一般用于信号回路具有很高的共模电压的场合。
器的等效输入阻抗Rin
第三章:信号转换与处理电路
2) 同相比例放大器 同相比例放大器电路图如图所示:
Rr
输入阻抗
Ri
输出阻抗
Ro 0
同相放大器具有输入阻抗非常高,输出阻 抗很低的特点,广泛用于前置放大级。
第三章:信号转换与处理电路
3) 差动比例放大器
Af
2R2 R1
1
R2 RP
由于差动放大器具有双端输入单端输出、共模抑制比较高的 特点,通常用作传感放大器或测量仪器的前端放大器。
在隔离放大器中,信号的耦合方式主要有 两种:一种是通过光电耦合,称为光电耦 合隔离放大器(如美国 B-B 公司生产的 ISO100 );另一种是通过电磁耦合,即经过 变压器传递信号,称为变压器耦合隔离放 大器(如美国 AD 公司生产的 AD277 )。
图26 隔离放大器的 组成和符号
第三章:信号转换与处理电路
第三章:信号转换与处理电路
改进电路:
输入阻抗
Rin
Vi Ii
Rr R R Rr
上式表明:只要R稍大于Rr,就能获 得很高的输入阻抗,可高达100M。 但R绝对不能小于Rr,否则输入阻抗为 负,会产生严重自激。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A/D-D/A 仿真(采样频率 500Hz)
6.1 采样保持电路
• 基本性质u0来自ui tuit0
采样期 保持期(t0 为发出保持命令的时刻)
捕捉时间:从发出采样指令的时刻起,直到输出信号稳定地 跟踪上输入信号为止,所需的时间定义为捕捉时间。 关断时间:从发出保持指令的时刻起,直到输出信号稳定下 来为止,所需的时间定义为关断时间。
控制电路
VX
VK
R
L
I
x
IK
RL
(a) 电压开关
• 模拟开关的性能参数
(b) 电流开关
静态特性:主要指开关导通和断开时输入端与输 出端之间的电阻Ron和Roff,此外还有最大开关电压、 最大开关电流和驱动功耗等。
动态特性:开关动作延迟时间,包括开关导通延 迟时间Ton和开关截止延迟时间Toff, 通常Ton>Toff, 理想模拟开关时Ton→0,Toff→0 。
通用运算放大器组成的比较器 专用集成比较器
的区别?
(1)比较器的一个重要指标是它的响应时间,它一般低于1020ns。响应时间与放大器的上升速率和增益-带宽积有关。因 此,必须选用这两项指标都高的运算放大器作比较器,并在应 用中减小甚至不用相位补偿电容,以便充分利用通用运算放大 器本身的带宽来提高响应速度。
小结
• 模拟开关:要求模拟开关的导通电阻小, 漏电流小,极间电容小和切换速度快。
• 存储电容:要选用介质吸附效应小的和泄 漏电阻大的电容。
• 运算放大器:选用输入偏置电流小、带宽 宽及转换速率(上升速率)大的运算放大 器;输入运放还应具有大的输出电流。
3.单片集成采样-保持电路
Uc
+5V 14 13
(2)当在比较器后面连接数字电路时,专用集成比较器无需添 加任何元器件,就可以直接连接,但对通用运算放大器而言, 必须对输出电压采取嵌位措施,使它的高、低输出电位满足数 字电路逻辑电平的要求。
一 、电平比较电路(单阈值比较器) (a)差动比较电路
Uo
-1 ui
+1 UR
a)
# Uo
ui<UR
ui>UR
O UR
ui
b)
图 6-12 电压比较器及其特性
考虑同相输入的情况?如何求阈值电压?三要素?
(b)求和比较电路
(阈值可变)
ui
R1

R2
Σ-
VR
R1 R2
U
U
+
Uo
+
优点:阈值可变
R
缺点:振零现象
a)
考虑同相输入的情况?如何求阈值电压?三要素?
结果。
t
O
Ts
t
f s (t) E0 E1 cos 2f st E2 cos 4f st
f (t) fs (t) E0 f (t) E1 f (t) cos2fst E2 f (t) cos4fst
第一项只使f(t)的幅度改变E0倍, 而不会改变f(t)的频谱结构。后面 的都可以用三角公式展开。
12
11
AD582
&
DG
∞ -
S
+ + N1
#
uo
10
98
∞ -
+ + N2
? /# AD571
状态
模拟量输入
1
2
ui
3
4
5
偏移调节
6
7
C
AD582:Low Cost Sample/Hold Amplifier AD571:10 bit A/D converter
6.2 电压比较电路(comparator)
按转换方式分:
线性转换
非线性转换
线性转换是采用线性电路来完成的,线性转 换只能改变信号频谱分量的相对大小,而不会产 生新的频率成分,某些波形转换、电压/电流转换 可依靠线性转换电路来完成。
利用非线性电路可以实现频率转换,例如混 频、分频和倍频。信号的非线性转换主要应用于 信号的传输方面,特别是信号的远距离传输。
精度
速度
为提高实际电路的精度和速度,可从 元件和电路两方面着手解决。
• 输入输出缓冲器
特别需注意的参数:输入偏置电流以及带宽, 上升速率和最大输出电流等性能参数。
• 模拟开关 模拟开关是一种在数字信号控制下
将模拟信号接通或断开的元件或电路。 该开关由开关元件和控制(驱动)电路 两部分组成。
开关元件
捕捉时间长,电路的跟踪特性差;关断时间长, 电路的保持特性不好,它们限制了电路的工作速度。
1. 基本原理
采样保持电路的组成:
缓冲放大器(跟随器) 模拟开关 模拟信号存储电容
时域
ui ,uo
O fs(t)
a)
采样后所获
uo
f(t)
得的离散信号uo是 模拟信号f(t)与采
样脉冲fs (t)相乘的
6章 信号转换电路
从信息形态变化的观点将各种转换分为三种: ① 自然界物理量到电量的转换。 ② 电量之间的转换。 ③ 从电量到物理量的转换。
在进行信号转换时,需要考虑以下问题:
转换电路应具有线性特性。
要求信号转换电路具有一定的输入阻抗和 输出阻抗,以与之相联的器件/电路阻抗匹配。
有足够的驱动能力和动态范围。
F (f)
O f min
f max
F s(f) E0
O
F (f)* F s(f)
输入信号频谱
频域
f
a)
采样信号频谱
E1
E2
fs
2 fs
f
b)
S/H电路输出信号频谱
即采样频率fs 应大于模拟信号最 高频率fmax的两倍, 这就是采样定理。
fs=(2.5-3)fmax
O f min f max f s - f max
常用的信号转换电路有:
采样/保持(S/H)电路
电压比较电路(comparator )
V/f(电压/频率)转换器
f/V(频率/电压)转换器
V/I(电压/电流)转换器 I/V(电流/电压)转换器
A/D-D/A 仿真(采样频率 100Hz)
※A/D(模/数)转换器
※D/A(数/模)转换器
fs
f s+ f max
2 fs
f
不难看出,只要离散信号的频谱互不重叠,
就可以用一个低通滤波器取出离散信号中fmax 以下的频谱。换句话说,欲从离散信号中恢复
fs fmax fmax
原信号的必要条件是:
2. 主要要求
对采样保持电路的主要要求:
(1)采样,充电快(反映变化)。 (2)保持,放电慢(保持久)。
• 存储电容 选用介质吸附效应小和泄漏电阻大的电容器,
如聚苯乙烯,钽电容和聚碳酸脂电容器等。
原因:1、当电路从采样转到保持,介质的吸附效应会使 电容器上的电压下降,被保持的电压低于采样转保持 瞬间的输入电压;当电容放电时,介质吸附效应会使 放电后的电容电压回升,引起小信号峰值的检测误差。 2、电容器的泄漏电阻引起电容上的保持电压随 时间逐渐减小,降低保持精度。
相关文档
最新文档