整数乘法解决问题3
用乘法解决问题的多种方法(使用整数和小数)

用乘法解决问题的多种方法(使用整数和小数)乘法是数学中一种基本运算,它在解决问题时有着广泛的应用。
本文将介绍使用乘法来解决问题的多种方法,涵盖整数和小数的情况。
一、整数的乘法运算在解决整数乘法的问题时,可以采用分步计算的方法。
具体而言,将两个整数的每一位数字进行乘法运算,然后将对应结果相加得到最终的乘积。
例如,计算12乘以34的结果。
首先,计算个位上的乘积2乘以4,得到8;接着,计算十位上的乘积1乘以4和2乘以3,分别得到4和6;最后,将这三个结果相加,得到最终的乘积408。
除了分步计算法,还可以使用乘法的性质来简化计算。
例如,利用乘法的交换律和结合律,可以改变计算顺序,使得计算更加简便。
同时,对于整数的零乘法问题,结果会始终为零。
二、小数的乘法运算小数的乘法运算与整数的乘法运算类似,同样可以采用分步计算的方法。
首先,将小数转化为分数形式,然后按照整数的乘法方法进行计算。
举个例子,计算1.5乘以2.4的结果。
将这两个小数转化为分数形式,得到3/2乘以12/5。
然后,分别计算分子和分母的乘积,得到36/10。
最后,将结果化简为最简分数形式,即18/5。
同样地,使用小数乘法的交换律和结合律,可以根据具体情况进行计算顺序的调整,提高计算效率。
三、解决问题的实例下面通过几个实例来展示如何使用乘法解决问题。
1. 实例一:购物优惠小明去商场购物,店家打折力度为8.5折。
如果小明购买了3件商品,每件商品的价格为58元,那么他一共需要支付多少钱?解决方案:首先,计算折扣后的单件商品价格,即58元乘以8.5/10,得到49.3元。
然后,计算最终支付的总金额,即49.3元乘以3,得到147.9元。
因此,小明需要支付147.9元。
2. 实例二:图书馆座位某图书馆共有3个阅览室,每个阅览室的座位数分别为120、150和180。
如果每个座位上都坐满了读者,那么图书馆一共能容纳多少人?解决方案:将三个阅览室的座位数相加,即120+150+180,得到450。
分治法解决大整数乘法问题

分治法解决大整数乘法问题通常,在分析算法的计算复杂性时,都将加法和乘法运算当作基本运算来处理,即将执行一次加法或乘法运算所需的计算时间,当作一个仅取决于计算机硬件处理速度的常数。
这个假定仅在参加运算的整数能在计算机硬件对整数的表示范围内直接处理才是合理的。
然而,在某些情况下,要处理很大的整数,它无法在计算机硬件能直接表示的整数范围内进行处理。
若用浮点数来表示它,则只能近似的表示它的大小,计算结果中的有效数字也受到限制。
若要精确地表示大整数并在计算结果中要求精确地得到所有位数上的数字,就必须用软件的方法来实现大整数的算术运算。
设X和Y都是n位的二进制整数,现在要计算它们的乘积Z。
可以用小学所学的方法来设计计算乘积XY的算法,但是这样做计算步骤太多,效率较低。
如果将每2个1位数的乘法或加法看作一步运算,那么这种方法要进行O(n^2)步运算才能算出乘积XY。
下面用分治法来设计更有效的大整数乘积算法。
将n位二进制数X和Y都分为两段,每段长n/2位(为简单起见,假设n是2的幂)。
则有:其中X1、Xo分别为X的高位和低位,Y1、Yo分别为Y 的高位和低位。
C2是它们的前半部分的积;Co是它们后半部分的积;C1是X、Y两部分的和的积减去C2与C0的积。
如果n/2也是偶数,我们可以利用相同的方法来计算C2、Co 的和C1。
因此我们就得到了一个计算n位数积的递归算法:在这种完美的形式下,当n变成1时,递归就停止了.或者当我们认为n已经够小了,小到可以直接对这样大小的数相乘时,递归就可以停止了.该算法会有多少次位乘呢?因为n位数的乘法需要对n/2位数做三次乘法运算,乘法次数M(n)的递推式将会是:当n>1时,M(n)=3M(n/2),M(1)=1当n=2^k时,我们可以用反向替换法对它求解:因为所以在最后一步中,我们利用了对数的一个特性:我们应当知道对于不是很大的数,该算法的运行时间很可能比经典算法长.有报告显示,从大于600位的整数开始,分治法的性能超越了笔算算法的性能.如果我们使用类似Java、C++和Smalltalk这样的面向对象语言,会发现这些语言专门为处理大整数提供了一些类。
专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]
![专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]](https://img.taocdn.com/s3/m/b1929684d05abe23482fb4daa58da0116c171f3f.png)
专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。
整数的乘法运算

整数的乘法运算整数的乘法运算是数学中基础而重要的运算方式之一。
乘法是指将两个或更多的数相乘,得出它们的乘积。
整数乘法遵循一定的规则和性质,正确地理解和应用这些规则,能够帮助我们有效地进行计算和解决问题。
一、整数的乘法法则1. 正整数乘法:两个正整数相乘,乘积仍为正整数。
例如:3 × 4 = 12。
2. 负整数乘法:两个负整数相乘,乘积为正整数。
例如:-3 × (-4) = 12。
3. 正负整数相乘:一个正整数与一个负整数相乘,乘积为负整数。
例如:3 × (-4) = -12。
4. 零的乘法:任何数与零相乘,结果都为零。
例如:5 × 0 = 0。
二、整数乘法的运算性质1. 交换律:整数乘法满足交换律,即交换乘法中的因数位置不影响乘积的结果。
例如:3 × 4 = 4 × 3。
2. 结合律:整数乘法满足结合律,即三个或更多整数相乘,可以按照任意次序进行计算,结果不变。
例如:(2 × 3) × 4 = 2 × (3 × 4)。
3. 分配律:整数乘法满足分配律,即对于三个整数a、b、c,有a ×(b + c) = (a × b) + (a × c)。
例如:2 × (3 + 4) = (2 × 3) + (2 × 4)。
三、应用实例整数乘法在实际生活和学习中有广泛的应用。
下面列举几个实例:1. 购买物品:如果某件商品的原价为100元,现在打九折出售,我们可以使用整数乘法来计算打折后的价格。
假设折扣为0.9,则折后价格为100 × 0.9 = 90元。
2. 计算面积:计算矩形的面积需要将矩形的长度和宽度相乘。
例如,一块长为5米,宽为3米的矩形的面积为5 × 3 = 15平方米。
3. 计算时间:计算某个事件持续的时间可以使用整数乘法。
分数与整数相乘及实际问题

分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
倒数的认识:1.乘积是1的两个数互为倒数。
2.求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。
【整数是分母为1的分数】3.1的倒数是1,0没有倒数。
4.假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1。
例题一:1.5个 23相加,用乘法表示是________或________。
2.3× 27表示________。
3.爸爸的体重是84千克,欣欣的体重是爸爸的 14。
求欣欣的体重就是求________的( ) ( )________是多少。
算式是________。
妈妈的体重比爸爸少 13,少的体重的部分是(________)的 13,妈妈的体重是多少千克?算式是________。
4.a× 23=b× 45=c× 34,那么a 、b 、c 这三个数中,最大的是________,最小的是________。
5.2千克的 25是________千克 5米的 37是________米 反馈练习一1.一辆汽车每千米耗油 120升,照这样计算,行10千米耗油________升,行100千米耗油________升。
六年级数学上册整数的乘法运算

六年级数学上册整数的乘法运算整数的乘法运算是六年级数学上册的重要内容之一。
通过学习整数的乘法运算,学生将能够掌握整数乘法的基本概念、规则和技巧,进而应用于解决实际问题。
本文将详细介绍整数的乘法运算及其相关知识点。
一、整数的乘法规则在进行整数的乘法运算时,我们需要遵守以下规则:1. 正数乘以正数,结果仍然是正数。
2. 负数乘以负数,结果也是正数。
3. 正数乘以负数,结果为负数。
4. 负数乘以正数,结果同样为负数。
例如,2乘以3等于6,-2乘以3等于-6,-2乘以-3等于6,2乘以-3等于-6。
二、整数的乘法运算法则在进行多个整数的乘法运算时,我们可以使用以下法则简化计算:1. 交换律:a乘以b等于b乘以a,即a×b=b×a。
2. 结合律:a乘以(b乘以c)等于(a乘以b)乘以c,即a×(b×c)=(a×b)×c。
3. 分配律:a乘以(b加上c)等于a乘以b加上a乘以c,即a×(b+c)=a×b+a×c。
通过运用这些法则,我们可以更快速地进行整数乘法运算,减少计算错误的可能性。
三、解决整数乘法问题的方法解决整数乘法问题时,可以通过以下步骤进行:1. 将题目中的整数用算式表示出来。
2. 根据乘法规则计算乘积。
3. 化简计算,使用整数乘法的法则和技巧简化计算过程。
4. 检查结果是否符合题意,是否计算正确。
例如,计算-3乘以(-4)的乘积可以按照以下步骤进行计算:1. 用算式表示:(-3)×(-4)。
2. 根据乘法规则,两个负数相乘得到正数,则(-3)×(-4)=12。
3. 检查结果是否正确。
四、整数乘法的应用整数乘法在日常生活和实际问题中有广泛的应用。
例如:1. 消费金额计算:当打折商品的价格为-20元,我们需要购买3件,可以通过计算(-20)乘以3得到折扣总额。
2. 温度变化计算:某地温度为-5摄氏度,经过2小时降低了3摄氏度,可以通过计算(-5)乘以2再加上(-5)乘以(-3)得到降温后的温度。
整数的乘法运算
整数的乘法运算整数的乘法是数学中非常基础的运算之一,它在我们的日常生活和各个领域中都有广泛的应用。
本文将详细介绍整数的乘法运算,并探讨其性质和应用。
一、整数乘法的定义和基本运算规则整数乘法是指两个整数相乘的操作。
在进行整数乘法之前,我们首先需要了解整数的性质。
整数包括正整数、负整数和零,用符号表示为正号"+"、负号"-"和零"0"。
下面是整数乘法的基本运算规则:1. 两个正整数的乘积仍为正整数,例如3 × 4 = 12。
2. 两个负整数的乘积仍为正整数,例如(-3) × (-4) = 12。
3. 一个正整数和一个负整数的乘积为负整数,例如3 × (-4) = -12。
4. 任何整数与零相乘都等于零,例如5 × 0 = 0。
根据以上规则,我们可以进行整数乘法的计算。
在计算过程中,我们需要注意符号的运用,确保结果的准确性。
二、整数乘法的性质整数乘法具有一些特殊性质,这些性质对于我们理解和运用整数乘法非常重要。
下面是整数乘法的性质:1. 乘法交换律:对于任意整数a和b,a × b = b × a。
即乘法的顺序可以交换,结果不变。
2. 乘法结合律:对于任意整数a、b和c,(a × b) × c = a × (b × c)。
即乘法运算可以按照任意括号的方式进行,结果不变。
3. 乘法分配律:对于任意整数a、b和c,a × (b + c) = a × b + a × c。
即乘法与加法的运算可以进行配合,结果不变。
利用这些性质,我们可以简化乘法运算,并更加灵活地应用到实际问题中。
三、整数乘法的应用整数乘法在现实生活和各个领域中都有广泛的应用。
下面列举一些常见的应用场景:1. 计算商品的价格:在购物时,我们需要计算商品的总价。
整数的乘除法规则及解题技巧
整数的乘除法规则及解题技巧整数是数学中的基本概念之一,它在我们的日常生活中也随处可见。
在数学中,我们经常会遇到整数的乘除法运算,因此了解整数的乘除法规则及解题技巧对我们解决数学问题非常重要。
一、整数的乘法规则整数的乘法规则相对简单,主要有以下几点:1. 同号相乘为正,异号相乘为负。
即两个正数相乘的结果是正数,两个负数相乘的结果也是正数;而一个正数和一个负数相乘的结果是负数。
例如,2 × 3 = 6,(-2) × (-3) = 6,2 × (-3) = -6。
2. 乘法满足交换律。
即两个整数相乘,交换顺序不会改变结果。
例如,2 × 3 = 3 × 2。
3. 乘法满足结合律。
即三个整数相乘,无论先乘哪两个,结果都相同。
例如,(2 × 3) × 4 = 2 × (3 × 4)。
二、整数的除法规则整数的除法规则相对复杂一些,需要注意以下几点:1. 同号相除为正,异号相除为负。
即两个正数相除的结果是正数,两个负数相除的结果也是正数;而一个正数和一个负数相除的结果是负数。
例如,6 ÷ 2 = 3,(-6) ÷ (-2) = 3,6 ÷ (-2) = -3。
2. 除法不满足交换律。
即两个整数相除,交换顺序会改变结果。
例如,6 ÷ 2 ≠ 2 ÷ 6。
3. 除法不满足结合律。
即三个整数相除,先除哪两个会改变结果。
例如,(6 ÷ 2) ÷ 3 ≠ 6 ÷ (2 ÷ 3)。
4. 除数不能为零。
在整数的除法运算中,除数不能为零,否则运算是没有意义的。
三、整数乘除法解题技巧在解决整数乘除法问题时,我们可以运用以下几个技巧:1. 利用乘法的交换律和结合律,灵活调整运算顺序,使计算更简便。
例如,计算(-2) × 3 × (-4)可以先将-2和-4相乘得到8,再与3相乘得到-24。
整数乘法训练题及答案
整数乘法训练题及答案一.选择题(共11小题)1.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌 D.美我宜昌2.若x2+mx+k是一个完全平方式,则k等于()A.m2B.m2 C.m2 D.m23.对(x2)3运算结果描述正确的是()A.5个x相加B.5个x相乘C.6个x相加D.6个x相乘4.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣35.若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5 6.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)27.下列式子从左到右变形是因式分解的是()Aa2+4a﹣21=a(a+4)﹣21Ba2+4a﹣21=(a﹣3)(a+7)C(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣25 8.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.29.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形10.已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12 B.20 C.28 D.3611.已知x+y﹣3=0,则2y•2x的值是()A.6 B.﹣6 C.D.8二.填空题(共12小题)12.若a﹣b=1,则代数式a2﹣b2﹣2b的值为.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.已知a+b=2,ab=﹣1,则3a+ab+3b=;a2+b2=.15.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.16.已知x﹣=1,则x2+=.17.已知m2﹣6m﹣1=0,求2m2﹣6m+=.18.已知(x﹣1)2=ax2+bx+c,则a+b+c的值为.19.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=.20.若a4+b4=a2﹣2a2b2+b2+6,则a2+b2=.21.已知=.22.若3x+2=36,则=.23.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是.三.解答题(共3小题)24.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?25.若a2﹣2a+1=0.求代数式的值.26.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:的值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)的值;(2)的值.试题解析一.选择题(共11小题)1.(2016•宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌 D.美我宜昌【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,∴结果呈现的密码信息可能是“爱我宜昌”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.2.(2016•濮阳校级自主招生)若x2+mx+k是一个完全平方式,则k等于()A.m2B.m2 C.m2 D.m2【分析】原式利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵x2+mx+k是一个完全平方式,∴k=m2,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.(2016•河南模拟)对(x2)3运算结果描述正确的是()A.5个x相加B.5个x相乘C.6个x相加D.6个x相乘【分析】直接利用幂的乘方运算法则求出答案.【解答】解:∵(x2)3=x6,∴对(x2)3运算结果描述正确的是6个x相乘.故选:D.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.4.(2015•黄冈中学自主招生)如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣3【分析】本题考查完全平方公式的灵活应用,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.【解答】解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选D.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.5.(2015春•苏州校级期末)若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5【分析】先把2x+1•4y化为2x+1+2y,128化为27,得出x+1+2y=7,即x+2y=6因为x,y均为正整数,求出x,y,再求了出x+y.,【解答】解:∵2x+1•4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6∵x,y均为正整数,∴或∴x+y=5或4,故选:C.【点评】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是化为相同底数的幂求解.6.(2015•临沂)多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.【点评】本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.7.(2014•海南)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.【解答】解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.【点评】此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.8.(2015•佛山)若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.2【分析】依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.【点评】本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.9.(湖北自主招生)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形【分析】等式两边乘以2,利用配方法得到(2a2﹣c2)2+(2b2﹣c2)2=0,根据非负数的性质得到2a2﹣c2=0,2b2﹣c2=0,则a=b,且a2+b2=c2.然后根据等腰三角形和直角三角形的判定方法进行判断.【解答】解:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4﹣4a2c2+c4+4b4﹣4b2c2+c4=0,∴(2a2﹣c2)2+(2b2﹣c2)2=0,∴2a2﹣c2=0,2b2﹣c2=0,∴c=a,c=b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.故选:B.【点评】本题考查了因式分解的应用,利用完全平方公式是解决问题的关键.10.(2015•黄冈中学自主招生)已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12 B.20 C.28 D.36【分析】由题意实数x、y、z满足x2+y2+z2=4,可以将(2x﹣y)2+(2y﹣z)2+(2z﹣x)2,用x2+y2+z2和(xy+yz+xz)表示出来,然后根据完全平方式的基本性质进行求解.【解答】解:∵实数x、y、z满足x2+y2+z2=4,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]=28﹣2(x+y+z)2≤28∴当x+y+z=0时(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是28.故选C.【点评】此题主要考查完全平方式的性质及代数式的求值,要学会拼凑多项式.11.(2016春•保定校级期末)已知x+y﹣3=0,则2y•2x的值是()A.6 B.﹣6 C.D.8【分析】根据同底数幂的乘法求解即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.【点评】此题考查了同底数幂的乘法等知识,解题的关键是把2y•2x化为2x+y.二.填空题(共12小题)12.(2014•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.【分析】运用平方差公式,化简代入求值,【解答】解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.【点评】本题主要考查了平方差公式,关键要注意运用公式来求值.13.(2015•合肥校级自主招生)已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=0.【分析】本题不应考虑直接求出2008﹣a与2007﹣a的值,而应根据已知等式的特点,用配方法进行求解.【解答】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.【点评】本题考查了完全平方公式,根据式子特点,等式两边都减去2(2008﹣a)(2007﹣a),转化为完全平方式是解题的关键.14.(2012•厦门)已知a+b=2,ab=﹣1,则3a+ab+3b=5;a2+b2=6.【分析】由3a+ab+3b=3(a+b)+ab与a2+b2=(a+b)2﹣2ab,将a+b=2,ab=﹣1代入即可求得答案.【解答】解:∵a+b=2,ab=﹣1,∴3a+ab+3b=3a+3b+ab=3(a+b)+ab=3×2+(﹣1)=5;a2+b2=(a+b)2﹣2ab=22﹣2×(﹣1)=6.故答案为:5,6.【点评】此题考查了完全平方公式的应用.此题难度不大,注意掌握公式变形是解此题的关键.15.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.16.(2014•徐州一模)已知x﹣=1,则x2+=3.【分析】首先将x﹣=1的两边分别平方,可得(x﹣)2=1,然后利用完全平方公式展开,变形后即可求得x2+的值.或者首先把x2+凑成完全平方式x2+=(x﹣)2+2,然后将x﹣=1代入,即可求得x2+的值.【解答】解:方法一:∵x﹣=1,∴(x﹣)2=1,即x2+﹣2=1,∴x2+=3.方法二:∵x﹣=1,∴x2+=(x﹣)2+2,=12+2,=3.故答案为:3.【点评】本题主要考查完全平方公式,利用了(x﹣)2的展开式中乘积项是个常数是解题的关键.17.(2015•绵阳校级自主招生)已知m2﹣6m﹣1=0,求2m2﹣6m+=39.【分析】依据等式的性质由m2﹣6m﹣1=0得到2m2﹣6m=1+m2,,故此所求代数式=1+m2+,然后利用完全平方公式科将所求代数式变形为1+2,最后代入数值进行计算即可.【解答】解:由m2﹣6m﹣1=0得;2m2﹣6m=1+m2,,∴2m2﹣6m+=1+m2+=1+2=1+62+3=39.故答案为:39.【点评】本题主要考查的是完全平方公式的应用、等式的性质,由m2﹣6m﹣1=0得到2m2﹣6m=1+m2是解题的关键.18.(2015•东营模拟)已知(x﹣1)2=ax2+bx+c,则a+b+c的值为0.【分析】将x=1代入已知等式中计算即可求出a+b+c的值.【解答】解:将x=1代入得:(1﹣1)2=a+b+c=0,则a+b+c=0.故答案为:0.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.(2016•富顺县校级模拟)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=13或﹣11.【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵4a2﹣(k﹣1)a+9是一个关于a的完全平方式,∴k﹣1=±12,解得:k=13或﹣11,故答案为:13或﹣11【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.20.(2016•黄冈校级自主招生)若a4+b4=a2﹣2a2b2+b2+6,则a2+b2=3.【分析】先对原式进行变形得(a2+b2)2﹣(a2+b2)﹣6=0,经过观察后又可变为(a2+b2﹣3)(a2+b2+2)=0,又a2+b2≥0,即可得出本题的结果.【解答】解:有a4+b4=a2﹣2a2b2+b2+6,变形后(a2+b2)2﹣(a2+b2)﹣6=0,(a2+b2﹣3)(a2+b2+2)=0,又a2+b2≥0,即a2+b2=3,故答案为3.【点评】本题主要考查了整体思想在因式分解中的应用,另应注意两个数的平方和为非负数.21.(2015•罗田县校级模拟)已知=6.【分析】把a﹣=2两边平方,然后整理即可得到a2+的值.【解答】解:∵(a﹣)2=a2﹣2+=4,∴a2+=4+2=6.【点评】本题主要考查了完全平方式的运用,利用好乘积二倍项不含字母是个常数,是解题的关键.22.若3x+2=36,则=2.【分析】根据同底数幂的乘法的性质等式左边可以转化为3x×32=36,即可求得3x的值,然后把3x的值代入所求代数式求解即可.【解答】解:原等式可转化为:3x×32=36,解得3x=4,把3x=4代入得,原式=2.故答案为:2.【点评】本题考查了同底数幂的乘法的性质,熟练掌握性质是解题的关键,注意运用整体思想解题可以简化运算.23.(2016春•姜堰区校级月考)若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是3.【分析】利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项列出关于m与n的方程组,求出方程组的解即可得到m与n的值.【解答】解:原式=x4+(m﹣3)x3+(n﹣3m+8)x2+(mn﹣24)x+8n,(x2+mx﹣8)(x2﹣3x+n)根据展开式中不含x2和x3项得:,解得:,∴mn=3,故答案为:3.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.三.解答题(共3小题)24.(2015春•甘肃校级期末)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.25.(2007•天水)若a2﹣2a+1=0.求代数式的值.【分析】根据完全平方公式先求出a的值,再代入求出代数式的值.【解答】解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;把a=1代入=1+1=2.故答案为:2.【点评】本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键.26.(2015春•金堂县期末)阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:的值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)的值;(2)的值.【分析】(1)根据题意可得,再利用完全平方公式计算即可;(2)根据倒数的定义和完全平方公式计算即可.【解答】解:(1)(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣71﹣4a2﹣(9﹣12a+4a2)+9a2﹣14a+7=0,整理得:a2﹣2a﹣1=0∴,∴;(2)解:的倒数为,∵,∴.【点评】此题考查完全平方公式,关键是根据完全平方公式进行变形解答.。
整数乘整数练习题
整数乘整数练习题在数学中,整数乘整数是一种基本运算,它可以帮助我们计算两个整数相乘的结果。
本文将为您提供一些整数乘整数的练习题,通过解答这些题目,您将更好地理解这种运算的规则和应用。
练习题一:计算下列整数乘法,并写出计算步骤:1. 12 × 42. (-5) × 63. (-8) × (-10)4. 3 × (-7)5. 0 × 9练习题二:按照乘法交换律重新排列下列乘法,并计算结果:1. 4 × 3 × 22. (-7) × (-5) × (-2)3. 0 × 6 × (-9)练习题三:根据已知条件,求出下列乘法的结果:1. 若a = 5,b = 2,求a × b。
2. 若x = -3,y = 4,求x × y。
3. 若m = -6,n = -8,求m × n。
练习题四:计算下列乘法,并写出结果的相反数:1. 9 × (-3)2. (-2) × 73. (-7) × (-4)练习题五:计算下列乘法,并进行合并运算:1. 5 × 4 + 5 × 32. (-6) × 7 - (-6) × 33. (-2) × (-9) + (-2) × 5练习题六:用两种不同的方法计算下列乘法,并比较结果:1. 2 × 7 + 2 × 32. (-3) × 5 + (-3) × 2练习题七:计算下列乘法,并加入括号,使得计算顺序明确:1. (-3) × 4 + 6 × (-2)2. 5 × (-2) + (-5) × 33. 8 × 2 + (-4) × 1练习题八:解决下列实际问题,并给出答案的意义:问题一:草地上有5块相同大小的矩形区域,每块区域的面积为3平方米,将它们连续排列,总长多少米?问题二:一辆汽车以每小时60公里的速度行驶,行驶5小时能走多远?问题三:一个游泳池长20米,宽8米,深3米,施工队连续施工了6天,共挖掘了多少立方米的土方?希望通过这些练习题,您对整数乘整数运算的规则和应用有更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小数乘法(分段计费)
例9
白桑九年一贯制学校 杜建勇
学习目标
1、会利用图像或摘录条件等 方法整理实际问题中的信息。
2、分析分段计费问题的数量 关系,寻找解决问题的有效方法。
阅读与理解: 1、从题中你能获取哪些信息? 2、这么多信息你觉得哪句话最难理解?
说——条件有哪些?问题又是什么?
知道了出租车收费的标准,还知道出租车 行驶的里程数,要算应付的车费。
思——“不足1km按1km计算”
是什么意思? 行驶的6.3km要 按7km计算。
议——大家知道起步价的意思吗?
当我们坐出租车时,应该怎么计算我们一共需要 支付多少费用呢?
方法1:
一共要付的费用=起步价+以1.5元计价路程的出租车费 方法2: 一共要付的费用=全部以1.5元/km计算+起步价里少算的钱
0.22元
0.11元 0.11元 0.11元 0.11元 0.11元 0.11元
8分29秒按9分计算
0.22+(9-3)×0.11=0.88(元)
30元 3.8元 3.8元 3.8元 3.8元 3.8元
2.5×12+(17-12)×3.8=49(元)
2. 五(1)班35名师生照合影。每人一张照片,一共
需付多少钱?
我的方法是:
27.5+2.5 ×30 =27.5+75 =102.5(元)
某地打固定电话每次前3分钟内收费0.22元, 超过3分钟每分钟收费0.11元(不足1分钟按1分钟 计算)。妈妈一次通话时间是8分29秒,她这一次 通话的费用是多少?
2.5元2.5元2.5元2.5元2.5元2.5元2.5元2.5元2.5元2.5元2.5元2.5元
2.5×11=27.5(元)
1、某市自来水公司为鼓励节约用水,采取按月 分段计费的方法收取水费。12吨以内的每吨2.5 元;超过12吨的部分,每吨3.8元。
(2)小云家上个月的用水量为17吨,应缴水费多少 元?
方法二:
可以先把7km 1.5×7=10.5(元) 按每千米 前3km少算:7-1.5×3=2.5(元) 1.5元计算,再 应付: 10.5+2.5=13(元) 加上前3km少 算的。
回顾与反思:
行驶 的里 程数 /km
1
2
3
4
5
6
7
8
出租 车费/ 元
7
7
7
8.5 10 11.5 13 14.5
1、某市自来水公司为鼓励节约用水,采取按月 分段计费的方法收取水费。12吨以内的每吨2.5 元;超过12吨的部分,每吨3.8元。 (1)小云家上个月的用水量为11吨,应缴水费多少 元?
思——第二个方法里面为什么要加上起步
价里少算的钱 ? 如果全部都按1.5元/km来计算,起步的3km就 只算了1.5×3=4.5(元),和起步价7元相比,少 算了7-4.5=2.5(元)。所以,如果每千米都按1.5 元算,就会少算2.5元,应该加上这2.5元,才是应 该付的出租车费。
方法一:
前面3km应收7元,后面 4km按每千米1.5元计 算„„ 7+1.5 ×4 = 7+ 6 =13(元)