云大附中一二一校区初2019届第一次模拟考试九年级数学试卷
云南省云南大学附属中学2019-2020学年中考数学模拟试卷

云南省云南大学附属中学2019-2020学年中考数学模拟试卷一、选择题1.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m , 求道路的宽.如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )=540B .(20-x )(32-x )=100C .(20+x )(32+x )=540D .(20+x )(32-x )=540 2.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点 A 旋转到△AB′C′ 的位置,使 CC′∥AB ,则旋转角的度数为( )A .35°B .40°C .50°D .65°3.如图,在Rt △ABC 中,∠C =30°,AB =4,D ,F 分别是AC ,BC 的中点,等腰直角三角形DEH 的边DE 经过点F ,EH 交BC 于点G ,且DF =2EF ,则CG 的长为( )A .B . 1C .52D 4.如图,在直角坐标系中,直线AB :y =﹣2x+b ,直线y =x 与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y =k x 的图象过点C .当S △CDE =32时,k 的值是( )A.18B.12C.9D.35.在一次数学测试后,随机抽取八(1)班5名学生的成绩(单位:分)如下:80,98,98,83,91,关于这组数据的说法错误..的是( ) A .众数是98 B .平均数是90 C .中位数是91 D .方差是566.大小相同的正方体搭成的几何体如图所示,其俯视图是( )A.B.C.D.7.如图所示的运算程序中,若开始输入的x值为18,我们发现第一次输出的结果为9,第二次输出的结果为12,……,则第10次输出的结果为()A.0 B.3 C.5 D.68.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.29.如图,是反比例函数在第一象限内的图像上的两点,且两点的横坐标分别是2和4,则的面积是( )A. B. C. D.10.如图,在Rt△ABC中,∠ACB=90°,以点C为圆心的圆与边AB相切于点D.交边BC于点E,若BC=4,AC=3,则BE的长为()A.0.6 B.1.6 C.2.4 D.511.若11xm=-是方程mx﹣2m+2=0的根,则x﹣m的值为()A.0 B.1 C.﹣1 D.212.下列计算或运算中,正确的是( )A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣b)2=a2﹣b2D.(a﹣3)(3+a)=a2﹣9二、填空题13.如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO',下列结论:①△BO'A可以由△BOC绕点B逆时针旋转60°得到;②点O与O'的距离为8;③四边形AOBO'的面积为;④∠AOB=150°;⑤s△AOC+S△AOB=,其中正确的结论是_____.14.如图,在菱形ABCD中,AB=5,tanD=34,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为_____.15.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点P是直线AC上一点,将△ADP 沿DP所在的直线翻折后,点A落在A1处,若A1D⊥AC,则点P与点A之间的距离为______.16.已知x1,x2是一元二次方程x2+6x+1=0的两实数根,则2x1﹣x1x2+2x2的值为_____.17.对非负实数x“四舍五入”到个位的值记为<x>,即已知n为正整数,如果n-12≤x<n+12,那么<x>=n.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…则满足方程<x>=1x 1.62的非负实数x的值为____.18.如图,已知直线y=x+4与双曲线y=kx(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若,则k=_____.三、解答题19.如图,△ABC是⊙O的内接圆,且AB是⊙O的直径,点D在⊙O上,BD平分∠ABC交AC于点E,DF ⊥BC交BC延长线于点F.(1)求证:DF是⊙O的切线.(2)若34,sin5BD DBF=∠=,求DE的长.20.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)21.(1)计算:2cos45°+((2)解不等式组321931xx x-⎧⎨++⎩><(),并把解集在数轴上表示出来.22.某商店2月购进了甲乙两种货物共300千克,已知甲进价每千克20元,售价每千克40元,乙进价每千克5元,售价每千克10元.(1)若这批货物全部销售完获利不低于4500元,则甲至少购进多少千克?(2)第一批货物很快售完,于是商家决定购进第二批甲和乙两种货物,甲和乙的进价不变,经调查发现甲售价每上涨2元,销量比(1)中获得最低利润时的销量下降5千克:乙每千克售价比第一批上涨1.2元,销量与(1)中获得最低利润的销量保持不变,结果第二批中已经卖掉的甲和乙的销售总额比(1)中第一批甲和乙售完后对应的最低销售总额增加了480元,求第二批货物中甲的售价.23.111(9)(9)339x x x x⎡⎤---=-⎢⎥⎣⎦24.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.25.某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本15元、35元,甲、乙两种图书的售价分别为每本20元、45元.(1)若书店购书恰好用了2300元,求购进的甲、乙图书各多少本?(2)销售时,甲图书打8.5折,乙图书不打折.若甲、乙两种图书全部销售完后共获利15,求购进的甲、乙图书各多少本?【参考答案】*** 一、选择题13.①②④⑤.14.10 715.52或1016.﹣13.17.8 18.-3 三、解答题19.(1)见解析(2)9 4【解析】【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=3,求得DE=94.【详解】解:(1)连接OD,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,在Rt△ABD中,BD=4,∵sin∠ABD=sin∠DBF=35,∴AD=3,∵∠DAC=∠DBC,∴sin∠DAE=sin∠DBC=35,在Rt△ADE中,sin∠DAC=35,∴DE=94.【点睛】本题考查了切线的判定和性质,角平分线的定义,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.20.(1)DH=1.2米;(2)点D与点C的高度差DH为1.2米;所用不锈钢材料的总长度约为5.0米.【解析】【分析】(1)通过图观察可知DH高度包含3层台阶,因而DH=每级小台阶高度×小台阶层数.(2)首先过点B作BM⊥AH,垂足为M.求得AM的长,在Rt△AMB中,根据余弦函数cosAMAAB=即可求得AB的长,那么根据不锈钢材料的总长度l=AD+AB+BC,求得所用不锈钢材料的长.【详解】(1)DH=1.6×34=1.2(米);(2)过B作BM⊥AH于M,则四边形BCHM是矩形.∴MH=BC=1∴AM=AH﹣MH=1+1.2﹣1=1.2.在Rt△AMB中,∠A=66.5°.∴AB=1.23.0cos66.50.40AM︒≈=(米).∴l=AD+AB+BC≈1+3.0+1=5.0(米).答:点D与点C的高度差DH为1.2米;所用不锈钢材料的总长度约为5.0米.【点睛】此题考查了三角函数的基本概念,主要是在解题过程中作辅助线BM,利用余弦概念及运算,从而把实际问题转化为数学问题加以解决.21.(1)+1(2)x>3【解析】【分析】(1)原式利用特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】(1)原式=2×2﹣+1+1;(2)321931xx x-⎧⎨++⎩>①<()②,由①得:x>1,由②得:x>3,则不等式组的解集为x>3,不等式组的解集在数轴上表示如下:【点睛】本题考查了实数的混合运算及一元一次不等式组的解法,熟练运用实数的运算法则及一元一次不等式组的解法是解决问题的关键.22.(1)甲至少购进200千克;(2)第二批货物中甲的售价为44或76.【解析】【分析】(1)设购进甲x千克,则购进乙(300﹣x)千克,根据题意列方程即可得到结论;(2)设第二批货物中甲的售价为a,根据题意列方程即可得到结论.【详解】(1)设购进甲x千克,则购进乙(300﹣x)千克,根据题意得:(40﹣20)x+(10﹣5)(300﹣x)≥4500,解得:x≥200.答:甲至少购进200千克;(2)设第二批货物中甲的售价为a,根据题意得:a×[200﹣5(a﹣40)÷2]+(10+1.2)(300﹣200)=40×200+10×(300﹣200)+480,整理得:a2﹣120a+3344=0,解得:a1=44,a2=76,答:第二批货物中甲的售价为44或76.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.23.x=0【解析】【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答.【详解】111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦ 193(3)93x x x x --+=- 9299x x x --=-60x =0x =【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.24.(1)14 ;(2)34 【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解:(1)选择A 通道通过的概率=14 故答案为:14; (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果, ∴选择不同通道通过的概率=123164=. 【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.25.(1)甲图书60本,乙图书40本;(2)甲图书75本,乙图书25本【解析】【分析】(1)设购进甲图书x本,乙图书y本,根据总价=单价×数量结合用2300元购进甲、乙两种图书共100本,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲图书m本,则购进乙图书(100-m)本,根据利润=销售收入-成本,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设购进甲图书x本,乙图书y本,依题意,得:100 15352300x yx y+=⎧⎨+=⎩,解得:6040xy=⎧⎨=⎩.答:购进甲图书60本,乙图书40本.(2)设购进甲图书m本,则购进乙图书(100﹣m)本,依题意,得:20×0.85m+45(100﹣m)﹣15m﹣35(100﹣m)=15[15m+35(100﹣m)],解得:m=75,∴100﹣m=25答:购进甲图书75本,乙图书25本.【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程。
2019届云南云大附中(一二一校区)中考一模数学试卷【含答案及解析】

2019届云南云大附中(一二一校区)中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. ﹣8的立方根是.2. 分解因式:my2﹣9m= .3. 一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是.4. 如图,BD∥CE,∠1=85°,∠2=37°,则∠A= °.5. 如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为.6. 一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…若P(2015,m)是其中某段抛物线上一点,则m= .二、选择题7. 一个几何体零件如图所示,则它的俯视图是()A. B. C. D.8. 函数中自变量x的取值范围是()A.x>4 B.x≥4 C.x≤4 D.x≠49. 下列运算中,正确的是()A.2a﹣5a3=2a8B.C.(2x+1)(2x-1)=2x2﹣1D.10. 已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.11. 不等式组的最小整数解是()A.0 B.﹣1 C.1 D.212. 小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.13. 如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()A.(1,﹣2) B.(﹣1,﹣2)C.(﹣1.5,﹣2) D.(1.5,﹣2)14. 如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③ B.①②④ C.①③④ D.②③④三、计算题15. 计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.16. 居民区内的“广场舞”引起媒体关注,小王想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.四、解答题17. 在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.18. 一人自地平面上测得塔顶的仰角为60°,于原地登高50米后,又测得塔顶的仰角为30°,求塔高和此人在地面时到塔底的距离.19. 甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?20. 如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2?21. 某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种商品的销售利润为y(元).(1)求y与x之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?22. 如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.23. 如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
(完整)云南省2019年中考数学模拟试题及答案,推荐文档

一元二次方程x 2-2x .2,021-==x x 1:对这两名运动员的成绩进行比较,下列
四个结论中,不正确的是
.甲运动员得分的极差大于乙运动员得分的极差如图3,△ABC 的周长为AC 对折,使顶点BC 边于点D ,交
,有一块含有点放在直尺的对边上
图730°. 已知A 点海班勤工俭学活动中获得2018元,班委会决定拿出不少于270元但不超过参加勤工俭学活动的同学购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.恤和每本影集的价格分别为多少元?1
1
y
图3图4。
2019-2020年九年级中考第一次模拟考试数学试题.docx

2019-2020 年九年级中考第一次模拟考试数学试题一、选择题(本题共 8 个小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应的位置上)1.1▲ )的倒数是 (3A. 3 B .1C.3D.± 332. 下列标志图中,既是轴对称图形,又是中心对称图形的是( ▲ )A. B. C. D.3.如图所示的几何体,它的主视图是( ▲ )4.下列运算正确的是(▲ )A. 16 4B. 1 311C.231 6 D. a 2a2232a5. 用直尺和圆规作一个角的平分线的示意图如图所示,则此作法的数学依据是(▲ )A. SASB. SSSC. HLD. ASA第5题图第6题图6. 如图,A、D是e O上的两个点,BC 是直径,若 D 35 ,则ACB 的度数是(▲)A. 35°B.55°C.65°D.70°7. 二次函数y ax2bx c 的象如所示,反比例函数y b与一次函数 y cx a 在同x一平面直角坐系中的大致象是(▲ )yy y y y O x O x O x O x O xA B C D8.如,直 y=x+1 分与 x 、 y 相交于点 A、 B,以点 A心, AB半径画弧交 x 于点 A1,再点 A1作 x 的垂交直于点 B 1,以点 A 心, AB1半径画弧交 x 于点 A2,⋯⋯,按此做法行下去,点 A 的坐是(▲)第 8题图8A.( 15, 0)B.(16, 0)18 题图C.(8 2,0) D .(8 2 1,0)二、填空(本共 10个小,每小 3 分,共 30分.不需写出解答程,把正确答案直接填写在答卡相位置上)9.2013年州市地区生 325000000000元,按可比价算,同比增 12% .将数字 325000000000用科学数法表示_____▲ ____.10.某同学近 5 个月的手机数据流量如下: 60,68,70,66,80 (位:MB),数据的极差是- ____▲ ____MB.11.函数 yx 1 ,自量 x 的取范是___▲____.12.等腰三角形的两分 3、6,等腰三角形的周___▲___.13. 若a m6, a n 3 , a m n___▲____.14. 点 A(m 1,3 m) 在第四象限,则 m 的取值范围是 ___▲ ____.15. 一元二次方程2n ▲x 2x n 0有两个相等的实数根,则___ ___.16. 如图,正方形网格中,小正方形的边长是1,则阴影部分的面积是 __▲__.17. 二次函数yax 2 bx 的图象如图, 若一元二次方程ax 2 bx k0 有实数解, 则 k 的最小值为▲.18. 如图,在 Rt ABC 中,CAB 90 , AB AC 2 , 点 D 、 E 是斜边 BC 的三等分点,点 F 是 AB 的中点,则AD EF____▲ ____.第16题图第17题图 第18题图三、解答题 (本题共 10个小题,共 96 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本题满分 10分)(1) 计算 :( 1) 2 2 12 8cos30323x 2 y 1( 2)解方程组:2x y 420.(本题满分 8 分)先化简,再求值:(a241)2,其中 a 是方程 x23x 100 的根.a24a 42a a22a21.(本题满分 8 分) 2014 年 3 月 28 日是全国中小学安全教育日,为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图( 说明: A 级: 90 分—— 100 分; B 级:75 分—— 89 分; C级: 60 分—— 74 分; D 级: 60 分以下 ) .请结合图中提供的信息,解答下列问题:(1) 扇形统计图中C级所在的扇形的圆心角度数是;(2)请把条形统计图补充完整;(3) 若该校共有 2000 名学生,请你用此样本估计安全知识竞赛中 A 级和 B 级的学生共约有多少人?22.(本题满分 8 分)在一个不透明的袋子中,装有除颜色外其余均相同的红、黄、蓝三种球,其中有 2 个红球、 1 个蓝球,从中任意摸出一个是红球..的概率为 0.5(1)求袋中有几个黄球;(2)一手同时摸出两球(相当于第一次随机摸出一球,不放回,再随机摸出第二个球),请用画树状图或列表法求摸到两球至少..一个球为红球的概率;23.(本题满分 8 分)钓鱼岛自古以来就是中国领土.中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.如图,E、 F 为钓鱼岛东西两端.某日,中国一艘海监船从 A 点向正北方向巡航,其航线距离钓鱼岛最近距离CF 20 3 海里,在 A 点测得钓鱼岛最西端 F 在点 A 的北偏东30°方向;航行22 海里后到达 B 点,测得最东端 E 在点 B 的东北方向( C、 F、 E 在同一直线上).求钓鱼岛东西两端EF 的距离.(结果保留根号)24.(本题满分 10 分)如图,在菱形 ABCD 中,点 M 是对角线AC 上一点,且MC MD .连接DM 并延长,交边BC 于点 F .(1)求证 :12;(2)若DF BC ,求证:点 F 是边 BC 的中点.,25. (本题满分10分)某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍。
2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。
其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。
2019届中考第一次模拟考试数学试卷.docx

2019 届中考第一次模拟考试数学试卷考 : 120 分 卷面 分: 150 分 考 形式: 卷一、 (本大 共有8小 ,每小 3 分,共 24 分.在每小 所 出的四个 中,只有一 是符合 目要求的, 将正确 前的字母代号填涂在答 卡相 位置上)1. -2 的相反数是1 B .2 C . -21 A .D .222.下列 形中,不是中心 称 形的是A .B .C .D . 3.由四个大小相同的正方体 成的几何体如 所示,那么它的左 是A B C D4.有 13 位同学参加学校 的才 表演比 .已知他 所得的分数互不相同,共 7 个名 .某同学知 自己的比 分数后,要判断自己能否 ,在下列 13 名同学成 的 量中只需知道的一个量是A .众数B .中位数C .平均数D .方差5.如果两 的半径分 2cm 和 5cm , 心距 8cm ,那么 两个 的位置关系是A .相交B .外切C .内切D .外离6.如 ,直 l ∥ m ,将含有 45°角的三角板 ABC 的直角 点 C 放在直 m 上,若∠ 1=25 °,∠ 2 的度数A . 25°B . 20°C . 30°D .35°S7.如 , x 正半 上的任意一点6 4 P ,作 y 的平行 , 分 与反比例函数 y和 yxx的 象交于 A 、B 两点.若点 C 是 y 上任意一点, 接 AC 、 BC , △ ABC 的面A .3B . 4C . 5D .108.如 1, 点 P 从矩形 ABCD 的 点 B 出 ,沿路 B → C → D 作匀速运 , 2 表示△ ABP的面 S 与点 P 运 的路程 x 之 的函数 象,点M 的坐 是( 1, 3), 点 N 的横坐 是2A .2B . 3C .4D . 5二、填空 (本大 共有 10 小 ,每小 3 分,共 30 分.不需写出解答 程, 将答案直接写在答 卡相 位置上)9. 4 的平方根是 ▲.10.在函数 y= x3 中,自 量 x 的取 范 是▲.11. 2013 年元宵 正 周末, 灯人数也 下 史新高.据 ,当天有 520000 游客在南京夫子 地区 灯 元宵,将 520000 用科学 数法表示▲.12.如 , 被平均分成6 份, , 停止 指 指向阴影部分的概率是▲ .yBADOCAxOBCD(第 12 题 )(第 16 题)(第 17 题 )( 第 13 题)13.如 ,巳知 AB 是⊙ O 的一条直径,延AB 至 C 点, CD 与⊙ O 相切,切点 D .若 CD=3 ,∠ C=30 °, ⊙ O 的半径等于▲.14.已知 a 是方程 x 2 4x 6 0 的解, a(a4) 5 =▲ .M15.一个 的 面 是底面 的3 倍, 面展开 的扇形的 心角是▲.NABCD 其 称中心 O 旋DPC16.如 ,平行四 形 ABCD 的 角 BD =4cm ,将平行四 形180 °, 点 D 所 的路径 ▲cm .AB17.如 , 在平面直角坐 系 xOy 中,O 坐 原点, 正方形 ABCD 的 角 AC 落在 x 上,图 1O图 2xA ( -1, 0), C (7, 0), OB , ∠ BOC 的正弦 ▲.(第 8 题)18.我 知道: 9=10-1=10 1 -1,99=100-1=10 2 -1, ⋯,即形如 999 的数都可以表示成含有10(第 6 题)(第 7 题)n底的 的形式,若 77 7 也可以表示成形如 a 10nb (n 是整数 )的形式, na2014 b2013= ▲ .三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分 8 分)( 1)计算: 4sin45 ° (1) 2(3)0 ;2( 2)化简: (12a 2 )b .a b a bba20.(本题满分 8 分)2-x > 0, 解不等式组5x + 1+1≥x ,并写出不等式组的整数解.221.(本题满分 8 分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.( 1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;( 2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22.(本题满分 8 分)为提倡节约,响应 “光盘 ”行动,某校 “小蜜蜂 ”社团学生利用节假日对我区部分市民进行了问卷调查,设计了如下调查问卷:你认为“光盘”行动最好的方式是什么?(单选) A . 加大宣传力度,增强市民的勤俭节约意识B. 在餐厅等餐饮场所张贴“节约粮食,反对浪费”的告示C. 禁止公款吃喝,及时个人结账,开据个人发票 D . 对于严重浪费的行为给予一定罚款随机抽取了部分问卷,整理并制作了如下统计图:根据上述信息,解答下列问题:( 1)本次调查的样本容量是多少?( 2)补全条形图,并计算 D 选项所对应扇形圆心角的度数;( 3)若我区有 20000 名市民参与本次活动,则支持 C 选项的市民大约有多少人?23.(本题满分 10 分)已知:如图, D 是△ ABC 的边 AB 上一点, CN ∥ AB , DN 交 AC 于点M , MA =MC .( 1)求证: CD =AN ;( 2)若∠ AMD =2∠ MCD ,试判断四边形 ADCN 的形状,并说明理由.24.(本题满分 10 分)如图 1,某超市从一楼到二楼的电梯 AB 的长为 16.5 米,坡角∠ BAC为 28°.( 1)求一楼与二楼之间的高度 BC (精确到 0.01 米);( 2)电梯每级的水平级宽均是0.25 米,如图 2.小明跨上电梯时,该电梯以每秒上升2 级的高度运行, 小明乘该电梯从一楼到二楼需要多长时间? (精确到 1 秒,参考数据: sin28 °=0.47,cos28 °=0.88 , tan28 =0°.53)25.(本题满分 10 分)大润发超市进了一批成本为8 元 /个的文具盒.调查发现:这种文具盒每个星期的销售量 y(个)与它的销售单价 x(元 /个)的对应关系如图所示.( 1)试判断 y 与 x 之间的函数关系,并求出函数关系式;( 2)按照上述调查规律,当销售单价为多少元时,该超市每个星期销售这种文具盒能获960元利润?(3)若这种文具盒的进货成本不超过 1200 元,要想获得最大利润,试求此时这种文具盒的销售单价,并求出最大利润.26.(本题满分10 分)我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.....一条直线 l 与方形环的边线有四个交点M 、M '、N '、N.小明在探究线段MM ' 与 N ' N的数量关系时,从点M ' 、 N ' 向对边作垂线段M ' E 、 N ' F ,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:( 1)直线 l 与方形环的对边相交时(图1),直线 l 分别交AD、A D、B C、BC于M、M ' 、 N ' 、 N ,小明发现 MM ' 与 N ' N 相等,请你帮他说明理由; D 'C DC 2)直线l与方形环的邻边相交时(图2l分别交 AD、 A D 、、于 M 、 M ' 、(),N ' 、 N ,l与 DC 的夹角为,请求出MM '的值(用含的三角函数表示) .N ' NlD C DF N(CD ' C 'N 'C 'NED 'lM 'N 'M 'FMEA 'B 'A'B'MA BA B图127.(本题满分 12 分)已知⊙ O 的半径为1,O 为坐标原点 .AB 是⊙ O 的弦,四边形 ABCD 是以 AB 为边的正方形,点 C、D 在⊙ O 外.计算与推理:( 1)AB 的长为 2 ,若点A的坐标为(1,0),则点B的坐标为,线段 OC 的长为.小明在解题的过程中发现:当AB 的长为 2 时,无论点A、B在⊙O上位置如何(如图1),线段 OC 的长总不变.你是否同意小明的观点,如果同意,请写出解答过程;若不同意,请说明理由.操作与探究( 2)如图2,点 A 的坐标为( 1,0),点 B 为⊙ O 上任意一动点.yyyCCDDB BAO A O A-1O1x-11x-11x 图 1图2备用图①点 B 在⊙ O 上运动一周(不与点 A 重合),直线BD 是否总经过一定点?若直线BD 过一定点,直接写出这点的坐标;若不过一定点,请说明理由.②求线段 OC 长度的最大值和最小值.28.(本题满分 12 分)如图,在平面直角坐标系中,O 为坐标原点,矩形 OABC 的两边在坐标轴上, A( 0, -2), C( 4, 0),抛物线y x2bx c 经过A,B两点.( 1)求b、c的值;( 2)若点 P 由点 A 出发以每秒 1 个单位的速度沿AB 边向点 B 移动, 1 秒后点 Q 也由点 A 出发以每秒 7 个单位的速度沿 AO、 OC、CB 边向点 B 移动,当其中一个点到达终点时,另一个点也停止移动,点 P 的移动时间为 t 秒.①当 PQ ⊥AC 时,求 t 的值;②当 PQ ∥AC 时,对于抛物线对称轴上一点H,∠HOQ <∠ POQ,求点 H 的纵坐标的取值范围.图2。
云南省2019年中考数学模拟试卷(一)(含解析)(1)

17.当前,“校园 ipad 现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中
学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:
频数分布表
看法
频数
频率
赞成
5
无所谓
0.1
反对
40
0.8
(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
,即 1+3+32+33+…+3100=
,仿照以上推理计算:
1+5+52+53+… +52015 的值是
.
二、选择题(本大题共 8 个小题,每小题只有一个正确选项,每小题
7.一个数用科学记数法表示为 2.37 ×105,则这个数是(
)
A. 237 B. 2370 C . 23700 D. 237000
C.
D.
13.某鞋店一天卖出运动鞋 12 双,其中各种尺码的鞋的销售量如下表: 则这 12 双鞋的尺码
组成的一组数据中,众数和中位数分别是(
)
码( cm)
23.5
24
24.5
25
25.5
销售量(双)
1
2
2
5
2
A. 25, 25 B. 24.5 , 2
(3)若该校有 3000 名学生,请您估计该校持“反对”态度的学生人数.
件是 (只需添加一个即可)
5.已知 A( 0, 3),B( 2, 3)是抛物线 y= ﹣ x2+bx+c 上两点,该抛物线的顶点坐标是
.
云南省2019年中考数学模拟考试试卷(一)(含解析)

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019xy ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019xy ()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。