高分子材料的表面改性

合集下载

高分子材料的表面改性与性能

高分子材料的表面改性与性能

高分子材料的表面改性与性能在当今科技飞速发展的时代,高分子材料凭借其优异的性能和广泛的应用领域,已经成为材料科学领域的重要组成部分。

然而,高分子材料的表面性能往往限制了其在某些特定场合的应用。

为了拓展高分子材料的应用范围,提高其性能,表面改性技术应运而生。

高分子材料的表面改性是指在不改变材料本体性能的前提下,通过物理、化学或生物等方法对材料表面的化学组成、微观结构和物理性能进行调整和优化。

其目的是改善高分子材料的表面润湿性、黏附性、耐磨性、耐腐蚀性、生物相容性等性能,以满足不同领域的应用需求。

物理改性方法是表面改性中较为常见的一类。

其中,等离子体处理是一种高效的技术手段。

等离子体中的高能粒子能够与高分子材料表面发生碰撞和反应,引入新的官能团,增加表面粗糙度,从而改善表面的亲水性和黏附性。

例如,经过等离子体处理的聚乙烯薄膜,其表面能显著提高,与油墨、涂料的结合力增强,印刷和涂装效果得到明显改善。

另一种物理改性方法是离子束注入。

通过将高能离子注入到高分子材料表面,可以改变表面的化学组成和结构,进而改善其性能。

比如,将氮离子注入到聚四氟乙烯表面,可以显著提高其耐磨性和耐腐蚀性。

化学改性方法在高分子材料表面改性中也具有重要地位。

化学接枝是一种常用的化学改性手段。

通过在高分子材料表面引入活性基团,然后与其他单体进行接枝反应,可以在表面形成一层具有特定性能的接枝聚合物层。

例如,将丙烯酸接枝到聚丙烯表面,可以使其具有良好的亲水性和生物相容性。

表面涂层也是一种常见的化学改性方法。

在高分子材料表面涂覆一层具有特定性能的涂层材料,如金属涂层、陶瓷涂层或聚合物涂层,可以显著改善其表面性能。

比如,在塑料表面涂覆一层金属涂层,可以赋予其良好的导电性和电磁屏蔽性能。

除了物理和化学改性方法,生物改性方法在近年来也受到了广泛关注。

生物改性主要是通过在高分子材料表面固定生物活性分子,如蛋白质、酶、抗体等,赋予材料特定的生物功能。

高分子材料改性技术

高分子材料改性技术

高分子材料的几种常用改性技术,如化学改性、共混改性、填充改性、纤维增强改性、表面改性技术。

化学改性是通过化学反应改变聚合物的物理、化学性质的方法。

如聚苯乙烯的硬链段刚性太强,可引进聚乙烯软链段,增加韧性;尼龙、聚酯等聚合物的端基(氨基、羧基、羟基等),可用一元酸(苯甲酸或乙酸酐)、一元醇(环己醇、丁醇或苯甲醇等)进行端基封闭;由多元醇与多元酸缩聚而成的醇酸聚酯耐水性及韧性差,加入脂肪酸进行改性后可以显著提高它的耐湿性和耐水性,弹性也相应提高。

共混是指共同混合,是一种物理方法,使几种材料均匀混合,以提高材料性能的方法,工业上用炼胶机将不同橡胶或橡胶与塑料,均匀地混炼成胶料是典型的例子,也可以在聚合物中加入某些特殊性能的成分以改变聚合物的性能如导电性能等。

在塑料成型加工过程中加入无机或有机填料的过程称为填充改性。

是在塑料基体(母体)中加入模量高得多的非纤维类的材料(一般为微粒状)。

通常认为填充改性是为了降低成本而进行的,实际上很多塑料制品如果没有填充助剂的加入,很难得到符合满意的应用效果。

高分子材料的表面修饰和性能控制

高分子材料的表面修饰和性能控制

高分子材料的表面修饰和性能控制高分子材料是一类重要的材料,在各个领域都有广泛的应用。

然而,由于其特殊的结构和性质,高分子材料的表面往往具有一定的缺陷和不稳定性,这限制了其在某些领域的应用。

为了改善高分子材料的性能,科学家们进行了大量的研究,发展了各种表面修饰和性能控制的方法。

一种常见的表面修饰方法是物理方法,如等离子体处理和激光刻蚀。

等离子体处理是利用等离子体的化学反应和能量转移来改变高分子材料表面的化学组成和形貌。

通过等离子体处理,可以在高分子材料表面形成一层致密的氧化层,从而提高其耐热性和耐腐蚀性。

激光刻蚀则是利用激光的高能量和高浓度来刻蚀高分子材料表面,从而改变其形貌和表面粗糙度。

这种方法可以用于制备具有特殊形貌和表面结构的高分子材料,如微纳米结构和光学薄膜。

另一种常见的表面修饰方法是化学方法,如表面改性和涂覆。

表面改性是通过在高分子材料表面引入新的化学基团,改变其表面性质和化学活性。

常用的表面改性方法包括化学修饰、原子层沉积和化学吸附等。

化学修饰是在高分子材料表面引入新的官能团,从而改变其表面化学性质和亲水性。

原子层沉积是利用化学气相沉积技术在高分子材料表面沉积一层原子尺度的薄膜,从而改变其表面结构和电学性能。

化学吸附是利用高分子材料表面的化学反应活性吸附特定的分子,从而改变其表面性质和分子识别能力。

涂覆是将一层特定的材料涂覆在高分子材料表面,从而改变其表面性质和功能。

常用的涂覆材料包括聚合物、金属和陶瓷等。

通过涂覆,可以在高分子材料表面形成一层致密的保护层,从而提高其耐磨性和耐腐蚀性。

除了表面修饰,高分子材料的性能控制也是一个重要的研究方向。

高分子材料的性能主要包括力学性能、热学性能和电学性能等。

力学性能是指高分子材料的强度、韧性和硬度等。

热学性能是指高分子材料的热稳定性、导热性和热膨胀系数等。

电学性能是指高分子材料的导电性、介电性和电化学性能等。

为了控制高分子材料的性能,科学家们采用了多种方法,如添加剂改性、共聚物合成和纳米填料增强等。

高分子材料表面改性技术考核试卷

高分子材料表面改性技术考核试卷
答案:(请考生自行回答)
标准答案
一、单项选择题
1. C
2. B
3. A
4. D
5. A
6. C
7. B
8. C
9. C
10. B
11. A
12. D
13. D
14. C
15. C
16. A
17. C
18. A
19. B
20. B
二、多选题
1. ABCD
2. ABCD
3. AB
4. ABC
5. ABC
2.等离子体处理通过高能粒子轰击材料表面,产生活性位点,增强表面化学反应性,用于清洗、活化、交联等改性过程,提高材料表面性能。
3.化学气相沉积(CVD)技术在制备涂层中的应用包括热CVD、等离子体增强CVD等,通过气相反应在材料表面沉积薄膜,改变其表面特性。
4.表面改性在生物医学领域的应用如改善植入材料的生物兼容性,通过引入生物活性分子(如羟基、胺基等)减少蛋白质吸附和细胞粘附,降低炎症反应。
B.光刻技术
C.化学腐蚀
D.热压贴合
19.以下哪些改性剂常用于高分子材料表面的化学改性?()
A.酰化剂
B.磺化剂
C.硅烷偶联剂
D.表面活性剂
20.以下哪些技术可以用于高分子材料表面的功能性涂层制备?()
A.化学气相沉积
B.等离子体增强化学气相沉积
C.溶液涂层
D.热喷涂
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
8.以下哪些情况下需要高分子材料表面改性?()
A.提高粘接强度
B.改善抗污染性
C.减少表面缺陷
D.提高导电性
9.在进行高分子材料表面改性时,哪些因素需要重点考虑?()

高分子材料的表面改性

高分子材料的表面改性


注入样品剂量:2×1016 ions/cm2

图3 氮离子注入后PTFE表面的EDX谱
1.2 离子注入改性的机理

图2表明,氮离子注入后PTFE表面有新键产生 (678cm-1),图3表明,氮离子注入后的样品,表现 出脱氟和氧化现象。 (4)离子注入不只产生断链和交联,而且产生导致 新化学键形成的微合金。X射线衍射分析表明,离子 束合金导致化学交联,未饱和的强共价结合和随机 分布类金刚石四方结合,导致产生坚固表面的三维 刚性梯状结构。

2.1 等离子体作用原理
反应气氛 反应气体 非反应气体
氧气、氮气
Ar、He

a.与原子氧反应:
2.1 等离子体作用原理

b.与分子氧反应:

c.与过氧化自由基反应:

可见,等离子体表面氧化反应是自由基连锁反应, 反应不仅引入了大量的含氧基团,如羰基及羟基, 而且对材料表面有刻蚀作用。
2.1 等离子体作用原理
化学健的键
C=O 8.0
2.1 等离子体作用原理

等离子体对高分子材料表面的作用有许多理论 解释,如表面分子链降解理论、氧化理论、氢键理 论、交联理论、臭氧化理论以及表面介电体理论等, 但其对聚合物表面发生反应机理可概括为三步。
自由基 表层形成致密的交联层
高压电场
高动能
空气中电子
加速 撞击分子
激态分子
1.1

离子注入的特点
(6)离子注入功率消耗低,以表面合金代替整体合金, 节约大量稀缺金属和贵重金属,而且没有毒性,利 于环保。 (7)离子注入工艺的缺点是设备一次性投资大,注入 时间长、注入深度浅、视线加工等缺点,不适合复 杂形态构件改性。

高分子材料的表面改性与涂层技术研究

高分子材料的表面改性与涂层技术研究

高分子材料的表面改性与涂层技术研究高分子材料是一类应用广泛的材料,其特点是重量轻、性能优异、成本低廉等。

然而,高分子材料在使用过程中可能会受到外界环境的影响而导致性能下降,因此进行表面改性和涂层技术研究是非常重要的。

表面改性是指通过改变高分子材料表面的化学组成或物理结构,从而改变其表面性能的方法。

常见的表面改性方法有物理方法和化学方法两种。

物理方法主要包括等离子体处理、溶剂处理、热处理等。

等离子体处理是一种常用的表面改性方法,通过在高分子材料表面引入等离子体,使其表面发生物理和化学变化,从而实现对表面性能的改善。

溶剂处理则是通过将高分子材料浸泡在特定溶剂中,使其表面受到溶剂的溶解或浸润,从而改变表面能和粘附性能。

热处理则是通过升高材料温度,使其表面发生结构变化,从而改变表面物理性质。

化学方法主要包括接枝共聚、表面活化等。

接枝共聚是指通过在高分子材料表面引入可与高分子材料相容的单体,使其在高分子材料表面形成一层新的共聚物层,从而改变其表面性能。

表面活化则是通过给高分子材料表面引入活性官能团,使其表面具有更高的反应活性,从而实现对表面的改性。

而涂层技术是一种通过在高分子材料表面涂覆一层特殊的材料,以实现对高分子材料性能的改善和保护的方法。

涂层技术可以使高分子材料具有良好的抗氧化性、耐磨性、耐腐蚀性等性能,从而延长其使用寿命和提高其功能性。

涂层技术主要包括化学涂层方法和物理涂层方法。

化学涂层方法是指通过在高分子材料表面进行化学反应,形成一层化学键连接的涂层,从而改变其表面性能。

常见的化学涂层方法有浸渍法、喷涂法等。

物理涂层方法则是通过将特定材料以固体或气体的形态沉积在高分子材料表面,形成一层物理层,从而改变其表面性能。

常见的物理涂层方法有物理气相沉积法、磁控溅射法等。

表面改性和涂层技术的研究对于提高高分子材料的性能和功能具有重要意义。

通过对高分子材料表面进行改性和涂层,可以增加其表面粘附性和耐磨性,提高其抗氧化性和耐腐蚀性,从而增加其使用寿命和功能性。

第七章--高分子材料的表面改性

第七章--高分子材料的表面改性
电晕的危害:1. 输电线上如果有电晕发生,则会有电晕电流,引起电力损耗; 2. 电晕放电具有脉冲的性质,会对广播电视产生干扰;3. 强的电磁场会对人体健 康产生影响,可能引起血压和脉搏的变动、心脏无节律波动、易于激动和疲劳等。
● 这些高能粒子与聚合物表面作用,使聚合物表面产 生自由基和离子,在空气中氧的作用下,聚合物表面 可形成各种极性基团,因而改善了聚合物的粘接性和 润湿性。电晕处理可使薄膜的润湿性提高,对印刷油 墨的附着力显著改善。
● 表面化学组成:X射线光电子谱(XPS, X-ray Photoelectron Spectroscopy,ESCA, Electron Spectroscopy for Chemical Analysis);
● 表面处理效果:性能的改进(粘结强度,印刷性、染色性 等)
XPS简单介绍:
通过用X射线辐照样品,激发样品表面除H、He以 外所有元素中至少一个内能级的光电子发射,并对产生 的光电子能量进行分析,以研究样品表面的元素和含量。
7.3 化学改性
● 化学处理是使用化学试剂浸渍聚合物,使其表面发生化学的和物理的 变化。 7.3.1 含氟聚合物
含氟聚合物,具有优良的耐热性、化学稳定性、电性能以及抗水气 的穿透性能,在化学、电子工业和医学方面有广泛应用。但含氟聚合物 的表面能很低,是润湿性最差粘结最难的聚合物,使其应用受到限制。 因此必须表面改性。 对含氟聚合物表面进行化学处理,广泛使用的是钠萘或钠氨溶液, 可提高其表面张力和可润湿性,改善其与其他材料的粘结性。
7.5.2 等离子体处理对聚合物表面的改性效果
(1)表面交联
CH2 CH 2 + He 2 ( CH 2 CH ) CH 2 CH + H .
+

高分子材料表面润湿性改性研究

高分子材料表面润湿性改性研究

高分子材料表面润湿性改性研究一、引言高分子材料广泛应用于现代化工、制造、医学等领域,但其表面润湿性常常不足以满足特定需求。

因此,科学家需要改性高分子材料表面润湿性以满足特殊的应用需要。

这篇文章着重从不同角度探讨改性高分子材料表面润湿性的研究进展。

二、润湿性概述表面润湿性是润滑剂、颜料、胶粘剂、涂料、聚合物等材料应用中至关重要的性质,是基于表面形态、表面能量和液体表面张力的互作用原理。

通过表面张力的影响,液体能够黏附在具有亲和力的表面上,从而使材料表现出润湿性。

表面润湿性对于许多应用非常关键,包括生物学、生物医学、纳米技术、涂料等多个领域,因此,高分子材料表面润湿性的改性研究越来越受到重视。

三、改性方法目前,有许多途径来改性高分子材料表面润湿性,除了物理和化学方法之外,在材料平台上,活性涂层、多功能纳米材料和基于生物特征的改性方法受到越来越多的关注。

1. 物理方法物理方法是通过对高分子材料表面进行局部调整改变其润湿性。

典型的方法包括激光纹理加工、电化学阳极氧化、热处理和等离子体处理。

激光纹理加工能够形成非常细致的结构和形态,在改善高分子材料表面润湿性方面具有很大的潜力。

电化学阳极氧化是利用电化学氧化法对金属、高分子等表面进行改性。

热处理包括热压和退火是一种简单有效的方法,通过调节温度和时间来改善润湿性。

等离子体处理可通过工艺参数调节得到不同的表面化学键和化学成分,从而改变表面润湿性。

2. 化学方法化学方法是通过对高分子材料表面进行化学修饰使其具有良好的润湿性。

在化学方法中,活性涂层和多功能纳米材料是当前广受关注的领域。

活性涂层可以在材料表面上形成功能性化合物层,从而获得所需的表面润湿性、切削和摩擦性能。

活性涂层的目的是选择单一或混合高分子材料,利用活性化合物集成表面上的亲水、疏水性,太阳能吸收、电化学、光学、生物响应等。

多功能纳米材料的目标是,通过合成具有多种作用的复合材料,实现材料的优化性质。

多功能纳米材料有多种结构和形态,因此,它们有不同的性质,如增强材料的机械性能、抗氧化和防腐等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
5.3.1金属化湿法技术
高分子材料表面金属化方法主要有湿法技 术和干法技术两种。
湿法技术中最为典型的是化学镀和电镀, 这也是比较成熟的两种金属化方法。
14
5.3.1.1化学镀
化学镀是利用强还原剂在非金属表面进行氧 化还原反应,使金属离子沉积在非金属镀件上 的过程。
化学镀前处理工艺如下: 去应力→除油(脱脂)→水洗→中和→水洗
应该须在20min 内完成印刷和喷涂作业,否则处 理效果会很快下降;
11
5.2 火焰处理与热处理
热处理是将高分子材料暴露在约500℃热空气 中。热处理一般有三个方面的作用。
一是使材料表面吸附的物质解吸附,提高材 料表面能;
→粗化→水洗→敏化→水洗→活化→还原→ 化学镀。
15
5.3.1.1化学镀
(1)去应力
高分子材料在加工中,其制品内部常常存在 内应力。在化学镀前对材料进行适当的热处 理可以有效消除内应力,提高镀层的均匀性。
(2)脱脂
脱脂的目的是清除高分子材料表面吸附的水 分、灰尘杂质,保证处理效果,工程上一般 采用在5O~70℃的条件下加热进行脱脂,也 可以用酒精擦拭进行脱脂。
9
5.2 火焰处理与热处理
所谓火焰处理就是采用一定配比的混合气体,在特 别的灯头上烧,使其火焰与高分子材料表面直接接 触的一种表面处理方法。
火焰中含有处于激发态的O、NO、OH和NH等,这些基 团能从高分子材料表面把氢抽取出来,随后按自由 基机理进行表面氧化,形成很薄的氧化层,使高分 子材料表面产生羟基、羰基、羧基等含氧基团和不 饱和双键,甚至发生断链反应,消除弱的边界层, 使材料的润湿性和黏接性改善。
5
5.1 电晕放电处理
(2)表面形态 高分子材料在空气、氧气、二氧化碳气氛下经电
晕放电处理后,由于分子链氧化降解,产生刻蚀 作用,表面粗糙度发生明显变化。 (3)表面张力 高分子材料经电晕放电处理后,其表面与水的接 触角、表面能下降,表面张力增大。
6
5.1 电晕放电处理
表5-2 LDPE 膜的表面自由能与辐射强度的关系
8
5.1 电晕放电处理
(4)润湿性 经电晕放电处理后高分子材料表面引入了含氧极性基团,使
其表面润湿性得到改善。 (5)黏接强度 塑料薄膜成型后,由于表面污染和低分子添加剂从本体内部
向表面层迁移、扩散 ,形成弱边界层。 电晕放电处理高分子材料膜,既可消除表面的弱边界层,又
可在表面引入含氧极性基团,增大表面粗糙度,从而大大提 高了薄膜的黏接强度。 但当薄膜处理过度,表面降解严重, 黏接强度反而有所下降。
4
5.1 电晕放电处理
表5-1电晕放电强度对LDPE分子构成的影响
辐射强度 元素含量/%
/W
C1s
O1s
N1s
0
91.2
7.4
1.4
50
77.9
20.7
1.4
100
69.4
29.1
1.5
150
65.5
33.1
1.4
200
64.8
33.5
1.7
O1s /C1s/% 8.1 26.7 41.9 50.5 51.7
16
5.3.1.1化学镀
(3)粗化 粗化的目的是提高高分子材料表面的亲水性和形成适当的
粗糙度,其作用有两个方面: 一是起着引发金属开始沉积于塑料表面的微粒核心的吸附,
1
表面改性的特点有两方面。 一是高分子材料的表面层(厚度约为10nm-
100μm)发生物理或化学变化; 二是高分子材料的整体性质不受影响,因此
表面改性对改善现有高分子材料的性质,拓 宽其应用领域有特别的意义。 本章将主要介绍高分子材料的表面改性方法。
2
5.1 电晕放电处理
电晕放电处理(又称电火花处理)是将2~100 千伏、2~10千赫的高频高压施加于放电电极 上,以产生大量的等离子气体及臭氧。
一般情况下,火焰处理时,将高分子材料加热到稍 低于热变形温度,并保持一定时间即可(一般为
0.01~0.1s)。
10
5.2 火焰处理与热处理
与电晕放电处理相似,火焰也具有成本低廉, 设备简单、易操作等特点,是聚烯烃、聚缩 醛、聚对苯二甲酸乙二醇等高分子材料在印 刷和喷涂前的很好的预处理工艺。
二是使材料表面氧化产生极性基团; 三是诱导材料结晶使材料表面粗糙化。聚乙
烯经热空气处理后,表面上被引进羰基、羧 基和某些胺基,也生成某些烃类的过氧化物, 从而获得可润湿性和黏结性。
12
5.3 高分子材料的表面金属化
随着高分子材料的应用领域越来越广,人 们对高分子材料的要求也越来越高。
在家电、汽车等行业的应用中人们对高分 子材料的美观性和功能性提出了更高的要 求,满足这些要求的重要手段之一就是将 高分子材料的表面加以金属化。
使高分子材料表面分子链上产生羰基和含氮 基团等极性基团,表面张力明显提高,而强 烈的离子冲击会使高分子材料表面粗化、去 油污、水气和尘垢等这些作用协同作用的结 果导致高分子材料表面的黏附性明显改善, 实现高分子材料表面预处理的目的。
3
5.1 电晕放电处理
电晕放电处理对高分子材料表面结构与性能 的影响表现在: (1)表面化学结构 电晕放电处理将能量传递给高分子材料表面 引发化学键断裂,生成自由基,在有氧条件 下,自由基迅速与氧气结合生成含氧官能团。
高分子材料具有一系列优异的综合性能,已成为现 代工业和尖端科学不可缺少的重要材料之一。
但由于高分子材料不含活性基团,结晶度高,表面 能低、化学惰性、表面污染及存在弱边界层等原因 使之存在难以润湿和黏合等问题,因此必须对高分 子材料表面进行处理,以提高其表面能,改善其润 湿和黏合性等。
高分子材料的表面改性方法有物理改性和化学改性, 按改性过程体系存在的形态有分为干式改性和湿式 改性。
辐射强度/W 0
γ Ls(mJ﹒m-2) γ sps(mJ﹒m-2) γ s(mJ﹒m-2)
36.5
3.8
40.3
50
36.8
11.5
48.3
100
35.8
14.4
50.2
150
34.1
16.3
50.4
200
33.4
17.6
51.0
7
5.1 电晕放电处理
图5-4 LDPE电晕放电前后的接触角的变化
相关文档
最新文档