热学必背知识点
物理热学高频考点总结归纳

物理热学高频考点总结归纳物理热学是研究热现象和热能的一门学科,它是自然科学中非常重要的分支之一。
在物理学考试中,热学是一个高频考点,掌握好相关的知识点可以在考试中取得较好的成绩。
本文将对物理热学的高频考点进行总结归纳,帮助同学们复习备考。
一、热学基础知识1. 温度与热量温度是物体内部粒子热运动的强弱程度的量度,单位是开尔文(K)。
热量是物体内能的一种表现形式,它和物体的质量、物质种类、温度变化有关。
2. 热平衡与热力学第一定律当两个物体处于热平衡状态时,它们的温度相等。
热力学第一定律是能量守恒定律在热学领域的应用,它表明热量转化为功和内能变化的关系。
3. 理想气体状态方程理想气体状态方程描述了气体的状态,即PV=nRT,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
二、热力学过程1. 等压过程等压过程是指气体在压强恒定的条件下进行的过程,此时热量转化为气体的增加内能和对外做功。
2. 等体过程等体过程是指气体在体积恒定的条件下进行的过程,此时热量全部转化为气体的增加内能。
3. 等温过程等温过程是指气体在温度恒定的条件下进行的过程,此时气体的内能不变,热量全部转化为对外做的功。
4. 绝热过程绝热过程是指在无热交换的条件下进行的过程,此时热量不进出系统,内能也不变化。
三、功与功率1. 功的定义与计算功是力对物体做作用时产生的效果,计算公式为W=Fs,其中W为功,F为力,s为力的作用距离。
2. 功率的概念与计算功率是单位时间内做功的大小,计算公式为P=W/t,其中P为功率,W为做的功,t为单位时间。
四、能量守恒定律能量守恒定律是物理热学中非常重要的定律之一,它表明在一个系统中,能量的总量是恒定的,能量可以相互转化但不能被创造或破坏。
五、热机与热效率1. 热机的工作原理热机是将热能转化为有用的功的设备,它通过吸收高温热量,放出低温热量来完成能量转化。
2. 热效率的计算热效率是指热机从热源中吸收的热量与输出的功之比,计算公式为η=W/Qh,其中η为热效率,W为输出的功,Qh为吸收的热量。
初中物理热学知识点总结

初中物理热学知识点总结一、热现象的基础知识1. 温度:物体冷热程度的物理量,通常用摄氏度(℃)、华氏度(℉)或开尔文(K)表示。
2. 热量:物体内部分子热运动的总能量,单位是焦耳(J)。
3. 热传递:热量从高温物体传递到低温物体的过程,方式有导热、对流和辐射。
二、热量的计算1. 比热容:单位质量的物质升高或降低1摄氏度所需的热量,单位是J/(kg·℃)。
2. 热容量:物体升高或降低1摄氏度所需的热量,单位是焦耳(J)。
3. 热传递公式:Q = mcΔT,其中Q是热量,m是物质的质量,c是比热容,ΔT是温度变化。
三、热膨胀和冷缩1. 热膨胀:物体受热后体积膨胀的现象。
2. 膨胀系数:物体温度每变化1摄氏度,体积变化的比率。
3. 应用:铁路铺设、桥梁建设中的伸缩缝设计。
四、相变1. 熔化:固体变成液体的过程,需要吸收热量。
2. 凝固:液体变成固体的过程,会放出热量。
3. 沸腾:液体在一定温度下变成气体的过程,此时温度称为沸点。
4. 冷凝:气体在一定温度下变成液体的过程,会放出热量。
五、热机1. 内燃机:通过燃料在发动机内部燃烧产生动力的机械。
2. 热效率:热机将热量转化为有用功的效率。
3. 卡诺循环:理想热机的四个过程,包括等温膨胀、绝热膨胀、等温压缩和绝热压缩。
六、热力学定律1. 第一定律:能量守恒定律,即能量不能被创造或消灭,只能从一种形式转换为另一种形式。
2. 第二定律:熵增原理,即在一个封闭系统中,总熵(代表无序度)不会减少。
3. 第三定律:当温度趋近于绝对零度时,所有纯净物质的熵趋近于一个常数。
七、热学实验1. 温度计的使用:测量温度的工具,有水银温度计、酒精温度计等。
2. 热量计的使用:测量物质在相变过程中吸收或放出热量的实验装置。
3. 热膨胀实验:观察并测量物体在受热后长度的变化。
八、热学在生活中的应用1. 保温材料:减少热量流失,用于建筑、服装等领域。
2. 制冷设备:通过制冷剂的相变过程,降低物体的温度。
热学物理高中知识点

热学物理高中知识点1. 热力学基本概念:热量、温度、热容量、比热容、热平衡等。
2. 热力学第一定律:能量守恒定律在热现象中的表现形式,即系统内能的增加等于外界对系统做的功和系统吸收的热量之和。
3. 热力学第二定律:描述了热能转换的方向性,即热量只能自发地从高温物体传递到低温物体,而不可能自发地从低温物体传递到高温物体。
4. 热力学过程:等温过程、等压过程、等容过程、绝热过程等。
5. 理想气体:遵守理想气体状态方程的气体,其分子间无相互作用,分子体积忽略不计。
6. 理想气体状态方程:描述理想气体状态参量(压强、体积、温度)之间关系的方程,即PV=nRT。
7. 热力学温标:根据热力学第二定律建立的温度计量标准,如开尔文温标和摄氏温标。
8. 热膨胀:物体在温度变化时,由于内部分子运动加剧而引起的体积变化现象。
9. 热传导:热量通过物体内部分子间的碰撞和摩擦而传递的现象。
10. 热对流:液体或气体中,由于温度差引起的密度差而导致的流动现象。
11. 热辐射:物体通过电磁波形式向外传递热量的现象。
12. 相变:物质在不同相态(固、液、气)之间的转变,如熔化、凝固、蒸发、凝结等。
13. 临界点:物质在一定温度和压强下,气液两相达到平衡的极限状态。
14. 饱和蒸汽压:在一定温度下,与液态物质处于动态平衡的蒸汽的压强。
15. 相对湿度:空气中实际水汽压与同温度下饱和水汽压之比,用以表示空气的湿度。
16. 热力学循环:热力学系统经历一系列状态变化后返回初始状态的过程,如卡诺循环、奥托循环等。
17. 热力学效率:热力学循环中,有用功与投入热量之比,用以评价热机的性能。
18. 熵:描述热力学系统混乱程度的物理量,与热力学第二定律密切相关。
19. 焓:热力学系统中,与系统压力、温度有关的热力学势,用于描述系统的能量状态。
20. 吉布斯自由能:描述热力学系统在恒温恒压条件下能够对外做有用功的能量。
热学基本知识点汇总

热学是研究热力学现象和热力学规律的学科,是物理学的一个重要分支。
下面是热学基本知识点的汇总:一、温度和热量1.温度:物体的温度是指物体内部分子的平均动能大小,通常用摄氏度或开尔文度表示。
2.热量:物体内部分子之间的相互作用能量,通常用焦耳(J)或卡路里(cal)表示。
热量可以传递,可以使物体的温度发生变化。
二、热力学定律1.热力学第一定律:能量守恒定律,即能量不会凭空消失,也不会凭空产生,只能从一种形式转化为另一种形式,总能量守恒。
2.热力学第二定律:热量不可能自发地从低温物体传递到高温物体,热量只能从高温物体传递到低温物体,且在传递过程中必然伴随着熵的增加。
3.热力学第三定律:当温度趋于绝对零度时,所有物质的熵趋于一个常数值,即绝对零度时的熵为零。
三、热力学过程1.等温过程:在等温过程中,物体的温度保持不变,热量和功相等。
2.绝热过程:在绝热过程中,物体没有与外界交换热量,只有通过功来改变内能。
3.等压过程:在等压过程中,物体的压强保持不变,热量和焓相等。
4.等体过程:在等体过程中,物体的体积保持不变,热量和内能相等。
四、热力学循环热力学循环是指在一定条件下,经过一系列热力学过程后,使物体回到原来的状态的过程。
常见的热力学循环有卡诺循环、斯特林循环、布雷顿循环等。
五、热力学量1.熵(S):热力学系统的无序程度,是热力学基本量之一,通常用焦耳/开尔文(J/K)表示。
2.内能(U):热力学系统的总能量,包括其分子内能和势能,通常用焦耳(J)表示。
3.焓(H):热力学系统的总能量加上其对外界做功所消耗的能量,通常用焦耳(J)表示。
4.自由能(F):热力学系统可能产生的最大功,通常用焦耳(J)表示。
热学基本知识点汇总

热学基本知识点汇总
热学基本知识点汇总
一、热学基本定律
1、牛顿冷却定律:物体放置在绝热环境中时,它的温度随时间而逐渐下降,当它达到环境温度时,就不再降低了。
2、热力守恒定律:总的热能在物理、化学反应过程中永远守恒,反应前后的总热能一定相等。
3、热量定律:吸热量等于加热量,只有当温度相等时才成立。
4、伽马定律:当表面温度低于环境(或源)温度时,物体表面射出的辐射量与温度的四次方成正比;当表面温度高于环境(或源)温度时,物体表面射出的辐射量与温度的四次方成负比。
二、热传导
1、热传导:热量在物体内部通过传导实现热能的转移。
2、热传导的因素:温度、传热系数、传热面积、热传导系数和传热距离。
3、热传导的方程:传热量=传热面积×热传导系数×温度差÷传热距离。
三、热导率
1、热导率:在温度恒定的条件下,单位时间内物体外部传入的热量与温度梯度成正比的量。
2、热导率的单位:W(瓦特)/(m2·K)。
3、热导率的因素:物质的热传导系数、传热距离和温度梯度。
四、热膨胀
1、热膨胀:随着温度的升高,各种物质的体积会随之增加,这种现象叫做热膨胀。
2、热膨胀的单位:10-6/℃或 K-1。
3、热膨胀的因素:物质的热膨胀系数、温度,物质的热容量、温度变化速率和体积。
高中物理热学必背知识点

高中物理热学必背知识点
热学是高中物理中的重要内容,是物理学中的一个重要分支。
掌握热学的必背知识点对于高中生来说是非常重要的。
下面是高中物理热学必背知识点:
1. 温度和热量的概念:温度是反映物体热状况的物理量,是物体分子平均动能的度量;热量是能量的一种形式,是热传递的基本形式。
2. 热传递的三种方式:传导、对流和辐射。
传导是指热量通过物质内部的传递;对流是指热量通过气体或液体的运动传递;辐射是指热量通过空气中的辐射传递。
3. 热平衡和热传导:热平衡是指物体内部各部分温度相等的状态;热传导是指热量从高温处传导到低温处的过程。
4. 热容和比热容:热容是物体吸热量与温度升降之积;比热容是单位质量物体升高1℃所需要的热量。
5. 热力学第一定律:能量守恒定律,能量可以从一种形式转化为另一种形式,但总能量守恒。
6. 热力学第二定律:熵增定律,热量不能自发地从低温物体传递给高温物体,熵永远增加。
7. 理想气体状态方程:PV=nRT,P是气体压强,V是气体体积,n 是气体的物质量,R是气体常数,T是气体的绝对温度。
8. 热功转化关系:热功是热能转化为功的过程,热力建立在热量传导的基础之上。
以上就是高中物理热学的必背知识点,掌握这些知识点对于高中物理学习及考试备考都有很大帮助。
希望同学们认真学习,加深理解,提高掌握水平,取得优异成绩。
初中物理热学知识点的详细归纳

初中物理热学知识点的详细归纳热学是物理学中的一个重要分支,主要研究热量和温度之间的关系以及热能转化过程。
在初中物理中,热学知识点主要包括热量、温度、热传递、热容等内容。
下面就这些知识点进行详细的归纳。
一、热量和热能1.热量是物体由于温度高低差异而传递的能量,是用于表征热传递量大小的物理量。
单位是焦耳(J)。
2.热能是物体内部分子之间的运动和相互作用所具有的能量,是宏观上表现为热量传递的形式。
二、温度1.温度是物体热平衡状态下表征冷热程度的物理量,是物体分子平均动能的度量。
单位是摄氏度(℃)或开尔文(K)。
2.不同温度的物体之间存在温度差异,热量会由高温物体传递到低温物体,直至两者达到热平衡状态。
三、热传递1.热传递是指热能在物体间传递的过程,主要有导热、对流和辐射三种方式。
2.导热是物体内部分子之间的能量传递方式,热传导速率与物体热导率、温度差和截面积有关。
3.对流是流体(气体或液体)中局部辐射传热的一种方式,其传热效果取决于流体的性质和流动状态。
4.辐射是通过电磁波传递热能的方式,许多物体的辐射热量与其温度的四次方成正比。
四、热容1.热容是物体单位温度升高时所吸收的热量,是物体储存热能能力的指标。
单位是焦耳每摄氏度(J/℃)。
2.物体的热容与其质量、材料和温度有关,一般表示为C=mCv,其中Cv是单位质量物体的比热容。
3. 水的比热容较大,为4186 J/kg•℃,因此水在吸收相同热量时温度变化较小,具有稳定温度的特性。
五、热力学第一定律1.热力学第一定律又称能量守恒定律,描述了能量从一个系统向另一个系统转移时,系统内部能量的变化关系。
2.根据热力学第一定律,系统吸收的热量等于系统对外界做功和系统内能的增量之和,即ΔQ=ΔW+ΔU。
3.热力学第一定律的应用范围广泛,可用于解释物体温度变化、热机工作原理等现象。
六、理想气体状态方程1.理想气体状态方程描述了理想气体在一定条件下的状态,即PV=nRT,其中P表示压强、V表示体积、n表示物质的量、R为气体常数、T表示温度。
热学基本知识点汇总

热学基本知识点汇总1. 热学的定义与研究对象热学是物理学的一个分支,研究物质内部能量的转换与传递规律,以及与温度、热量和功相关的现象和性质。
2. 温度与热平衡温度是描述物体冷热程度的物理量,常用单位是摄氏度(℃)或开尔文(K)。
热平衡指处于相同温度下的物体之间不存在净热流。
3. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。
它可以用以下公式表示: PV = nRT 其中,P是气体的压强,V是气体的体积,n是气体的摩尔数,R是气体常数(8.314 J/(mol·K)),T是气体的绝对温度。
4. 理想气体定律理想气体定律包括玻意耳定律、查理定律和盖-吕萨克定律。
- 玻意耳定律:在恒温条件下,理想气体的体积与压强成反比。
- 查理定律:在恒压条件下,理想气体的体积与温度成正比。
- 盖-吕萨克定律:在恒量条件下,理想气体的压强与温度成正比。
5. 热力学第一定律热力学第一定律是能量守恒定律在热学中的表述。
它指出,系统吸收的热量等于系统对外界做功和系统内部能量变化之和。
6. 理想气体的内能理想气体的内能是由于分子无规则运动而产生的能量。
根据理想气体状态方程可以得出,理想气体的内能只与温度有关。
7. 热容与比热容热容指单位质量物质升高1摄氏度所需吸收或放出的热量。
比热容是单位质量物质升高1摄氏度所需吸收或放出的热量与物质种类无关时所用到的术语。
8. 相变与相变潜热相变是物质由一种状态转变为另一种状态时发生的现象。
相变潜热是单位质量物质在相变过程中吸收或放出的热量。
9. 热传导热传导是指物体内部由高温区向低温区传递热量的过程。
它遵循傅里叶定律,即热流密度与温度梯度成正比。
10. 热辐射热辐射是指物体由于内部热运动而产生的电磁波辐射。
根据普朗克定律和斯特藩-玻尔兹曼定律,可以描述黑体辐射的能谱密度和总辐射功率。
11. 熵与熵增原理熵是描述系统混乱程度的物理量,也可以理解为系统的无序程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理选修3—3模块必背知识点
考点一 分子动理论和内能的基本概念
1.分子动理论
(1)物体是由大量分子组成的: ①多数分子大小的数量级为10-10 m. ②阿伏加德罗常数N A =6.02×1023 mol -1.
(2)分子在永不停息地做无规则热运动:
实验依据:布朗运动、扩散现象. ①扩散现象
由于物质分子的无规则运动而产生的物质迁移现象.温度越高,扩散得越快. ②布朗运动
现象:悬浮在液体(或气体)中的固体微粒的永不停息的无规则运动.
本质:布朗运动间接反映....
了液体(或气体)分子的无规则运动. 特点:温度越高,微粒越小,布朗运动越剧烈.
(3)分子间存在相互作用力. (4)气体分子运动速率的统计分布
氧气分子速率分布呈现中间多、两头少的特点. 2.温度是分子平均动能的标志、内能
(1)温度:一切达到热平衡的系统都具有相同的温度.
(2)两种温标:摄氏温标和热力学温标的关系:T =t +273.15 K.
(3)温度是分子热运动平均动能的标志.
(4)分子的势能:
①意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能. ②分子势能的决定因素:
微观上——决定于分子间距.
宏观上——决定于体积和状态.
(5)物体的内能:
①物体中所有分子热运动的动能与分子势能的总和.
②物体的内能大小由物体的温度、体积、物质的量决定.(气体由于分子间距太大,往往不考虑其分子势能,即理想气体的内能由它的温度和物质的量决定)
③物体的内能与物体的位置高低、运动速度大小无关.
④改变物体内能有两种方式:做功和热传递.
考点二 微观量的估算
1.微观量:分子体积V 0、分子直径d 、分子质量m 0.
2.宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ.
3.关系
(1)分子的质量:m 0=M N A =ρV mol N A
. (2)分子的体积:V 0=V mol N A =M ρN A
.(对于固体和液体是分子的体积,对于气体是分子所占据空间的体积)
(3)物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρV M ·N A
.
考点三分子力、分子势能与分子间距离的关系
1.分子间的相互作用力
(1)分子间同时存在相互作用的引力和斥力.实际表现出的分子力是引力与斥力的合力.(2)分子间的相互作用力的特点:分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,斥力比引力变化得更快.
(3)分子力F与分子间距离r的关系(r0的数量级为10-10m).
距离分子力F F-r图象
r=r0F引=F斥F=0
r<r0F引<F斥F为斥力
r>r0F引>F斥F为引力
r>10r0F引=0
F斥=0
F=0
2.分子势能
分子势能是由分子间相对位置而决定的势能,它随着物体体积的变化而变化,与分子间距离的关系为:
(1)当r>r0时,分子力表现为引力,随着r的增大,分子引力做负功,分子势能增大;(2)r<r0时,分子力表现为斥力,随着r的减小,分子斥力做负功,分子势能增大;(3)当r=r0时,分子势能最小,但不一定为零,可为负值,因为可选两分子相距无穷远时分子势能为零;
(4)分子势能曲线如右图所示.
注:重力、弹簧弹力、电场力、分子力均属于保守力
重力做正功,重力势能减小;重力做负功,重力势能增大.同样,分子
力做正功,分子势能减小;分子力做负功,分子势能增大.因此可用类
比法理解分子力做功与分子势能变化的关系.
考点四固体与液体的性质
1.晶体与非晶体
分类晶体
非晶体
单晶体多晶体
外形规则不规则不规则
熔点确定确定不确定物理性质各向异性各向同性各向同性
原子排列规则每个晶粒的排列不规则不规则转化晶体和非晶体在一定条件下可以转化
典型物质石英、云母、明矾、食盐玻璃、橡胶
2
(1)作用:液体的表面张力使液面具有收缩的趋势.
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.
3.毛细现象是指浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,毛细管越细,毛细现象越明显.
4.液晶的物理性质
(1)具有液体的流动性.
(2)具有晶体的光学各向异性.
(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.5.饱和汽:饱和汽压随温度而变,与饱和汽的体积无关.温度越高,饱和汽压越大.6.湿度:绝对湿度是空气中所含水蒸气的压强;相对湿度是某一温度下,空气中水蒸气的
实际压强与同一温度下水的饱和汽压之比,相对湿度=水蒸气的实际压强
同温度下水的饱和汽压
×100%.
考点五 气体压强的产生与计算
1.产生的原因 由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积.
(2)微观上:决定于分子的平均动能和分子的密集程度.
考点六 理想气体状态方程与气体实验定律的应用
1.气体实验定律
玻意耳定律 查理定律 盖—吕萨克定律
内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比 一定质量的某种气体,在体积不变的情况下,压强与热力学温度成正比 一定质量的某种气体,在压强不变的情况下,其体
积与热力学温度成正比
表达式 p 1V 1=p 2V 2 p 1T 1=p 2T 2 V 1T 1=V 2T 2
图象
2.理想气体的状态方程
(1)理想气体
①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.
②微观上讲,理想气体的分子间除碰撞外无其他作用力,即分子间无分子势能.
(2)理想气体的状态方程
一定质量的理想气体状态方程:p 1V 1T 1=p 2V 2T 2或pV T
=C (其中C 为常量). 气体实验定律可看做一定质量理想气体状态方程的特例.
过程 图线类别 图象特点 图象示例
等温
过程 p -V
pV =CT (其中C 为常量),即pV 之积越大的等温线温度越高,线离原点越远 p -1V
p =CT 1V ,斜率k =CT ,即斜率越大,温度越高 等容过程 p -T
p =C V T ,斜率k =C V ,即斜率越大,体积越小 等压
过程 V -T V =C p T ,斜率k =C p ,即斜率越大,压强越小 (1)等温变化
一定质量的气体,温度保持不变时,分子的平均动能不变.在这种情况下,体积减小时,分子的密集程度增大,气体的压强增大.
(2)等容变化
一定质量的气体,体积保持不变时,分子的密集程度保持不变.在这种情况下,温度升高时,分子的平均动能增大,气体的压强增大.
(3)等压变化
一定质量的气体,温度升高时,分子的平均动能增大.只有气体的体积同时增大,使分子的密集程度减小,才能保持压强不变.
考点七热力学第一定律与能量守恒定律
1.热力学第一定律
(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.
2
(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.
(2)能量守恒定律是一切自然现象都遵守的基本规律.
3
4
①等压变化:W=-pΔV
②p-V线性变化:W:p-V图像围成的面积
5.对于理想气体:U=a T(a是比例系数)
考点八热力学第二定律
1.热力学第二定律的三种表述
(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.
(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机不可能制成”.
(3)用熵的概念进行表述:在任何自然过程中,一个孤立系统的总熵不会减小(热力学第二定律又叫做熵增加原理).
2.热力学第二定律的微观意义
一切自发过程总是沿着分子热运动的无序性增大的方向进行.
3.热力学第二定律的实质
热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.。